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ABSTRACT

The online EM algorithm is a fast variant of the EM algorithm suit-

able for processing large streams of data. However the online EM

algorithm is restricted to models in which an analytical expectation

can be computed for the E-step. In this paper, we show that a new

algorithm called the simulated online EM algorithm may be applied

to a broad class of models used in signal processing and machine

learning. These models, which are characterized by the presence of

latent (or unobserved) positive factors, include in particular proba-

bilistic variants of Non-Negative Matrix Factorization (NMF). We

provide the main convergence properties of the simulated online EM

algorithm and detail its application to the Latent Dirichlet Allocation

(LDA) model.

1. INTRODUCTION

The Expectation Maximization (EM) algorithm is far and away the

most popular method for applying maximum likelihood methods to

latent data models and has many desirable properties including ver-

satility, easiness of implementation and convergence to the maxi-

mum likelihood estimate. The online EM algorithm is a variant of

the EM algorithm suitable for online estimation and fast application

to large datasets. The online EM algorithm inherits most of the good

properties of its batch counterpart in particular is easy to implement

and converges to the maximum likelihood solution [1]. The critical

difference between the online EM algorithm compared to its batch

counterpart is that only partial E-steps are computed which allows

the algorithm proceed quickly to the M-step resulting in faster con-

vergence with lower memory requirements.

The online EM algorithm can be applied to complete-data expo-

nential family models in which it is possible to analytically compute

the E-step. In this study we introduce the simulated online EM al-

gorithm which allows us to consider the much wider family of mod-

els which are also in complete data exponential family but includes

models for which the E-step cannot be computed analytically but can

be approximated with simulations.

In Section 2 we discuss a broad class of models that are in

complete-data exponential family form but for which it is not pos-

sible to analytically compute the E-step. In Section 3 we introduce

the simulated online EM algorithm and show that, like the online

EM algorithm, it converges to the maximum likelihood solution al-

beit with a higher variance. In Section 4 we consider how the sim-

ulated online EM algorithm can be applied to the Latent Dirichlet

Allocation model [2] and outline the steps for the simulated online

EM algorithm and consider two possible Markov chain Monte Carlo

(MCMC) algorithms for approximately computing the required ex-

pectations. The use of the simulated online EM algorithm applied to

the LDA model is demonstrated on a benchmark image decomposi-

tion task.

2. LATENT FACTORMODELS

The models we are interested in are of the form

Y |H ∼ g∑K
k=1

θkHk
,

where {gλ}λ∈Λ is an exponential family of distributions, H is a

latent random vector of real weights (or loadings, or proportions)

with a known prior distribution and {θk}1≤k≤K is a set of com-

mon shared factors. Our focus is on estimating these factors in the

maximum-likelihood (or MAP) sense.

Such models are known under very different names such as

Bayesian exponential Family PCA [3] but also as probabilistic ma-

trix factorization [4], discrete component analysis [5], Bayesian

partial membership [6] or simplicial mixture models depending on

the context.

A first example is the Latent Dirichlet Allocation (LDA) model

where {gλ}λ∈Λ are multinomial distributions (assuming a finite vo-

cabulary size), θk correspond to vectors of word occurrence proba-

bilities and the proportionsH lie in the probability simplex (i.e., are

normalized) and are given a Dirichlet prior distribution. This model

has been extensively used to model text documents Y represented as

bags of words [2].

A second example is the Itakura-Saito Non-negative Matrix Fac-

torization (NMF) of [7] where {gλ}λ∈Λ corresponds to a product

of independent exponential distributions, θk correspond to positive

prototype spectra and the mixture weights H are also positive and

given independent inverse Gamma priors. This model correspond to

a form of NMF which is more meaningful from a statistical point of

view when dealing with power spectra computed from times series.

The approach has proven to be very successful in audio applications.

Note that we can view usual finite mixtures as a special case of

the above where the weightsH are constrained to be vectors of zeros

that contain a single one (this is the basis of the “mixed-membership”

interpretation). In the following however we only consider the more

challenging case where the weights are real.

Except in simple cases, the resulting complete-data model

pθ(Y,H) is not in exponential family form and, furthermore, due

to the continuous nature of H , computation of Eθ(H|Y ) or direct
simulation from pθ(w|y) is not feasible. However, it is possible to
introduce further intermediate latent variables Z such that

(i) pθ(Y, Z,H) is in exponential family form,

(ii) There exist efficient simulation schemes to produce approxi-

mate draws under pθ(z, h|y).

The exact nature of the Z variable depends on the considered model

and will be examined in detail in Section 4 for LDA. In the follow-

ing, we assume that both (i)–(ii) hold and ignore the error resulting

from approximate simulation, e.g. the bias introduced by the use of

MCMC sampling with a finite burn-in period.



For the models of interest here, the only currently available op-

tion for online parameter estimation is to resort to online variational

Bayes procedures [8, 9]. Specific implementations of these ideas for

LDA have been given very recently in [10, 11]. Although a com-

plete comparison of the proposed simulated online EM algorithm

with the existing variational Bayes approaches is beyond the scope

of the current paper, we note that they have very similar computa-

tional complexities: the variational Bayes algorithms require iterat-

ing fixed point equations to determine the variational approximation

whereas the simulated online EM algorithm uses short sequences of

MCMC simulations to approximate the E-step. However, we will

see below that the simulated online EM algorithm eventually con-

verges to the same points as the exact maximum-likelihood proce-

dure, which cannot be guaranteed for the variational methods due to

the non-vanishing bias caused by the use of the variational approxi-

mation.

3. SIMULATED ONLINE EM ALGORITHM

In this section, Y denotes the observation while X = (Z,H) corre-
spond to the latent data. We assume that X is defined in such a way

that the complete-data likelihood is in exponential form

pθ(x, y) ∝ exp
(

φ′(θ)s(x, y)−A(θ)
)

, (1)

with observed-data likelihood fθ(y) =
∫

pθ(x, y)dx. Here, φ(·)
is a function that maps θ to natural parameters, s(x, y) is the suffi-
cient statistic,A(·) is the log partition function and the prime denotes

transposition.

We focus on the case where the model is well-specified, in the

sense that there exists a true parameter value θ⋆ such that the obser-

vations (Yn)n≥1 are generated independently under fθ⋆ . Define

If (θ) = −Eθ

[

∇2
θ log fθ(Y1)

]

,

Ip(θ) = −Eθ

[

∇2
θ log pθ(X1, Y1)

]

,

which correspond, respectively, to the actual (observed) and complete-

data Fisher information matrices for the parameter θ.

3.1. Online EM

We briefly recall the main facts regarding the online EM algorithm

for independent observations described in [1]. The algorithm oper-

ates by

Sn = (1− γn)Sn−1 + γnEθ̄(Sn−1)
[s(Xn, Yn)|Yn] ,

θn = θ̄(Sn), (2)

where γn denotes a sequence of positive step sizes decaying to zero

(typically of the form γn = n−α, with 1/2 < α < 1) and θ̄ is

the solution of the maximum-likelihood equation such that θ̄(S) =
argmaxθ{φ

′(θ)s(x, y)−A(θ)}.
The recursion on the statistic Sn admits D(fθ⋆‖fθ̄(s)) as Lya-

punov function, where D denotes the Kullback-Leibler divergence,

which is known to correspond to the large-sample limit of the

maximum-likelihood criterion. On the other hand, the recursion

on θn is asymptotically equivalent to the Robins-Monro weighted

gradient algorithm1

θn = θn−1 + γnI
−1
p (θ⋆)∇θ log fθn−1

(Yn),

1This result is obtained assuming convergence to θ⋆, as the gradient
∇θD(fθ⋆‖fθ) of the limiting criterion may vanish in points other than the
true parameter. Proposition 6 of [1] features the weight matrix J(θ) =
−Eθ⋆

[

Eθ

(

∇2
θ log pθ(X1, Y1)|Y1

)]

, however for-well specified models

which shows, that γ
−1/2
n (θn − θ⋆) ⇒ N (0, I−1

p (θ⋆)/2) (where the
symbol⇒ denotes convergence in distribution).

3.2. Simulated Online EM

By analogy with (2), we define the simulated online EM algorithm

by

Sn = (1− γn)Sn−1 + γn
1

m

m
∑

i=1

s(X̃i
n, Yn),

θn = θ̄(Sn), (3)

where X̃1
n, . . . , X̃

m
n are independent draws under pθ̄(Sn−1)

(xn|Yn).
In Section 4 we will require two slight modifications of (3).

First, in some cases it is more appropriate to draw only a sub-

component H̃i
n of X̃i

n. In this case, we make use of Rao-Blackwelli-

zed updates replacing s(X̃i
n, Yn) by its conditional expectation

Eθ̄(Sn−1)

[

s(Xn, Yn)
∣

∣

∣
Yn, H̃

i
n

]

.

This modification does not change the convergence behavior of the

algorithm and can only reduce the variance due to Rao-Blackwell

theorem.

Next, for somemodels it is more appropriate to useMAP estima-

tion so as to allow the specification of a prior on θ. If we select the
prior to be in the conjugate family corresponding to the complete-

data likelihood (1), it is easily shown that the function θ̄ should be

replaced by θ̄MAP such that

θ̄MAP(Sn) = θ̄(Sn + β/n),

where β is the hyperparameter of the prior (see also [12]).

We now state (without proof for reason of space) the main con-

vergence properties of the simulated online EM algorithm.

Proposition 1 Under the assumptions of [1],

1. The simulated online EM recursion (3) on sn admits the same

Lyapunov function D(fθ⋆‖fθ̄(s)).

2. The recursion on θn is asymptotically equivalent to

θn = θn−1 + γnI
−1
p (θ⋆)

1

m

m
∑

i=1

∇θ log pθn−1
(X̃i

n, Yn).

3. The rate of convergence is given by

γ−1/2
n (θn − θ⋆) ⇒

N

(

0,

{

Ip(θ⋆)
−1 +

1

m
(If (θ⋆)

−1 − Ip(θ⋆)
−1)

}

/2

)

.

(4)

Note that as Ip(θ⋆) � If (θ⋆), the asymptotic variance of the re-

cursion is monotonically decreasing from If (θ⋆)
−1/2, for m = 1,

to Ip(θ⋆)
−1/2, when m increases. In particular, in models where

the so-called fraction of missing information Ip(θ⋆)− If (θ⋆) is not
too large there is no reason to use large values of the number m of

simulated replicas. Note that as we will use in practice MCMC sim-

ulations to draw the X̃i
n’s, these simulation will be correlated and it

is safer to average from slightly longer sections of the chain than is

suggested by (4).

this converge to Ip(θ⋆). In the terminology of [10], the online EM algo-
rithm is a natural gradient algorithm but note that the weight is given by the
complete-data information matrix Ip(θ⋆) rather than by its observed coun-
terpart If (θ⋆).



4. APPLICATION TO LATENT DIRICHLET ALLOCATION

4.1. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a probabilistic model for cate-

gorical count data which has been historically used mostly for mod-

elling text documents. There are two equivalent representations of

LDA which arise from different choices of latent data; the corre-

sponding Bayesian networks are depicted in Fig 1.

θ

R

Hn

?Cn

θ

R

Hn

?

l = 1, . . . , Ln

Zn,l

?Wn,l

Fig. 1. Bayesian network representations of LDA. Left: minimal

completion; right: exponential family completion.

In the first representation, the nth document is represented by

the counts Cn,1, . . . , Cn,V of all of the possible V words which

are assumed to follow a multinomial distribution with probabilities
∑K

k=1 θvkHn,k given Hn. The complete-data likelihood of a docu-

ment is

pθ(Cn, Hn) =
Ln!

∏V
u=1 Cn,u!

V
∏

v=1

(

K
∑

k=1

θvkHn,k

)Cn,v

p(Hn),

(5)

where Ln denotes the length of the document. Hn is then endowed

with an exchangeable Dirichlet(Hn|α) prior.
The second representation enumerates every instances of a word

and its topic individually i.e. the lth word instance of the nth docu-

ment is Wn,l and Zn,l is the corresponding latent topic assignment.

The LDA model is then2

pθ(Wn, Zn, Hn) =

Ln
∏

l=1

pθ(Wn,l|Zn,l)p(Zn,l|Hn)p(Hn), (6)

where pθ(Wn,l = v|Zn,l = k) = θvk and p(Zn,l = k|Hn) =
Hn,k. Although involving many more latent variables, this second

representation is equivalent to the first one as the observed likelihood

fθ(Wn) resulting from (6) is equal to that of pθ(Cn) in (5), up to the
combinatorial factor that measures the number of different word oc-

currences Wn that correspond to a given count vector Hn. One im-

portant use for this representation is for collapsed Gibbs sampling

[13] which works by sampling the latent data Zn,l (see below). This

second representation is in exponential form for θ and the complete-

data sufficient statistic can be thought of as a two dimensional his-

togram svk(Wn, Zn) =
∑Ln

l=1 1{Wn,l = v}1{Zn,l = k}. Hence,
we use this second representation to determine the M-step of the

simulated online EM algorithm.

2Readers who are familiar with LDA should be made aware that the nota-
tion adopted here differs from that of [2, 13]. To convert our notation to that
in [2], substitute β for θ and θ forH .

4.2. MCMC Methods for LDA

Collapsed Gibbs sampling, which is the preferred MCMC method

for LDA in the literature, makes use of the availability of analyti-

cal marginalization forHn and samples in turn each of the indicator

variables Zn,l for l = 1, . . . , Ln. The probability of an indicator

variable Zn,l conditional on all the words in the document and all

the other indicator variables becomes the following (discrete) prob-

ability distribution:

pθ (Zn,l|Wn, {Zn,l′}l′ 6=l) ∝ θWn,lZn,l
(S

(−l)
Zn,l

+ α),

where S
(−l)
k =

∑

l′ 6=l 1{Zn,l′ = k}. In words, the probability

is proportional to the relevant entry of θ multiplied by the count of

words in topic Zn,l within the document, adding the hyperparameter

α of the prior Dirichlet distribution on Hn.

In the classical context of Bayesian batch parameter infer-

ence, the collapsed Gibbs sampler is also favored for its ability to

marginalize with respect to the unknown parameter θ. For online

estimation however, θ is fixed to the value θn−1 estimated when pro-

cessing the previous observation and one only requires conditional

simulation of the latent variables pertaining to the new observation

Yn. Hence, working with the full collection of indicator variables

Zn can be avoided by resorting to a direct Metropolis-Hastings

algorithm on Hn using only the minimal form of the LDA model

(left graph in Figure 1). Given the domain constraint on Hn, the

Dirichlet distribution is used as a proposal with the following form

H∗
n|Hn ∼ Dirichlet(H∗

n|κHn + 1).

Here κ is a constant; 1/κ being interpreted as a ‘step size’. This

distribution has an expectation of (κHn,k + 1)/(κ+K), which for
large κ is approximately Hn. Unlike the most common random-

walk Metropolis-Hastings algorithm this proposal distribution is not

symmetric and it is necessary to use the full Metropolis-Hastings

test for acceptance or rejection, i.e., the probability of acceptance is

given by:

min

(

1,

∏V
v (
∑K

k=1 θvkH
∗
n,k)

Cn,vDirichlet(Hn|κH
∗
n + 1)

∏V
v (
∑K

k=1 θvkHn,k)Cn,vDirichlet(H∗
n|κHn + 1)

)

,

where

Dirichlet(Hn|κH
∗
n + 1)

Dirichlet(H∗
n|κHn + 1)

=
(
∏

k Γ(κHn,k + 1))
∏

k H
κH∗

n,k

n,k

(
∏

k Γ(κH
∗
n,k + 1))

∏

k H
∗
n,k

κHn,k
.

4.3. Simulated online EM algorithm for LDA

The pseudo code for the simulated online EM algorithm is given in

Algorithm 1 below.

Algorithm 1 Simulated Online EM Algorithm for LDA

Initialize θ0.
for n = 1, . . . do

Compute S̃1
n, . . . , S̃

m
n using MCMC simulations of Zn orHn.

Sn = (1− γn)Sn−1 + γn
1
m

∑m
i=1 S̃

i
n.

θn,vk =
Sn,vk+β/n

∑
V
v Sn,vk+β/n

.

end for

To compute the approximations S̃i
n of Eθn−1

[s(Wn, Zn)|Wn]
for i = 1, . . . ,m, one typically needs to run the MCMC sampler



for slightly longer than m steps so as to discard an initial burn-in

period. When using the collapsed Gibbs sampler, S̃i
n can be directly

computed from the simulated configuration of indicator variables Z̃i
n

by

S̃i
n,vk =

Ln
∑

l=1

1{Wn,l = v}1{Z̃i
n,l = k}.

When using the Metropolis-Hastings algorithm to simulate H̃i
n, we

use the following Rao-Blackwellized estimate:

S̃i
n,vk = Eθn−1

[svk(Wn, Zn)|Cn, H̃
i
n] =

θn,vkH̃
i
n,k

∑K
k=1 θn,vkH̃i

n,k

Cn,v.

An important practical consideration, in particular for text docu-

ments, is that S̃i
n,vk needs only be computed for the words v that

are present in the nth document, as it is zero elsewhere.

4.4. Simulations

To illustrate the potential of the approach on a simple example, we

show how LDA trained with online EM can be used to process image

data to achieve an NMF-like decomposition. In our image process-

ing setup, an image is represented as a collection of pixels defined by

their integer-valued grey level. To make the connection with the text

processing setup, the document is now an image, the words are pixels

and word counts correspond to grey levels. We apply the model to a

noisy version of the benchmark swimmer corpus [14] which consists

of 256 32-by-32 pixel binary images. The swimmer is a stick figure

with 4 limbs each of which has 4 positions. It is a useful dataset as a

standard test of the ability of NMF-like models to decompose the 16
limbs. To make the learning task more realistic, each observed image

is drawn from a Poissonized version of a randomly selected binary

image of the swimmer collection to which a spatially-independent

Poisson noise of intensity 0.2 is added. A few example of the result-

ing images are shown in Figure 2. In this experiment, V is thus equal

to 322 = 1024 and Ln is in the range 200 − 300 (the background

contribution is on average equal to 1024× 0.2 ≈ 205).

Fig. 2. Sample of training data.

Simulated online EM is applied to the LDA model with 16 top-

ics or ‘components’ (one for each position of each limb) and after

10000 iterations the ‘components’ are shown to recover the differ-

ent positions of each limb see Fig 3 (for this simulation the E-step

was computed with the random walk Metropolis algorithm with a

400 sample burn in and averaging over 100 samples with κ = 300).
The fraction of samples accepted varies for different records, but is

around 0.4. We see that the algorithm has correctly separated all 16
components. Note that the location of the body is not identifiable

under this model.

The convergence properties of the algorithm are shown in Fig 4

which shows the algorithm learning an individual component over

time.

Fig. 3. The 16 components of θ10000 plotted as images.

(a) 100 iterations (b) 1000 (c) 2000 (d) 10000

Fig. 4. Convergence of the algorithm for a single component.
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