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ABSTRACT
Online (or recursive) estimation of fixed model parameters in gen-
eral state-space models is a crucial but often difficult task. This pa-
per is about likelihood-based point estimation, showing that an on-
line EM (Expectation-Maximization) algorithm recently proposed
for discrete hidden Markov models can be extended to more gen-
eral settings, including non-linear non-Gaussian state-space mod-
els that necessitate the use of sequential Monte Carlo filtering ap-
proximations. The performance of the proposed online sequential
Monte Carlo EM algorithm is illustrated on numerical examples.

1. INTRODUCTION

State-space models certainly are one of the concepts of statistical
signal processing that has had the most profound practical impact
in the latest forty years. Recent advances in this field include Se-
quential Monte Carlo (SMC) filtering approximation techniques
which make it possible to perform inference in models that are
more general than linear Gaussian models or models with finite
number of states (sometimes called hidden Markov models) [6, 5].
Despite these advances, the estimation of fixed model parameters
remains a difficult issue. Much effort has focussed on the fully
Bayesian approach, in which one sequentially updates a Monte
Carlo approximation to the fixed parameter posterior [9, 12, 8, 15].
This is a challenging problem however as the Bayesian posterior
for fixed parameters tends to concentrate and hence it is very dif-
ficult to prevent degeneracy of the Monte Carlo approximation to
this posterior in the long term.

In this contribution, I consider the comparatively simpler prob-
lem of determining sequential point estimates that are as close as
possible to the maximum likelihood estimates and eventually share
the same asymptotic convergence properties. In this context, I be-
lieve that it is of some interest to consider methods that are as close
as possible to the principle of EM (Expectation-Maximization)
algorithm used for batch estimation. Although not necessarily
preferable to other numerical optimization approaches, the EM al-
gorithm is largely dominant in practice due to its stability and ease
of implementation combined with its ability to explicitly handle
parameters constraints. In the context of online estimation, where
the parameter estimate much be updated with each new observa-
tion, very simple algorithms are indeed required and EM tends to
be simpler than gradient based algorithms, the latter often requir-
ing line searches or projections to deal with constraints and matrix
weighting to handle multidimensional parameters.

Related works include [1, 2] which capitalize on the idea orig-
inally proposed for Hidden Markov Models (hereafter abbreviated
to HMMs) by [14] that the exact likelihood can be approximated
by fixed-memory pseudo likelihoods, also called split likelihoods.
This approach thus only requires fixed memory smoothing, which

is provably easier to achieve in the context of SMC. Likewise the
batch approach of [5] uses fixed-lag approximation ideas also in-
spired by an algorithm previously considered for HMMs [11]. Fi-
nally, one should also mention [10] which proposes an approach
that is more reminiscent of simulated annealing but also capitalizes
on EM related-ideas

Recently however, Mongillo and Denève [13] proposed an on-
line version of the EM algorithm which is not based on finite mem-
ory or fixed-lag smoothing ideas. The main tool is a recursion
which allows for data recursive computation of smoothing func-
tionals required by the EM algorithm. However, this recursion
appears to be very specific to the case considered by [13], that
is, HMMs for which both the states and observations take a finite
number of values. In a companion paper [3], it is shown that this
is indeed not the case and that this idea can be seen as a gener-
alization of the online EM algorithm for mixture discussed in [4]
combined with a scheme for recursive implementation of smooth-
ing for sum functionals of the state variables which can be traced
back to [16, 7].

The purpose of this contribution is to show that the algorithm
of Mongillo and Denève can be extended to provide online EM es-
timation in more general models, including continuous state-space
non-linear and non-Gaussian models. In this proposed approach,
SMC is also used to approximate an auxiliary recursion that main-
tains smoothed estimates of the complete-data EM sufficient statis-
tics. The framework of [3] is first extended in Section 2 to the case
of continuous state-space dynamic models. In Section 3, the use
of SMC is then considered so as to obtain a realistic online estima-
tion algorithm. Section 4 contains some experimental evaluations
in two simulated scenarios.

2. ONLINE EM FOR STATE-SPACE MODELS

Consider a state-space model with observations Yt and associated
state variables Xt. Let qθ(xt−1, xt) denote the state probability
transition function and gθ(xt, yt) the observation probability tran-
sition function, both of them depending on an unknown parameter
θ. It is further assumed that the product qθ(xt−1, xt)gθ(xt, yt)
belongs to an exponential family of distributions with complete-
data sufficient statistic s(xt−1, xt, yt). With these notations, each
iteration of the usual batch-mode EM algorithm consists in

E-step Compute Sn = 1
n

E[
Pn
t=1 s(Xt−1, Xt, Yt)|Y0:n] for the

current value of the parameter estimate;

M-step Update the parameter estimate to θ̄(Sn), where θ̄(S) 7→
θ is the solution (here assumed to be unique) to the complete-
data score equations.

In order to generalize [13, 3], based on [16, 7], observe that Sn
can be updated recursively by defining the filtering pdf φn(x) such



that
R
f(x)φn(x)dx = E[f(Xn)|Y0:n] and the auxiliary func-

tion ρn(x) = 1
n

E[
Pn
t=1 s(Xt−1, Xt, Yt)|Y0:n, Xn = x] which

is such thatZ
f(x)ρn(x)φn(x)dx = E

"
f(Xn)

n

nX
t=1

s(Xt−1, Xt, Yt)

˛̨̨̨
˛Y0:n

#

for integrable functions f . In particular,
R
ρn(x)φn(x)dx = Sn.

The function ρn(x) may be updated updated according to (see
Chapter 4 of [4])

ρn+1(x) =

Z 
1

n+ 1
s(x′, x, Yn+1) +

„
1− 1

n+ 1

«
× ρn(x′)

ff
φn(x′)qθ(x

′, x)R
φn(x′′)qθ(x′′, x)dx′′

dx′ (1)

Thus, the generalization of [13, 3] based on (1) consists in se-
lecting a sequence of positive step-sizes γn ∈ (0, 1) which follow
the usual stochastic approximation guidelines that γn ≡ nα, with
α ∈ ( 1

2
, 1] and to apply the following update.

Algorithm 1
Stochastic Approximation E-step

φ̂n+1(x) =

R
φ̂n(x′)qθ̂n

(x′, x)gθ̂n
(x, Yn+1)dx′RR

φ̂n(x′)qθ̂n
(x′, x′′)gθ̂n

(x′′, Yn+1)dx′dx′′

ρ̂n+1(x) =

Z ˘
γn+1s(x

′, x, Yn+1) + (1− γn+1)

× ρ̂n(x′)
¯ φ̂n(x′)qθ̂n

(x′, x)R
φ̂n(x′′)qθ̂n

(x′′, x)dx′′
dx′ (2)

M-step

θ̂n+1 = θ̄

„Z
ρ̂n+1(x)φ̂n+1(x)dx

«

3. SEQUENTIAL MONTE CARLO APPROXIMATION

Of course, Algorithm 1 cannot be applied directly in usual settings
as the integrals involved in the update equations are not available
in closed form. To obtain a practical algorithm, consider a generic
SMC method, of the sampling importance resampling type, ap-
plied to the model under consideration. The filtering density φn
is approximated by so-called particles {ξin}1≤i≤m with associ-
ated weights {win}1≤i≤m, such that win ≥ 0 and

Pm
i=1 w

i
n = 1.

Upon observing Yn+1, the particles {ξin+1}1≤i≤m are simulated
independently under the mixture density

Pm
i=1 w

i
nr(ξ

i
n, x), that

is, one first draws an index J in under the discrete “probability”

w1
n, . . . , w

m
n and then simulate ξin+1 from the density r(ξJ

i
n
n , x).

r is an instrumental probability transition function which may be
chosen arbitrarily. Then the new weights are determined as

win+1 ∝
qθ(ξ

Ji
n
n , ξin+1)gθ(ξ

i
n+1, Yn+1)

r(ξ
Ji

n
n , ξin+1)

where the proportionality constant is determined by the constraint
that the weights sum to one. Variants exists in which the resam-
pling weights are not necessarily selected to be equal to the im-
portance weights win [6, 5] but this is not considered here for

simplicity. In addition to the approximation of the filter φn, one
needs a Monte Carlo based approximation to the auxiliary quan-
tity ρ̂n in (2). It seems natural to use a Monte Carlo approxima-
tion for ρ̂n defined by adjustment values {ρin}1≤i≤m such thatR
ρ̂n(x)f(x)φ̂n(x)dx is approximated by

mX
i=1

ρinw
i
nf(ξi)

Note that when the sufficient statistic s(xt−1, xt, yt) is vector val-
ued (which is usually the case in multiparameter models), the ad-
justment values ρin also are vector valued and are not normalized
in any ways. The proposed online SMC EM algorithm may now
be described as follows.

Algorithm 2

Filter update Draw J in ∼ w1
n, . . . , w

m
n and ξin+1 ∼ r(ξ

Ji
n
n , x);

let

win+1 ∝
qθ̂n

(ξ
Ji

n
n , ξin+1)gθ̂n

(ξin+1, Yn+1)

r(ξ
Ji

n
n , ξin+1)

Adjustment values update

ρin+1 = γn+1s(ξ
Ji

n
n , ξin+1, Yn+1) + (1− γn+1)ρ

Ji
n
n (3)

Parameter update

Ŝn+1 =

mX
i=1

ρin+1w
i
n+1

θ̂n+1 = θ̄(Ŝn+1)

To understand why (3) is “properly weighted” [6, 5], ignore
the dependence with respect to the parameters estimate θ̂n and rep-
resent

Pm
i=1 ρ

i
n+1w

i
n+1f(ξin+1) as Nn+1/Dn+1 where Nn+1 =

1
m

Pm
i=1 ρ

i
n+1w̄

i
n+1f(ξin+1),Dn+1 = 1

m

Pm
i=1 w̄

i
n+1, and w̄in+1

refers to the unnormalized weights (i.e., before dividing by the
sum). Then, it is easily checked that

E[Nn+1|Fn] =

mX
i=1

win

Z ˘
γn+1s(ξ

i
n, x, Yn+1) + (1− γn+1)

× ρin
¯
q(ξin, x)g(x, Yn+1)f(x)dx

E[Dn+1|Fn] =

mX
i=1

win

Z
q(ξin, x)g(x, Yn+1)dx

where Fn denotes the observations and simulations up to index
n as well as the new observation Yn+1. Hence, if one assumes
consistency of the usual particle filter, that is,

Pm
i=1 w

i
nf(ξin) →R

f(x)φn(x)dx as m→∞,

E[Nn+1|Fn]→
ZZ ˘

γn+1s(x
′, x, Yn+1) + (1− γn+1)

× ρ̂n(x′)
¯
φn(x′)q(x′, x)g(x, Yn+1)f(x)dx′dx

E[Dn+1|Fn]→
ZZ

φn(x′)q(x′, x)g(x, Yn+1)dx′dx

assuming that indeed ρin = ρ̂n(ξin) for an integrable function ρ̂n.
Note finally that the ratio of both limits may be interpreted as

E
ˆ˘
γn+1s(Xn, Xn+1, Yn+1) + (1− γn+1)

× ρ̂n(Xn)
¯
f(Xn+1)

˛̨
Y0:n+1

˜
as expected. �



4. NUMERICAL EXAMPLES

To start with an example where comparison with exact computa-
tions is feasible, consider the simple noisy Gaussian AR(1) model
observed in noise:

Xt+1 = φXt + Ut+1

Yt = Xt + Vt

with parameters φ, σ2 = EU2
t , and κ2 = EV 2

t . Although very
simple, this example is often used for benchmarking estimation
techniques as it is indeed rather difficult to estimate the parame-
ters of this model due to the strong ambiguity between Xt and Vt
given the observations. This is reflected, for instance, in the slow
convergence of the EM algorithm for this model, which requires
many iterations to reach accurate estimates of the parameter.

Routine calculations show that each iteration of the EM algo-
rithm1 may be implemented by computing, in the E-step, Sn(i) =Pn
t=1 E [si(Xt−1, Xt, Yt)|Y0:n] for the complete data statistics

s0 = 1, s1(xt, yt) = (yt−xt)2, s2(xt−1) = x2
t−1; s3(xt−1, xt) =

xt−1xt and s4(xt) = x2
t . The M-step then consists in updating the

parameters through the mapping θ̄ defined by κ2 = Sn(1)/Sn(0),
φ = Sn(3)/Sn(2) and σ2 = (Sn(4) − S2

n(3)/Sn(2))/Sn(0).
Hence, in this case, the adjustment values ρin+1 are four dimen-
sional, corresponding to the statistics s1 to s4 (as s0 is determinis-
tic).
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Fig. 1. Estimation results after 500 (0.5k), 1000 (1k), 5000 (5k),
10,000 (10k) and 50,000 (50k) observations together with batch
EM estimates after 1000 (1k batch) and 10,000 (10k batch) obser-
vations.

In this example, Algorithm 2 was used for 100 independent
realizations of length 100,000 of the above model with parameters
φ = 0.95, σ2 = 10, κ2 = 20. SMC was performed with r = qθ̂n

,
i.e., using the so-called “bootstrap filter”, with the current esti-
mate of the parameters plugged-in. The step-size was decreased2

as γn = n−0.6 and the algorithm was systematically started from
the initial values φ0 = 0.8, σ2

0 = 10 and κ2
0 = 20. The estima-

tion results with m = 100 particles are summarized as box and
whiskers plot in Figure 1. For comparison purpose, Figure 1 also

1This is the conditional form of the complete-data likelihood in which
the term that depends only on the initial state and observation is discarded.

2Following the recommendations of [4] who also suggest using Polyak-
Ruppert averaging which is not considered here for reasons of space.
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Fig. 2. Estimation results for κ2 (from 500 to 100,000 observa-
tions) for different increasing values of m.

shows the results obtained after 20 iterations of the exact batch EM
algorithm applied to the first 1000 and 10000 observations. The
word “exact” refers to the fact that for the batch EM algorithm,
smoothing is performed using Kalman filtering and disturbance
smoothing and the obtained results are thus free from Monte Carlo
error.

The proposed algorithm does converge as expected and does
not exhibit any type of instability in the long term, even with a
moderate number of m = 100 particles. As also observed in [4],
the online algorithm does become preferable to using a fixed num-
ber of batch EM iterations when n increases. The apparent fail-
ure of batch EM is due to the fact that as n increases, the batch
algorithm converges to a limiting algorithm which does requires
several iterations to reach convergence [3]. Hence using a fixed
number of batch EM iterations does not provide consistent esti-
mates. In contrast, the online EM algorithm performs satisfacto-
rily, despite the presence of Monte Carlo error due to the particle
approximation.

Although barely noticeable on Figure 1, the online EM algo-
rithm does present an asymptotic bias which is due to the use of
the particle approximation. This is illustrated on Figure 2 which
shows the long term behavior of the estimates of κ2 for different
values of m. The bias is clearly visible for m = 10, where the al-
gorithm converges to a variance of about 36 instead of 30. The two
other panels of Figure 2 show that this bias is eliminated when m
increases. The variability of the estimate is also reduced although
it tends to level off as m increases probably because the Monte
Carlo errors are then dominated by the statistical variability.

As a second example, consider the standard nonlinear time
series model considered, among many others, by [9, 5]:

Xt = at(Xt−1) + Ut, at(x) =
x

2
+ 25

x

1 + x2
+ 8 cos(1.2t)

Yt = b(xt) + Vt, b(x) =
x2

20

where (Ut) and (Vt) are independent Gaussian white noise se-
quences with standard deviations, σU and σV , respectively. Al-
though the model is again simple it is nonetheless challenging
when σV is much smaller than σU , as the filtering distribution is
then distinctively bimodal rendering state identification very diffi-
cult.
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Fig. 3. Estimation results for σU and σV for 10 independent sim-
ulations.

In this case, Algorithm 2 performed best when proposing new
particles from a robustified version of the prior chosen as a Student-
t distribution with mean at(Xt−1), scale σ̂U,n and four degrees of
freedom. Alternatives based on using the EKF (Extended Kalman
Filter) approximation [5] were found to be much less robust as
these tend to be preferable when using accurate estimates of σU
and σV but often turn out to be disastrous when the parameters
are poorly matched to the model that generates the observations.
Figure 3 displays the estimation results obtained with m = 1000
particles for 10 independents runs. Note that as in [4], adaptation
is freezed for the first few observations (here 50) to allow for a
minimal convergence of the estimates of the smoothed sufficient
statistics. On this example, the proposed algorithm appears to be
very robust with respect to the choice of the initialization and again
converges with a low asymptotic bias.

From these experiments, it is quite remarkable that one can in-
deed obtain reliable estimates, even when using a non-increasing
number of particles fixed to a reasonable value (typically, m =
100 in the first example and m = 500 in the second). The pro-
posed approach does not seem to be plagued by long-term instabil-
ities or degeneracies which affect some of the methods proposed so
far for online Monte Carlo based estimation of fixed parameters.
It is likely that the asymptotic bias can only be made arbitrarily
small by increasing the number m of particles. But the approach
appears to be sufficiently efficient to be usable in practice with
values of m that are compatible with the constraints of real-time
signal processing.

5. CONCLUSIONS

The online EM algorithm presented in this paper builds on the pro-
posal of Mongillo and Denève (2008) but applies to general con-
tinuous state-space models thanks to the use of sequential Monte
Carlo approximations. The resulting algorithm is generic, sim-
ple to implement and its performance in simulated scenarios is
promising. Compared to related approaches, the use of stochas-
tic approximation with a decreasing step-size γn does appear to
warrant long-term stability, although a complete theoretical analy-
sis of the procedure is still lacking. It is believed that the proposed
algorithm could also be useful for HMMs with finite but large state

spaces (eg., in digital communications applications) as the imple-
mentation cost of the exact online EM algorithm can be prohibitive
in such cases [3].

6. REFERENCES

[1] C. Andrieu and A. Doucet. Online expectation-maximization
type algorithms for parameter estimation in general state
space models. In Proc. IEEE Int. Conf. Acoust., Speech, Sig-
nal Process., volume 6, pages 69–72, 2003.

[2] C. Andrieu, A. Doucet, and V. B. Tadic. Online simulation-
based methods for parameter estimation in non linear non
gaussian state-space models. In Proc. IEEE Conf. Decis.
Control, 2005.
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