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ABSTRACT
We propose a new recursive EM (REM) algorithm that can
be used whenever the complete-data model associated to the
observed data belongs to an exponential family of distribu-
tions. The main characteristic of our approach is to use a
stochastic approximation algorithm to approximate the con-
ditional expectation of the complete-data sufficient statistic
rather than the unknown parameter itself. Compared to ex-
isting approaches, the new algorithm requires no analytical
gradient or Hessian computation, it deals with parameter con-
straints straightforwardly and the resulting estimate canbe
shown to be Fisher-efficient in general settings. This approach
is illustrated on the classic direction of arrival (DOA) model.

1. INTRODUCTION

The EM algorithm [1] is a very popular tool for maximum-
likelihood (or maximum a posteriori) estimation. The com-
mon strand to problems where this approach is applicable is
a notion ofincomplete-data, which includes the conventional
sense of missing data but is much broader than that. The EM
algorithm demonstrates its strength in situations where some
hypothetical experiment yields “complete” data that are re-
lated to the parameters more conveniently than the measure-
ments are. The EM algorithm has several appealing prop-
erties. Because it relies on complete-data computations, it
is generally simple to implement; at each iteration, the E-
step only involves computing conditional expectation given
the observed date; the M-step only involves complete-data
maximum-likelihood estimation, which is most often in sim-
ple closed-form. Moreover, it is numerically stable, in the
sense that it each iteration of the algorithm increases the like-
lihood (of the observed data).

For large sample sizes however, the EM algorithm be-
comes time and memory consuming since each iteration in-
volves all the available observations. To overcome this limi-
tation, it is of interest to consider recursive implementations
of the EM algorithm. By “recursive” we mean that each ob-
servation is only used once and that the required computations
can be carried out sequentially. Whereas the standard EM al-
gorithm is suitable only for batch or off-line processing, re-
cursive versions of the algorithm are suitable for on-line pro-
cessing.

Although several recursive EM implementations have been
proposed in the literature [2, 3, 4, 5], we feel that most of them
are more related to the principle known as Fisher scoring in
the statistical literature than to the EM algorithm directly –
see (7) and discussion below. These algorithms involve com-
puting the gradient of the log-likelihood –which is readily
available due to Fisher formula [1]– but also some form of
approximation of the observed-data Fisher information ma-
trix. With those gradient-based algorithms, it is hard to deal
with the parameter constraints in some models and setting the
scale of the gradient step-size usually is a non-trivial task.

In this communication, we propose a new recursive EM
algorithm that is clearly more reminiscent of the EM algo-
rithm and, in many cases, easier to implement than previously
mentioned algorithms, while alleviating some of the problems
discussed above. This algorithm may be used whenever the
complete-data model belongs to a (curved) exponential fam-
ily. Section 2 covers the algorithm in the general setting of
independent observations and we next consider consider its
application to DOA estimation in Section 3.

2. RECURSIVE EM (REM)

Let {Y1, · · · , YN} be a sequence of i.i.d. random variables
whose common probability density function (pdf), with re-
spect to some measureµ on R

ny , is denoted byπ(y) and
{g(y;ϑ);ϑ ∈ Θ} a parametric family of pdfs. The maximum
likelihood estimator (MLE) is given by

ϑ̂ML(Y1, · · · , YN ) = arg max
ϑ∈Θ

N−1
N
∑

n=1

log g(Yn;ϑ) . (1)

Under standard regularity assumptions,ϑ̂(Y1, · · · , YN ) con-
verges, asN goes to infinity, to the value

ϑ? = argmin
ϑ∈Θ

K (π ‖g(·, ϑ) ) ,

whereK (p ‖q ) = −
∫

log q(y)
p(y) p(y)µ(dy) is the Kullback-

Leibler divergence betweenp andq.
In the standard EM approach, we introduce a family of

pdfs{f(y, z;ϑ) , ϑ ∈ Θ},

g(y;ϑ) =

∫

f(y, z;ϑ)λ(dz) ,



whereλ denotes a measure onRnz . The pdfsf(·;ϑ) and
g(·;ϑ) are, respectively, referred to as the complete-data and
observed (or incomplete) likelihood andz is interpreted as un-
observable or missing data. The EM algorithm is an iterative
optimization algorithm to compute the MLE. Each iteration
consists of two successive steps, known as the E-step and the
M-step. In the E-step, one evaluates the conditional expecta-
tion

Q(ϑ;ϑp) =
1

N

N
∑

n=1

E [ log f(Yn, Zn;ϑ) |Yn;ϑp] , (2)

whereϑp is the current fit for the parameterϑ. In the M-
step, the value ofϑ maximizingQ(ϑ;ϑp) is found, yielding
the new parameter estimateϑp+1. The essence of the EM
algorithm is that increasingQ(ϑ;ϑp) forces an increase of
the likelihood [1].

In the sequel, we assume that the complete-data model
belongs to a curved exponential family:

log f(y, z;ϑ) = h(y, z) − ψ(ϑ) + 〈S(y, z), φ(ϑ)〉 , (3)

where the symbol〈·, ·〉 denotes the scalar product. The EM
re-estimation functionalQ(ϑ;ϑ′) may then be expressed as

Q(ϑ;ϑ′) = L

(

N−1
N
∑

i=1

s̄(Yi;ϑ
′);ϑ

)

, (4)

whereL(s;ϑ) = −ψ(ϑ) + 〈s, φ(ϑ)〉 and

s̄(y;ϑ)
def
= E [S(Y, Z) |Y = y;ϑ] . (5)

Thek-th iteration of the EM algorithm updatesϑk according
to

ϑk+1 = θ̄

(

N−1
N
∑

n=1

s̄(Yn;ϑk)

)

, (6)

whereθ̄ (s) = arg maxϑ∈Θ L(s;ϑ).
In a recursive framework, the data are run through once

sequentially and the parameter update must be computable
fromϑn−1 andYn, whereϑn denotes the current value of the
parameter estimate aftern observations. To our best knowl-
edge, the first recursive parameter estimation procedure for
incomplete data model has been proposed by [2]. It is given
by:

ϑ̂n = ϑ̂n−1 + γnI
−1
f (ϑ̂n−1)U(Yn; ϑ̂n−1) , (7)

where{γn} is a non-increasing sequence of positive numbers,
U(y;ϑ) = ∇ϑ log g(y;ϑ) is the score function andIf (ϑ) is
the Fisher information matrix (FIM) associated to a complete
observation. This recursion is recognized as a stochastic ap-
proximation procedure onϑ. It is often referred to in the lit-
erature under the name of recursive EM, but we find that this
term is somewhat misleading because, contrary to the EM,
it is a gradient algorithm. This algorithm may be seen as a

recursive implementation of the gradient EM algorithm pre-
sented in [6]. The works presented in [4, 5] build on the idea
of [2], whereas [3] is actually closer to the present contribu-
tion, although limited to a specific model.

Our proposal consists in replacing the E-step by a recur-
sive stochastic approximation step, while keeping the maxi-
mization step unchanged, that is

ŝn = ŝn−1 + γn(s̄(Yn; ϑ̂n−1) − ŝn−1) , ϑ̂n = θ̄ (ŝn) ,
(8)

whereγn is a sequence of decreasing step-sizes. This new
algorithm is fully analyzed in [7] where it is shown that it
is Fisher-efficient in rather general settings (not assuming in
particular thatπ = g(·;ϑ?) for some parameter valueϑ?)
for choices of the step-sizes such that

∑

∞

n=1 γn = ∞ and
∑

∞

n=1 γ
2
n <∞ (typically, takeγn = n−α with 0.5 < α ≤ 1).

More precisely – see Theorem 5 of [7], we may show that
under suitable assumptions and with step-sizesγn ≡ n−α,
with 0.5 < α < 1, γ−1/2

n (ϑ̂n − ϑ?) converges in distribution
to a zero mean Gaussian distribution with covariance matrix
Σ(ϑ?) solution of the Lyapunov equation involving the FIM
of a complete observation and the covariance of the observed
data Fisher score. Whenπ belongs to the parametric family
of distributions under consideration; that isπ = g(·, ϑ?), the
solution of this Lyapunov equation is the FIM associated to
the observations.

Iπ(ϑ?)
def
= −∇2

θ K (gϑ? ‖gϑ )|ϑ=ϑ? , (9)

otherwise it has a more complicated expression (see [7] for
details).

This first result is not entirely satisfying as it shows that
the rate of convergence isγ−1/2

n rather thann−1/2, that is,
n−α/2 with the choice discussed above, which can be much
slower. In addition, this result also suggests that usingα close
to 1, i.e., fast decreasing step-sizes, is the best option to max-
imize the convergence rate. In practice, one should however
remember that this result pertains to the large sample behav-
ior of the estimates and, in most models, takingα close to 1
results in the algorithm converging too slowly. A better solu-
tion proposed by [8] and further generalized in [9] consistsin
using step-sizes with slower decay (typicallyα closer to 0.5
than to 1) and to performaveraging; ϑ is then estimated by

ϑ̃n = (n− n0)
−1

n
∑

k=n0+1

ϑ̂n ,

wheren0 is a lag after which averaging effectively starts. It is
proved in [7] that the averaged estimatorϑ̃n is indeed Fisher-
efficient, that is, it converges at raten−1/2 to a centered Gaus-
sian distribution with covariance matrix equal to the inverse
of the Fisher information matrix defined in (9). The practical
implications of these results will be further illustrated below
(in Section 4) for the DOA model.



3. APPLICATION TO DOA ESTIMATION

Consider an array withM sensors receiving signals fromK
far-field narrow-band sources withM > K. The measured
array output is a linear combination of the incoming wave-
forms, corrupted by additive Gaussian noise. The vector of
array outputs at time indexn is represented as

Yn = A(θ)Xn +Bn =

K
∑

k=1

a(θk)Xn,k +Bn ,

whereθ = (θ1, . . . , θK) represents the unknown DOA pa-
rameters,a(θ) is the complex array response to a unit wave-
form with incoming angleθ, Xn = (Xn,1, . . . , Xn,K) is the
emitted signal, andBn the additive noise. We assume that the
array is linear and uniform, which implies that, for any an-
gle θ, aH(θ)a(θ) = C. We further assume that the vector of
signal waveformsXn is a stationary white complex Gaussian
noise and that theK sources are independent with powers
α = (α1, . . . , αK). The additive noiseBn is also a station-
ary white complex Gaussian noise assumed for simplicity to
be spatially white with powerυ. The parameterϑ thus en-
compasses both the DOA parametersθ, the powersα, and
the noise varianceυ. The likelihood of one observation is
g(y;ϑ) = N (0,Γ(ϑ)), with

Γ(ϑ) = A(θ)P(α)AH(θ) + υIM , (10)

whereN denotes the complex multivariate Gaussian distribu-
tion, P(α) = diag(α1, · · · , αK), the superscriptH denotes
the conjugate-transpose, andIM is theM -dimensional iden-
tity matrix.

We may represent the array responseYn as a superposi-
tion of K independent complex Gaussian vectorsZn,k with
zero mean and covariance

Γk(ϑ) = αka(θk)aH(θk) + υkIM , (11)

where
∑K

k=1 υk = υ; taking, for instance,υk = υ/K. In the
EM terminology, the vectorsZn,1, . . . , Zn,K form the com-
plete data. The joint pdf of the complete data is given by

log(f(zn,1, · · · , zn,K ;ϑ)) = −M log π

− ψ(ϑ) +
K
∑

k=1

trace[S(zn,k)φk(ϑ)] , (12)

where

ψ(ϑ) = M

K
∑

k=1

log(υ/K) +

K
∑

k=1

log(1 + CKυ−1αk) ,

S(z) = zzH ,

φk(ϑ) = −Kυ−1
IM +

K2υ−2αk

1 + CKυ−1αk
a(θk)aH(θk) .

Thus, in the DOA model the complete-data sufficient statistics
correspond to theK empirical covariance matricesS(zn,1),
. . . , S(zn,K).

We first turn to the E-step of the EM algorithm. Fol-
lowing (5), we need to compute conditional expectation of
S(Zn,k)

s̄k(Yn;ϑ)
def
= E

[

Zn,kZ
H
n,k

∣

∣Yn;ϑ
]

, (13)

for k = 1, . . . ,K. It is easy to derive that

s̄k(Y ;ϑ) = Γk(ϑ) − Γk(ϑ)Γ−1(ϑ)Γk
H(ϑ)

+ Γk(ϑ)Γ−1(ϑ)
(

Y Y H
)

Γ
−1(ϑ)Γk

H(ϑ) , (14)

whereΓ(ϑ) andΓk(ϑ) are respectively given by (10) and (11).
The M-step then consists in maximizingL(s1, . . . , sK ;ϑ)

defined by (4). To do so, we note that it is first necessary
to maximize separately with respect toθk only the function
a

H(θk)ska(θk) to obtain

mk
def
= max

θ
a

H(θ)ska(θ) ,

θ̄k(sk) = argmax
θ

a
H(θ)ska(θ) , (15)

using one dimensional line searches. Now, the maximization
with respect to the(K + 1) positive parametersα1, · · · , αK ,
andυ yields

ῡ(s1, . . . , sK) =
1

(M − 1)

K
∑

k=1

(trace(sk) −mk/C) (16)

and

ᾱk(s1, . . . , sK) =
mk − Cῡ(s1, . . . , sK)/K

C2
(17)

Following (8), the REM algorithm then consists in approxi-
mating theK statisticŝsn,k by

ŝn,k = ŝn−1,k + γn

(

s̄k(Yn; ϑ̂n−1) − ŝn−1,k

)

,

where s̄k(Yn; ϑ̂n−1) is computed according to (14). Then,
ϑ̂n is obtained applying (15), (16), and (17), as in the (non-
recursive) EM algorithm.

4. NUMERICAL RESULTS

In this section, we study the performance of the proposed al-
gorithm in the scenario considered in [10]: three sources with
equal power are located atθ

? = [24◦, 28◦, 45◦]; the array
consists ofM = 15 sensors with equal inter-spacing of half
wavelength; the signal-to-noise ratio for each path is keptat
0 dB. In the results below, we use the same initial parameter
guesŝϑ1 as in [10].



The sequence of step-sizes is chosen asγn = n−0.6. Note
that although, we could obviously select different sequences
that behaves similarly for largen, one of the merit of the pro-
posed algorithm is that the absolute scale ofγn is in some
sense fixed by the fact thatγn = 1 amounts to takinĝsn =
s̄(Yn; ϑ̂n−1), i.e, not performing any smoothing on the suffi-
cient statistic.

The performance is estimated by averaging the squared
error‖θ̂N − θtrue‖2 over one hundred independent simulated
trajectories of array outputs. For reference, we also plot the
Cramer-Rao lower bound (CRB) for the DOA model [11].
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Fig. 1. MSE of REM with and without averaging as a func-
tion of the number of samples, compared to the CRB (MSE
estimated from 100 independent runs);nmin = 0.
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Fig. 2. Same figure withnmin = 500.

On figures 1 and 2, we first observe that in the asymp-
totic regime (sample sizes larger than 2,000), the curve that
pertains to the REM algorithm without averaging (solid bold
curve) doesn’t have the same slope as the CRB, confirming
that the estimate converges at a rate which is lower thann−1/2.
On figure 1, averaging (dotted curve) appears to yield bet-
ter results only for larger sample sizes but is much worse for

small to intermediate sample sizes. This is due to the fact that
for small sample sizes, the estimation error is dominated by
the bias caused by the mismatch between the initial value and
ϑ?. In this regime, averaging only worsens the problem and it
is recommend to start the averaging process only when the es-
timate gets reasonably close to the true value. Figure 2 (with
n0 = 500) shows that in this case, averaging is very beneficial
and that it does reach the CRB for larger sample sizes.
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