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ABSTRACT

This contribution proposes an extension of the classic dy-
namic programming algorithm for detecting jumps in nois-
ily observed piecewise-constant signals. The proposed al-
gorithm operates (virtually) in a reproducing kernel Hilbert
space through the use of an arbitrary kernel mapping. The
resulting approach provides a computationally efficient an
versatile tool for segmenting complex signals whose struc-
ture is not appropriately captured by standard parametric
models.

1. INTRODUCTION

Segmentation tasks are pervasive in various fields, ranging
from audio [13] to EEG segmentation [5]. The goal is to
segment the signal into several homogeneous segments of
variable durations, in which some quantity remains approx-
imately constant over time. This issue was addressed in
a large literature, mainly from a Bayesian point of view
(see [10] and references therein), where almost as many
parametric models as definitions of intra-segment homo-
geneity were developed. Although such models often proved
successful in practice, they require extensive data modelling
knowledge and sophisticated numerical methods for train-
ing. These limitations invite the use of kernel-based meth-
ods, which already demonstrated good performances in real
experiments for other unsupervised learning tasks [19, 20].
A kernel-based segmentation method would offer the non-
parametric flexibility of kernel-based approaches, while re-
maining relatively easy to train.

Indeed, recently kernel-based approaches were proposed
for online segmentation (sequential change-point detection),
and showed beyond state-of-the-art performances for seg-
mentation of audio signals [9]. However online segmenta-
tion approaches, though computationally attractive, require
a fine tuning of the sliding window size. Moreover, as op-
posed to retrospective approaches, they do not take into ac-
count the whole signal at once for change-point estimation.
Offline segmentation of piecewise-constant signals observed
in Gaussian white noise can be efficiently performed in poly-
nomial time, for a fixed number of segments, using the dy-

namic programming approach originally proposed in [11,
2]. This algorithm however relies on specific parametric
modelling assumptions which limit its practical usefulness.
We will show how kernels can be incorporated into this al-
gorithm by using a kernel-based measure of intra-segment
homogeneity. Hence, our approach widens the range of
possible applicationsvia the kernel trick, while keeping the
simplicity of the original algorithm. This allows a great ver-
satility in modelling complex piecewise-stationary signals.
We refer to this approach asKCpE which stands for Kernel
Change-point Estimation.

In Section 2, we introduce the signal model as well as
the kernel-based variance-like criterion (which is referred
to as the intra-segment scatter in this context). In Section3,
we describe the resulting dynamic programming algorithm.
In Section 4, we briefly discuss the issues of selecting the
number of change-points and the kernel. Finally, we present
in Section 5 experimental on both artificial and real datasets.

2. MULTIPLE CHANGE-POINT ESTIMATION

2.1. Model

Offline segmentation or retrospective change-point estima-
tion is the problem of partitioning a sequence of vector-
valued observations(Yt)t=1,...,n into, say,K segments

(Yt)t=1,...,n =
⋃

k=0,...,K−1

(Yt)t=τk+1,...,τk+1
(1)

where each segment[τk +1, . . . , τk+1] is considered homo-
geneous (andτ0 = 0, τK = n).

Following the principle at the core of several recent de-
velopment in machine learning [19, 20], the observations
are mapped in an abstract space, namely a reproducing ker-
nel Hilbert space (rkhs)H associated with a reproducing
kernelk(·, ·) and a feature mapΦ(·). For notational conve-
nience, we denote byY Φ

t = Φ(Yt) the image in the feature
space through the Aronsjazn mapΦ(Y ) = k(Y, ·) of a given
observationYt. We assume that,in the rkhs, the sequence
(Y φ

t )t=1,...,n is such that

Y φ
t = mk + ǫt with τk + 1 ≤ t ≤ τk+1 (2)



wheremk are elements ofH andǫt is an isotropic whiteH-
noise [3]. Our goal is to compute estimatesτ̂1, . . . , τ̂K−1 of
the true change-point instantsτ1, . . . , τK−1. Note that be-
cause the nuisance parameters(mk)k=0,...,K−1 are abstract
quantities, the proposed algorithm does not rely on their di-
rect estimation.

2.2. Intra-segment scatter

2.2.1. Abstract definitions

To deal with statistics in infinite-dimensional spaces, we in-
troduce respectively the mean element and the covariance
operator [3] [12]. We denote byE the expectation with re-
spect to the distribution of the random variableY and de-
fined the mean operatormΦ onH, for all f ∈ H, as:

〈mΦ, f〉H = E[f(Y )] = E〈Y Φ, f〉H (3)

Using the above definition of the mean, the covariance op-
eratorΣΦ onH is defined, for allf ∈ H, as:

〈f,ΣΦf〉H = E[〈f, Y Φ − mΦ〉H〈Y Φ − mΦ, f〉H] (4)

By analogy with the intra-cluster scatter matrix in multivari-
ate clustering, we define theaverage scatter S ∈ R of Y
as:

S(Y ) = E[〈Y Φ − mΦ,Σ−1
Φ (Y Φ − mΦ)〉H] (5)

2.2.2. Empirical counterparts

The empirical mean over(Ys)s=1,...,d is given by:

m̂Y =
1

d

d
∑

s=1

Y Φ
s =

1

d

d
∑

s=1

k(Ys, ·) (6)

Assuming isotropic unit-varianceΣΦ ≡ Id in feature space,
the empirical average scatter of(Ys)s=1,...,d is then given
by:

Ŝ(Y1, . . . , Yd) =
1

d

d
∑

s=1

〈Y Φ
s − m̂Φ, Y Φ

s − m̂Φ〉H

=
1

d

d
∑

s=1

∥

∥k(Ys, ·) −
1

d

d
∑

r=1

k(Yr, ·)
∥

∥

2

H
(7)

In the following sections, we consider the unnormal-
ized quantitieŝV (Y1, . . . , Yd) = dŜ(Y1, . . . , Yd), which we
simply call scatter from now on. By expanding the norm (7),
the scatter can be expressed without explicitly determining
m̂Φ [19]:

V̂ (Yt+1, . . . , Yt+d) =

d
∑

s=1

〈k(Ys, ·), k(Ys, ·)〉

−
1

d

d
∑

r=1

d
∑

s=1

〈k(Yr, ·), k(Ys, ·)〉 (8)

2.3. Minimum overall scatter

In order to estimate the change-point instants, we look for
the sequencêτ1, . . . , τ̂K−1 minimizing the sum of intra-
segment scatter. The objective can then be formulated as:

Minimize
τ1,...,τK−1

K−1
∑

k=0

V̂ (Yτk+1, . . . , Yτk+1
) (9)

Fortunately all quantities involved in the above objectiveare
easily computable from the data Gram matrix as discussed
below.

3. COMPUTATIONAL ASPECTS

3.1. Scatter computation

Let us denote byK[t+1,t+d] = [k(Yi, Yj)]i,j=t+1,...,t+d the
block of the Gram matrixK corresponding to the segment
[t + 1, t + d]. According to (8), the intra-segment scatter is
simply given byV̂ (Yt+1, . . . , Yt+d) = trace(K[t+1,...,t+d])−
1
d1⊤

d K[t+1,...,t+d]1d.

3.2. Optimality equation

Because the objective function in (9) is additive, it can be
minimized using a dynamic programming algorithm of com-
plexity O(Kn2) as described in [16]. We mention that a
slightly different arrangement of the recursions was recently
presented in [15]. In the approach of [15], estimation and
model selection are handled simultaneously by using a global
penalized criterion which include both the sum of intra-
segment scatters and a penalty term for the number of seg-
ments. The recursion then determines the best segmentation
of all sub-portions of the signal that start att = 1 and end
at t = 2, . . . , n. In contrast, the recursion described be-
low, following [15], determines the optimal segmentations
of the whole signal for all number of segments from 2 toK.
If needed, model selection can then be handled separately,
typically by using a complexity penalty to select the optimal
number of segments. Note that since this latter aspect is not
the main focus of the paper, we choose to illustrate the per-
formance of the proposed method only whenK is fixed (see
section 5).

Let Ik(t) denote the minimal value of the objective on
the portion[1, t] of the signal assumingk segments:

Ik(t) = min
τ1<···<τk−1

τk=t

k−1
∑

j=0

V̂ (Yτj+1, . . . , Yτj+1
) (10)

The dynamic programming recursion exploits the observa-



tion that

Ik(t) = min
τk−1

τk=t

min
τ1<···<τk−2

k−1
∑

j=0

V̂ (Yτj+1, . . . , Yτj+1
)

= min
τk−1

(

Ik−1(τk−1) + V̂ (Yτk−1
, . . . , Yt)

)

(11)

Thus a dynamic programming algorithm allows to compute
the minimaIk(t) of the criterion for eachk = 1, . . . ,K and
for all t = 1, . . . , n by forward recursionvia the optimality
condition above.

3.3. Backward recursions

Let τk(t) denote a minimizer ofIk+1(t). Once the change-
point instants estimateŝτK , . . . , τ̂K−l+1 are found, the next
estimatêτK−l is computed througĥτKl

= τK−l

(

τ̂Kl+1

)

.

4. FURTHER ISSUES

4.1. Choosing the number of change-points

Determining the number of change-points is a difficult but
well-studied problem which is usually dealt with using a pe-
nalized version of the least-square criterion [18, 17], with a
penaltyCnk proportional to the number of change-pointsk.
As discussed in section 3, the penalized criterion can even
be minimized directly by dynamic programming using the
approach of [15]. Note however that the calibration ofCn is
usually based on asymptotic arguments (obtained by letting
n tend to infinity) which may be questionable for moderate
length signals. In addition, the scatter criterion considered
here corresponds to a variance estimate, after mapping into
an infinite-dimensional space (the rkhs), which could have
an impact on the appropriate form ofCn.

Another popular approach consists in using a Bayesian
model by introducing a prior distribution on the number of
change-points and a conditional prior on change-point lo-
cations. Interestingly, in many cases of interest the fully
Bayesian inference (which includes marginalization with re-
spect to the segment parameters rather than simply maxi-
mization) remains feasible [1, 10]. The approach proposed
here being in essence nonparametric, it is seems more diffi-
cult to build on these Bayesian approaches.

Finally, in several practical applications of interest the
number of change-points is known or fixed by exogenous
information rather than determined directly from the signal.
We consider several examples of this situation in the next
section.

4.2. Kernel selection

The kernel will generally be selected using some prior knowl-
edge on the structure of the signals to be analyzed. The

kernel parameter (the so-called “bandwidth” parameter in
the examples to be discussed below) can be determined in
supervised mode, as is usually done in clustering, by se-
lecting the kernel which yields the change-point estimates
closest to the target, known, change-points. In the sequel,
we shall use so-called isotropic Gaussian kernelsk(x, y) =
exp(−‖x− y‖2/2σ2). Furthermore, since kernel design is-
sues are not the primary focus of this contribution, we have
chosen to the tune the bandwidth parameterσ2 simply us-
ing the plugin rule-of-thumbσ = 1.06 ŝ n−1/5 (ŝ being the
empirical variance) classically used for density estimation
with a Gaussian Parzen window [14].

5. EXPERIMENTAL RESULTS

5.1. Islands dataset

To illustrate the potential of the method, we consider a sim-
ulated two-dimensional signal built from the so-calledis-
landsdistributions. The signal consists of200 observations,
whose eight segments have variable durations and are sam-
pled alternatively from one of the semi-rings displayed on
Figure 1. KCpE is used with a Gaussian kernel (purpose-
fully selected with a slightly suboptimal bandwidth) and is
compared to the raw dynamic programming algorithm (DP)
which uses the weighted norm associated with the actual
two-dimensional covariance matrix of the data. The true
change-point locations are depicted in black, whileDP’s
andKCpE’s change-point estimates are displayed in green
and red, respectively. As one can notice from Figure 2,
KCpE gives fairly accurate estimates for change-point lo-
cations, whereas a standard multivariate approach fails to
retrieve segments boundaries.
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Fig. 1. Islands dataset
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Fig. 2. Estimated change-points on the islands datasets,
with, from top to bottom, the actual change-point locations,
change-point estimates forKCpE andrDP

5.2. Brain-Computer Interface data

Data arising from Brain-Computer Interface (BCI) experi-
ments naturally exhibit temporal structure, which could serve
as a benchmark for investigating the relevance of our algo-
rithm on real-world data. We considered a dataset proposed
in BCI competition III [6] acquired during 4 non-feedback
sessions on 3 normal subjects. Each subject was asked to
perform the following tasks: imagination of repetitive self-
paced left then right hand movements and generation of
words beginning with the same random letter. The sub-
ject performed a given task for about 15 seconds and then
switched randomly to another prescribed task. Input data
consist of 96-dimensional vectors of features. The chal-
lenge originally cast the task into a online supervised multi-
class classification framework, and provided 4 labelled sam-
ples for each subject.

We chose to perform temporal segmentation in a com-
pletely unsupervised fashion. In order to evaluate the per-
formance of our algorithm from a retrospective point of view,
we provide results in terms of classification accuracy. Each
segment is considered as a sample of a given class. Classi-
fication accuracy then corresponds to the proportion of cor-
rectly assigned points at the end of the segmentation pro-
cess.

Results averaged over the four sessions are provided in
the table below. A Gaussian kernel tuned as described in
Section 4.2 was fed into our algorithm for subsequent seg-
mentation. Comparison (yet unfair sinceKCpE works in
an unsupervised setting) with results obtained by a super-
vised muti-class (one-versus-one) Support Vector Machine
are also provided. Performance ofKCpE is competitive, es-

Subject 1 Subject 2 Subject 3
KCpE 79% 74% 61%
SVM 76% 69% 60%

Table 1. Average classification accuracy for each subject

pecially given thatKCpE was used as a blind segmentation
algorithm, in contrast to theSVM which was trained on one
session and tested on the three remaining, as required in
the original design of the benchmark [6]. In this particular
case, the algorithm that is trained from the data (SVM) but
ignores the temporal homogeneity of EEG signals performs
slightly worse than the unsupervisedKCpE approach.

5.3. Music signals

For the purpose of indexation, a music piece may be tempo-
rally segmented into several sections highlighting its struc-
ture through dynamic, tonal or timbral characteristics. A
standard approach [13], working in an online setting, runs
a window-limited change detection algorithm along the sig-
nal, which raises an alarm when crossing a boundary be-
tween two sections. However one might rather consider a
retrospective approach, where the signal is taken as a whole
for subsequent change-point detection instead of being lo-
cally scanned through a window of limited width.

We investigated the performance ofKCpE on a database
of 100 full-length “pop music” signals, whose manual seg-
mentation is available. Results for the Kernel Change De-
tection algorithm (KCD) as described in [8] are also dis-
played. As in [13], scores output byKCD were detrended
and normalized. The decision threshold was chosen so as
to output the correct known number of segment boundaries.
In order to evaluate the performance of our algorithm, as in
Section 5.2 we provide results in terms of classification ac-
curacy. Table 2 suggests that the proposed method is indeed
quite competitive in this context.

KCpE KCD

72±3.2% 68±3.8%

Table 2. Average classification accuracy

Moreover, we observed in experiments that when the
correct number of boundaries is overestimated (oversegmen-
tation regime), our method is less sensitive to artefacts than
KCD. Typically,KCD is prone to suggest spurious segments
when the threshold is below the range of values yielding the
correct number of segments. Conversely, when the number
of change-points is underestimated, the proposed method
will typically tend to ignore short epidemic changes [7], i.e.
changes producing very short segments whose duration is



negligible when compared to the length of the whole signal,
due to the use of a global optimality criterion.

6. CONCLUSION

We proposed an efficient kernel-based nonparametric ap-
proach for retrospective multiple change-point estimation.
Experimental results of blind segmentation on both BCI data
and audio music signals are very promising. Statistical con-
sistency results as developed in [17, 4] would be helpful in
providing a firmer theoretical ground and providing some
insights on the form of penalization appropriate in the case
where the number of change-points is unknown.
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