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ABSTRACT
Space alternating data augmentation (SADA) was proposed by
Doucet et al (2005) as a MCMC generalization of the SAGE algo-
rithm of Fessler and Hero (1994), itself a famous variant of the EM
algorithm. While SADA had previously been applied to inference in
Gaussian mixture models, we show this sampler to be particularly
well suited for models having a composite structure, i.e., when the
data may be written as a sum of latent components. The SADA sam-
pler is shown to have favorable mixing properties and lesser stor-
age requirement when compared to standard Gibbs sampling. We
provide new alternative proofs of correctness of SADA and report
results on sparse linear regression and nonnegative matrix factoriza-
tion.

Index Terms— Markov chain Monte Carlo (MCMC), space al-
ternating data augmentation (SADA), space alternating generalized
expectation-maximization (SAGE), sparse linear regression, non-
negative matrix factorization (NMF)

1. INTRODUCTION

In many settings the data is modeled as a sum of latent components

such that

xn =
XK

k=1
ck,n (1)

and the individual components are given a statistical model
p(ck,n|θk). Examples of such composite models occur in

• linear regression; scalar data xn is expressed as a linear com-
bination of explanatory variables φk,n such that

xn =
X

k

skφk,n| {z }
ck,n

(2)

and the regressors sn may for example be given a sparse prior,
• source separation; multichannel data xn is expressed as a lin-

ear combination of unknown sources with unknown mixing
coefficients, such that

xn =
X

k

sknak| {z }
ck,n

(3)

and the sources skn are typically mutually independent and
given an application-specific prior,
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• so-called Kullback-Leibler (KL) and Itakura-Saito (IS) non-
negative matrix factorization (NMF) models [1]; multichan-
nel data xn is given by Eq. (1) and the components have a
model of the form

p(ck,n|θk) =
Y

f
p(ck,fn|wfkhkn) (4)

where wfk, hkn are nonnegative scalars.

Let us denote by θ the set of parameters {θk}. In a Bayesian es-
timation setting, given a prior p(θ), one wants to characterize the
posterior distribution p(θ|X) of parameters θ given data X through
its mode and/or moments. As this often leads to intractable prob-
lems, numerical alternatives have to be sought. One such alternative
is Markov chain Monte Carlo (MCMC) inference, which aims at
sampling values from the posterior distribution, through a Markov
chain with transition kernel K(θ|θ�) having a stationary distribution
equal to the distribution of interest p(θ|X).

A standard MCMC approach for inference in the above-
mentioned composite models consists in completing or augmenting

the set of data and parameters with the individual components, act-
ing as latent variables, so as to form a Gibbs sampler which samples
the components jointly conditioned on X and θ, and subsequently
samples each subset θk conditioned on k

th component. In this pa-
per we show that sampling the components from their individual
marginals instead of their joint distribution produces a valid sam-
pler of p(θ|X). As will be shown in experiments this results in a
sampler with improved mixing and with lesser storage requirement.
As it appears this alternative sampler is a special case of the space
alternating data augmentation (SADA) sampler of Doucet et al. [2].
SADA was introduced as a Monte Carlo version of the space alter-
nating generalized expectation-maximization (SAGE) algorithm [3].
Whilst SADA was applied to inference in Gaussian mixtures mod-
els in [2], the aim of this paper is to present the relevance of this
sampler for inference in composite models, where the results can be
spectacular.

The paper is organized as follows. Section 2 specifies our work-
ing assumptions and some notations. Section 3 briefly describes the
SAGE algorithm for maximum likelihood (ML) estimation in com-
posite models as it gives the intuition behind the SADA sampler.
Section 4 describes and compares Gibbs and SADA samplers, and
give alternative proofs of convergence of SADA, in a general case
and in the specific case of composite models. Section 5 provides
simulation results on sparse linear regression and NMF problems.
Section 6 concludes.



2. NOTATIONS AND WORKING ASSUMPTIONS

In order to ease the notations we will assume scalar data in the fol-
lowing, so that

xn =
XK

k=1
ck,n (5)

and the components ck,n have individual distribution p(ck,n|θk).
Despite this simplifying working assumption the results of this paper
hold in the general multidimensional case where the single index n

is replaced by a tuple of indices, e.g., a pair (f, n) in Section 5.2. We
denote by x and ck the column vectors of dimension N with coeffi-
cients {xn} and {ck,n}n, respectively, and C the set of coefficients
{ck,n}.1 Throughout the paper we assume mutual independence of
the components conditionally upon θ, i.e.,

p(C|θ) =
YK

k=1
p(ck|θk), (6)

which is a fundamental assumption for the following results to hold.
We will assume for simplicity prior independence of the parameters,
i.e., p(θ) =

Q
k p(θk), though this assumption is not required. Fi-

nally, note that model Eq. (5) is not a noiseless model per se as one
of the components can act as residual noise, which will be the case
in one of the two experiments reported in Section 5.

3. EM AND SAGE IN COMPOSITE MODELS

In this section we describe an EM algorithm for ML (or MAP) es-
timation of θ, which gives the intuition to the forthcoming SADA
sampler. The EM algorithm for the maximization of the likeli-
hood p(x|θ) involves iterative evaluation and maximization of the
expected complete data log-likelihood given by2

Q(θ|θ�) = E{log p(C|θ)|x, θ
�
}. (7)

Using the factorization implied by the conditional independence
log p(C|θ) =

P
k log p(ck|θk), the functional may be written as

Q(θ|θ�) =
X

k
Qk(θk|θ

�), (8)

where Qk(θk|θ
�) = E{log p(ck|θk)|x, θ

�
} (9)

=

Z

ck

log p(ck|θk) p(ck|x, θ
�)dck. (10)

At this stage it is worth emphasizing that the posterior p(C|x, θ) of
the components is “degenerate”, in the sense that the sampled com-
ponents lie on a hyperplane, because of the constraint x =

P
k ck.

Yet, expectations with respect to this distribution, as required in
Eq. (7), are still defined. In contrast, the posterior of the individ-
ual components p(ck|x, θ), i.e., the marginals of p(C|x, θ), are not
degenerate, so that the integral in Eq. (10) is well defined. Eq. (8)
suggests that the task of maximizing Q(θ|θ�) can be decoupled into
k optimization subtasks involving Qk(θk|θ

�) only. The variable θ
�

can either be refreshed after a full cycle of updates of {θ1, . . . , θK}

(standard EM), or after every update of θk (SAGE). Note that given a
prior on θ a MAP estimate can be obtained by changing p(ck|θk) to

1By {aij}j we denote the set {aij}j=1,...,J , for a given i. {aij} de-
notes the set of all coefficients, i.e., for i = 1, . . . , I and j = 1, . . . , J .

2Note that in the general formulation of EM, the complete set may be any
set C such that the mapping C �→ x is many-to-one, which is the formulation
that we use here, and which differs from the more conventional one where the
complete set if formed by the union of data and a hidden set.

Algorithm 1 Reference Gibbs sampler

Input : composite data x, initialization θ
(0)

for i = 1, niter do
Choose residual index r ∈ {1, . . . , K} randomly
for k = {1, . . . , K}\r do

Sample c
(i)
k ∼ p(ck|x, {c

�
j}j �={k,r}, θ

�
) (apostroph ’ refers

to most recent value)
Sample θ

(i)
k ∼ p(θk|c

(i)
k )

end for
c
(i)
r = x−

P
k �=r c

(i)
k

θ
(i)
r ∼ p(θr|c

(i)
r )

end for
Outp.: samples from p(C, θ|x) = p(θ|x)p(C|x, θ) (after burnin)

p(ck, θk) in Eq. (10). The decomposition of the EM functional given
by Eq. (7) suggests an analogous MCMC approach in which the
components ck would be sampled individually from their marginals
p(ck|x, θ) instead of being sampled jointly from p(c1, . . . , cK |x, θ),
before sampling each subset θk conditionally upon ck. This is pre-
cisely what SADA achieves, while ensuring that the transition kernel
K(θ|θ�) has the correct stationary distribution p(θ|x), as described
in the next section.

4. SADA FOR COMPOSITE MODELS

4.1. From Gibbs to SADA

Let us first discuss Gibbs sampling strategies for p(θ|x). One itera-
tion of the obvious sampler is based on iteratively sampling C and
θ:

(1) C
(i)
∼ p(C|x, θ

(i−1))

(2) ∀k, θ
(i)
k ∼ p(θk|c

(i)
k )

Because of the sum constraint x =
P

k ck, sampling the components
typically involves reserving one component out, e.g., cK , acting as
a residual noise, sampling from p(c1, . . . , cK−1|x, θ) and then set
cK = x −

PK−1
k=1 ck. The components c1, . . . , cK−1 may be sam-

pled directly from their joint distribution, or conditionally, i.e, from
p(ck|x, {cj}j �={k,K}, θ), which corresponds to the following view-
point:

x−

X
j �=k,K

cj

| {z }
observation

= ck|{z}
target

+ cK|{z}
residual

. (11)

The component acting as the residual may typically be shuffled at
every iteration for improved mixing. The latter strategy will form
the basis of our reference Gibbs sampler, which is summarized in
Algorithm 1.

SADA essentially consists in sampling each component ck

from its marginal p(ck|x, θ) instead of the full conditional
p(ck|x, {cj}j �={k,r}, θ), i.e., adopting the following viewpoint:

x|{z}
observation

= ck|{z}
target

+
X

j �=k
cj

| {z }
residual

. (12)

SADA is summarized in Algorithm 2.
While the sampled values of θ have the target distribution p(θ|x)

in both case, a key difference between Gibbs and SADA is the sta-
tionary distribution for the components C; the samples from SADA



Algorithm 2 SADA sampler

Input : composite data x, initialization θ
(0)

for i = 1, niter do
for k = {1, . . . , K} do

Sample c
(i)
k ∼ p(ck|x, θ

�
) (apostroph ’ refers to most recent

value)
Sample θ

(i)
k ∼ p(θk|c

(i)
k )

end for
end for
Output : samples from p(θ|x)

Q
k p(ck|x, θ) (after burnin)

are not from p(C|X), in particular do not satisfy x =
P

k c
(i)
k , but

still have the correct marginals, i.e., the chain {c(i)
k }i has stationary

distribution p(ck|x).

4.2. A general proof of convergence for SADA

The following theorem states the validity of SADA (under more gen-
eral assumptions than composite data) and provides an alternative
proof of the correctness of SADA to one of [2].

Theorem 1. Let π(θ1, . . . , θK) be a target distribution. Assume

that for each k there exists a latent variable ck and a density qk such

that

Z
qk(ck, θk, θ−k) dck = π(θk, θ−k) (13)

then ck ∼ qk(ck|θ
�
k, θ−k), θk ∼ qk(θk|ck, θ−k) corresponds to a

π-reversible move on coordinate θk.

Proof. The transition kernel from θ
�
k to θk writes

K(θk|θ
�
k) =

Z
qk(θk|ck, θ−k)qk(ck|θ

�
k, θ−k)dck (14)

=

Z
qk(ck, θk, θ−k)R

qk(ck, θ̃k, θ−k)dθ̃k

qk(ck, θ
�
k, θ−k)

π(θ�k, θ−k)
dck

and thus satisfies the detailed balance equation

K(θk|θ
�
k)π(θ�k, θ−k) = K(θ�k|θk)π(θk, θ−k), (15)

which indicates that π(θk, θ−k) is stationary for K(θk|θ
�
k).

Convergence of Algorithm 2 is obtained by applying Theorem 1
to the composite model defined in Section 2, with π(θ) = p(θ|x)
and with

qk(ck, θ) = p(ck|θ, x)p(θ|x) (16)

= p(θk|ck, x, θ−k)p(ck, θ−k|x) (17)
= p(θk|ck)p(ck, θ−k|x) (18)

where the underlined factors correspond to qk(ck|θk, θ−k) and
qk(θk|ck, θ−k), respectively. For further intuition, and along the
proof of [2], SADA can also be obtained as a form of partially col-
lapsed Gibbs sampler [4] of p(C, θ|x), one iteration of which, for a
composite model, reads as follows. We take K = 2 for simplicity,
but the idea holds for any K.

(1) (c(i)
1 , c̃2) ∼ p(c1, c2|x, θ

(i−1)
1 , θ

(i−1)
2 )

Reduces to c
(i)
1 ∼ p(c1|x, θ

(i−1)
1 , θ

(i−1)
2 ) and c̃2 = x− c

(i)
1

(2) θ
(i)
1 ∼ p(θ1|x, c

(i)
1 , c̃2, θ

(i−1)
2 )

Reduces to θ
(i)
1 ∼ p(θ1|c

(i)
1 )

(2) (c̃1, c
(i)
2 ) ∼ p(c1, c2|x, θ

(i)
1 , θ

(i−1)
2 )

Reduces to c
(i)
2 ∼ p(c2|x, θ

(i)
1 , θ

(i−1)
2 ) and c̃1 = x− c

(i)
2

(3) θ
(i)
2 ∼ p(θ2|x, c̃1, c

(i)
2 , θ

(i)
1 )

Reduces to θ
(i)
2 ∼ p(θ2|c

(i)
2 )

As it appears the variables c̃1 and c̃2 are ghost variables in that they
never need to be sampled because they are never conditioned upon.
Hence the variables c

(i)
1 , c

(i)
2 , θ

(i)
1 , θ

(i)
2 output by the latter Gibbs

sampler coincide with the output of SADA.

5. RESULTS

5.1. Sparse linear regression with Student t prior

Let us assume the linear regression model such that

x =
XK

k=1
skφk + e (19)

where {φk} is a given dictionary of column vectors of dimension N

and s = {sk} is a set of scalar regressors. As compared to Eq. (2),
we here explicitely assume observation/residual Gaussian noise e

of variance ve, which can be thought of as a (K + 1)th compo-
nent. Let us assume the hierarchical prior sk|vk ∼ N (0, vk) and
vk ∼ IG(vk|α, β), where N and IG refer to the Gaussian and
inverse-Gamma distributions, respectively. The marginal for sk un-
der this prior is a Student t distribution with 2α degrees of freedom.
For low values of α (typically 0.5 to 1) this prior can be considered
“sparse” in that it is sharply peaked at zero and exhibits heavy tails.
It has been considered for sparse linear regression in [5] and many
other subsequent papers, for example in [6] in a MCMC setting.
Next we assume α and ve to be fixed and β to have a (conjugate)
Gamma prior G(ν, λ). We wish to sample from

Q
k p(sk|x) for vari-

able selection. We may design Gibbs and SADA samplers on space
{s, v, β}, where v = {vk}. In this model the latent components are
ck = skφk (and e), but they will not need to appear in the sampling
algorithms as we can sample from sk directly. The main difference
in the samplers is precisely in the update of s, whilst the other vari-
ables can be routinely updated as vk ∼ IG(1/2 + α, s

2
k/2 + β)

and β ∼ G(αK + ν,
P

k 1/vk + λ), see [6]. In both samplers
the regressors can easily be shown conditionally Gaussian, such that
sk ∼ N (µ̄k, v̄k), with parameters given by

µ̄
Gibbs
k = gkφ

T
k (x−

X
j �=k

sjφj), v̄
Gibbs
k = (1− gkφ

T
k φk)vk

where gk = vk/(vk φ
T
k φk + ve) and

µ̄
SADA
k = φ

T
k Gkx, v̄

SADA
k = (1− φ

T
k Gkφk)vk

where Gk = vk(
P

k vkφkφ
T
k + veI)−1.

We simulated data randomly from the model, using a Gaussian
random dictionary, with N = 100, K = 200, α = 0.5, ν = λ = 1
and with ve computed such that the SNR is 50 dB. The simulated
samples by Gibbs and SADA of 3 randomly chosen regressors are
displayed on Fig. 1. One can see that SADA produces better mixing
in such low noise conditions, because it relies on a broader likeli-
hood, as illustrated by Eq. (12). In higher noise scenario, the per-
formances of the samplers are not so contrasted. In this model the
computational cost per iteration of SADA is higher than Gibbs be-
cause of the matrix inverse involved in the computation of Gk (and
despite the inverse can efficiently be refreshed with simple rank-1
updates after every regressor variance update). Hence, SADA may
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Fig. 1. Samples of three randomly chosen regressors with Gibbs and
SADA. Horizontal lines indicate ground truth value. Elapsed times
14 s (Gibbs) and 31 s (SADA) using a MATLAB implementation on
a 2.8 GHz Quad-Core Mac with 8 GB RAM.

not be an option of practical use for this model in higher dimension,
despite its better mixing properties in low noise. In the next sub-
section we show an example of model in which SADA comes with
lower computational cost than Gibbs, with preserved mixing proper-
ties.

5.2. Probabilistic NMF

In [1] we have pointed that ML estimation in models of the form
xfn =

P
k ck,fn with p(ck,fn|θk) chosen as P(wfkhkn) (where

P refers to the Poisson distribution) or Nc(0, wfkhkn) (where Nc

refers to the circular complex Gaussian distribution) leads to the
NMF problem X ≈ WH under the KL divergence and to the
NMF problem |X|

2
≈ WH under the IS divergence, respectively.

As described in [1], Gibbs samplers of θ = {W, H} may eas-
ily be implemented for these models, with suitable conjugate pri-
ors. Denote by wk the columns of W and by hk the rows of
H , such that θk = {wk, hk}, and by Ck the set of coefficients
{ck,fn}fn. In the Gaussian composite model, the posterior dis-
tribution p(c1,fn, . . . , cK,fn|xfn, θ) is multivariate Gaussian and
the posterior distributions p(wfk|Ck, hk) and p(hkn|Ck,wk) are
inverse-Gamma.3 Again, the only difference between Gibbs and
SADA lies in how the components are sampled. They are condi-
tionally Gaussian in both case, such that ck,fn ∼ N (µ̄k,fn, v̄k,fn),
with

µ̄
Gibbs
k,fn = g

Gibbs
k,fn(xfn −

X

j �=k,r

cj,fn), v̄
Gibbs
k,fn = (1− g

Gibbs
k,fn)(wfkhkn)

where g
Gibbs
k,fn = wfkhkn/(wfkhkn + wfrhrn) and r is the residual

index as in Algorithm 1, and

µ̄
SADA
k,fn = g

SADA
k,fn xfn, v̄

SADA
k,fn = (1− g

SADA
k,fn )(wfkhkn)

where g
SADA
k,fn = wfk hkn/

P
j wfj hjn. One can see that SADA

leads to a very simple implementation, which at every iteration (i)

requires to store a single matrix of dimension FN for C
(i)
k , to which

the update of θk is conditioned, while Gibbs requires to store the

3Sampling directly from p(θk|Ck) is here difficult; we instead make two
Gibbs moves, i.e., update wk (resp. hk) conditionally on Ck and hk (resp.
wk), which still guarantees convergence.
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Fig. 2. Itakura-Saito fit DIS(|X|
2
|W

(i)
H

(i)) (equivalent to minus
log-likelihood) from Gibbs and SADA samples on two datasets (one
run). Left : synthetical data generated from the model, F = 100,
N = 100, K = 50, inverse-Gamma scale and shape prior parame-
ters set to 1. The horizontal line indicates the likelihood of the true
parameter. Elapsed times 10 min (Gibbs) and 9 min (SADA). Right :
audio data (spectrogram of a short piano sequence), F = 513,
N = 674, K = 8. Elapsed times 47 min (Gibbs) and 27 min
(SADA).

whole tensor C
(i) of dimension KFN as required for the compu-

tation of {µ̄Gibbs
k,fn}. The latter also requires an additional O(FN)

operations. This can be very beneficial to SADA in high dimension
as the examples reported in Figure 2 show. We also found to SADA
to be generally more robust to local convergence (i.e., when the sam-
pler gets stuck in a mode), in particular when K is large.

6. CONCLUSIONS

We have discussed an alternative to Gibbs for inference in composite
models in the form of a SADA sampler. SADA comes with better
mixing properties and potentially lesser storage requirements. Im-
proved mixing is crucial to overcomplete sparse linear regression
with low fit to data requirement, though SADA here incurs a com-
putational complexity increase which can be significant in high di-
mension. In contrast SADA allows reduces complexity and stor-
age requirement in probabilistic NMF models, and improved mixing
makes it more robust to local convergence. In the latter problem
SADA is a simple and efficient alternative to usual Gibbs sampling.
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