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ABSTRACT

Hidden Markov Models (henceforth abbreviated to HMMs), taken
in their most general acception, that is, including models in which
the state space of the hidden chain is continuous, have becom
a widely used class of statistical models with applications in di-
verse areas such as communications, engineering, bioinformatics
econometrics and many more. This contribution focus on the com-
putation of derivatives of the log-likelihood and proposes a (com-
paratively!) simple and general framework, based on the use of
Fisher and Louis identities, to obtain recursive equations for com-
puting the score and observed information matrix. This approach
is thought to be simpler than (although equivalent to) the solution
provided by the so-called sensitivity equations. It is based on the
original remark that recursive smoothers for HMMs are also avail-
able for some functionals of the hidden states which do not reduce
to sum functionals. This view of the problem also suggests ways
in which these exact equations could be approximated using se-
guential Monte Carlo methods.
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esis testing — “does a pre-specified model fits my data correctly?”,
change detection, etc.

In the following we discuss recursive techniques for evaluat-
ing the score and observed information matrix, where “recursive”
fneans that each new observation may be taken into account with a
non-increasing (with the observation index) computational effort,
both in terms of actual computations and memory requirements. It
is precisely one of the strongest appeal of HMMs that, due to the
assumed Markov dependence of the hidden states, all quantities
of interest may be evaluated recursively using efficient algorithms.
Recursivity is also essential because it opens an opportunity for
on-line (as opposed to batch) processing which is of prime im-
portance in many applications, particularly in signal processing.
Finally, defining quantities of interest recursively is also required
in order to use sequential Monte Carlo techniques [4] which have
recently emerged as a powerful tool for handling general HMMs
for which exact computation is not feasible.

2. NOTATIONS AND BASIC DEFINITIONS

Although we limit our discussion to the case of HMMs, the tech-

niques discussed here also apply for more general models such as

1. INTRODUCTION

Markov switching autoregressive models [5]. A hidden Markov

model is such that

Hidden Markov models constitute a very important class of prob-
abilistic signal models. They have been used, sometimes with
great success, to model finite-valued data with finite-valued un-
derlying states (digital communications, bioinformatics), (multi-
variate) continuous sequences with finite-valued underlying states
(speech recognition) or continuous sequences with continuous hid-
den spaces (tracking, econometrics, etc.) Interestingly, it is only
recently, with a renewed interest in the theory of general HMMs
starting from the early 1990s, that the solidarity between the differ-
ent variants of HMMs considered in pioneering works such as [1]
(finite-valued HMMSs) and [2] (Gaussian linear state-space mod-
els) has become clearer.

We focus here on the computation of derivatives of the log-
likelihood in general HMMs with emphasis on the score (first de-
rivative) and observed information matrix (opposite of the second
derivative). Although, parameter estimation obviously is a strong
motivation for computing such quantities (the score in particular)
we would like to stress that it is in no way the only motivation.
First, there exists a well-known likelihood optimization technique
which does not require the computation of the score, namely the
Expectation-Maximization (EM) algorithm [3], which &e facto
standard for training HMMs parameters. Second, the score and
observed information are important for other tasks such as hypoth-

1. {Xk}r>o0 is Markovian with initial distributions and tran-

sition density functiory such that, for any functioff,
BIf(X0)] = [ £(a) @)z
and
E[f(Xn)[Xo:n-1] =/f(1‘)Q(Xn717w)d$

where Xo.,—1 iS a concise notation for the collection of
variables Xy, ..., X,—1. The state space of the hidden
chain will be denoted b¥. In the following, we assume
that all probability distributions admits densities with re-
spect to a measure 0% which we simply denote byx.

This convention is used only for notational simplicity and
the technique described here are valid in fairly general state
spaces [5].

. {Y% } x>0 is conditionally independent giveiX . } >0 with

(marginal) transition density functiop such that, for arbi-
trary functionsfo, . .., fn,

B [H fr(Ye)

Xotn} = H/fk(y)g(Xk,y)dy



whereg is sometimes referred to as tfeonditional) like- fork > 1and
lihood function. In the following, we always considey
as a function of its first argument only and wrifg(x) =
g(z,Yy) for the conditional likelihood function evaluated

in Y. The notationsV and V2 stand for the gradient and the Hessian,
3. Since we consider models with an unknown parameter vec- respectively, and the superscripdenotes matrix transposition.
tor 0, quantities that do depend on the parameter will be At first glance, (3) and (4) hardly seem reconcilable with the
marked using as a superscript. principle behind the sensitivity equations since (3) and (4) involve
s weliknown hat e oglinood, “ g1 ofthe (18O 37O debier, 1 ies ber S e b
observationds. in this model may be evaluated as sions of the form taken by (3), that is, sum functionals of the hid-

ré(z,2') 0 (@)g) (z')q’ (z, 2 ) g (z')

0 ) & LY den states, may be computed recursively. Note that this remark
4, =logLo + Z log Lo 1) also applies to the quantities that are needed to implement the EM
k=1 k=1 algorithm [5, 15]. The observed information matrix in (4) how-
_ log/y"(m)gg(a:) ever implies a quantity (qn the second and third lines) Whi.Ch is
obviously not a sum functional but the square of a sum functional.

n The purpose of this contribution is to show that there exist
+> log {// Gr_1jp_1 ()¢’ (z,2") gk (") dada’ recursive smoothing relations for any functiod@l, (zo.n)}n>0
k=1 of the hidden states which is such that

Where¢z‘k is thefiltering probability density function associated
to the distribution of the hidden staf€;, given the observations
Y01 up to indexk (and for the parameter valu#g. The filtering
probability density functiomsz‘k may be evaluated recursively us-
ing the equation

tn+1(x01n+l) = mn(wn7 l‘n+1)tn (xO:n) + Sn(xn, xn+1) (6)

where {my, }.>0 and {s,}»>0 are two sequences of, possibly
vector- or matrix-valued (with suitable dimensions), functions on
X x X andtg is a function onX.

¢Z\k($k) % /¢Z\k($k71)qe (xh—1, x)gn(xr)dzr—1  (2)
3. A GENERAL RECURSIVE SMOOTHING FORMULA

where the normalization factor is precisely the term that appears
between brackets in (1), which may also be interpreted as the like-|n this section, we establish our main result temporarily omitting
lihood ratioL /L _, [5, 6, 7]. the dependence with respect to the parameter (superggfipm

To compute the derivatives @f,, a traditional approach, usu-  our notations.
ally known as thesensitivity equations methambnsists in differ-
entiating formally (2) with respect t6 [8]. This approach, which Proposition 1. Let(t,.)»>0 be a sequence of integrable functions
was originally developed for Gaussian linear state-space modelsdefined by6). The sequence of auxiliary functiofs, },,>0 on X
applies to HMMs in general as well [7] and has been used successsuch that
fully for gradient-based parameter estimation [9, 10, 11]. It does

howe'ver.glve rise to §omewhat compllqated expressions since ev- /f(x) To(2)d def 1 [F(X) tn(Xom)| Yo 7)
erything in (2), including the normalization constant, does depend
oné.
A (in our view) simpler approach, advocated by [12], consists for integrable functionsf, may be updated recursively according
in using Fisher and Louis identities [3, 13] which state that to
n—1
Ve =3 E'[Viogrf (Xi, Xis1) | You] A3) Tnt1(Tnt1) = CZL/ {Tn(mn)mn(fﬂn,xnﬂ) (8)
k=0
and + ¢n|n($n) sn($n7$n+l):| Tn(Inywn+l)d$n
t n—1
V2, + Ve, (fol) = Z E’ [V2 10g7“z(Xk)’ Yo:n] (4) for n. > 1%, At any indexn, E[t,(Xo.n) | Yo.n] may be evaluated
k=0 by computingf 7 (z)dz.
noln-l In order to use(8) it is required that the standard filtering
+ Z Z B’ [V log 7 (X, Xk11) recursion be carried out in parallel where the notation
k=0 j=0
(V logT?(Xj7Xj+1))t Yb:n:| Ck déf/ Gr—11k—1(Th—1)Tk—1(Th—1, Tk )dTk—1dTR
respectively, where stands for the normalizing constant which is computed when nor-
malizing(2).

ri(@,2) = ¢’ (@,2')gl 1 (2') (5)
2The initialization of the recursion, that is, the computation@fand

1These relations will be established below in Section 3. 71, is discussed below at the end of the proof of Proposition 1.



The auxiliary functiorr,, () as defined in Proposition 1 should
be understood as the minimal summary of the joint distribution
of the hidden stateXy.,, given the observationsy.,, which still
allows for recursive computation & [ ¢, (Xo:n)| Yo:n]. Proposi-

tion 1 is a simple consequence of the structure of the joint smooth-

ing distribution and of the particular choice of the smoothing func-
tional in (6).

Proof. Let ¢g.,» (z0:n) denote the joint probability density func-
tion of the hidden stateX).,, conditioned on the observatiohs.,,
(which we call the “joint-smoothing” density). From the mod-
elling assumptions given at the beginning of Section 2, the joint
probability density function of the states and observations up to
time n is given by

n—1

[ re@x, daeia)

k=0
where the notation introduced in (5) has been used. Since the like
lihoodL, is precisely obtained by marginalizing the above expres-
sion with respect to the state variables, Bayes rule implies that

n—1

¢O:n\n($0:n) = L:zl H Tk(xlﬁ dkarl)
k=0

9)

Comparing the above expression for consecutive indices 1
andn+1 gives the following update equation for the joint smooth-
ing probability density function:

¢0:n+1\n+1 (w01n+1)

(

Marginalizing the previous relation with respect to all variables but
Tn+1 Yields the marginal filtering update

Ln+1
Ln

) i G0inin (0:n) Tn(Tn, Tny1) (10)

¢n+1\n+1($n+1) =
-1
( ) /‘bn\n(l‘n) Tn(wn7l'n+1)d$n (11)

which also shows that the normalizing constant: = L,+1/Ln
may be computed as

Ln+1
Ly,

Cn41 = / ¢n\n(1’n) Tn(mwu mn-kl)dmndxn-kl (12)
By definition,

Tn+1(~rn+l) =
/"'/tn+1(iﬂ0:n+1) ®0:n+1|n+1(Z0:nt1)dT0:n

Using the recursive structurestf, ; and¢y.,11/,+1 given by (6)
and (10), respectively, yields (fer > 1)

0

Tn+1 (Tn41

) =
[mi(rm Tr1) 0 (20m) + 85 (T, Tng1)

0 1 0
(cn+1) ¢O:n\n(x0:n)Tn(xnyxn‘i'l)dmoin

Equation (8) then follows by evaluating the integrals with respect
to all the variables but:, .

The case of the first update (computatiorn@andr;), which
is slightly different in form due to our definition af, obviously
can be handled similarly starting with

Co

/V(QTO)QO(JSO)dJ?o

bojo(z0) = co v (20)go(w0)

T0(x0) = to(xo) Pojo(0)

Itis then easy to check that (1) can be obtained by applying (8)
with 7o (zo, z1) = q(x0, z1)g1(x1) rather than withg as defined
in (5). O

Retrospectively, it is obvious that the choice of the functional
(in (6) has been mainly guided by the objective of mimicking the
structure of the joint smoothing distributiofs,, },,>0. More pre-
cisely, tn+1(zo:n+1) Should be easily expressed as a function of
tn(x0:n) and terms that only involve the last two variabigsand
ZTn+1- Itis clear that (6) is not the most general structure for which
a recursive smoothing relation similar to (8) holds. This type of
functional is sufficient, however, to handle our two main objects
of interest in the context of the present contribution, that is, the
score in (3) and the observed information matrix in (4).

4. APPLICATION TO THE SCORE AND OBSERVED
INFORMATION MATRIX

To apply Proposition 1 to the expression of the score given in (3),

one simply needs to remark that Fisher’s identity corresponds to a
sum functional which is such that

n—1
tfz(mO:n) = Z A\ long(rk, xk+1)
k=0
Hence, we may use Proposition 1 wittf, = 1 and

SSL (mn» mn-&-l) = Vlog TZ(In, $n+1)

In this case, (8) may be rewritten as

Haslonen) = () [ |G

+ ¢?L|n($n) \Y 10g TZ (xny xn+1):| TZ(xn, -TnJrl)dxn

(13)

For the observed information matrix, (4) shows that in order to
evaluatev2¢%, on needs to compute three different terms. The first,

AV (Véfl)t, is a simple function of the score which we already
know how to compute. The second term,

n—1

Z E’ [Vz log TZ(X/Q)‘ YO:n]
k=0

may be handled exactly as in the case of the score, upon defining
mé =1and

S’?l(x"7 xn+l) =V? log 7"791 (xn, 55n+1)



The third term is the most problematic as it involves a functional one fundamentally computes expectations with respect twitie

of the form smoothing distributionthat is, the distribution of all state variables
Xo.n, given the corresponding observatioris,,; in contrast, the
tfl(xo:n) = sensitivity equations are obtained by differentiating, with respect
ne1ln—1 to the parametefl, a decomposition — Equation (1) — which only
V log i (k, Tht1) (V log 7 (x5, mjﬂ))t involves the sequence of filtering distributions (distribution&qf
k=0 j=0 ! given the observations up to time Ys.,). Even if Proposition 1
shows that the computations can also be carried out recursively
If we definet?, (zo..) by in the first approach, the gap with the sensitivity equations seems
hard to bridge. It turn outs, however, that differentiation with re-
" n-t 0 spect tod, in particular of the normalization factord, does give
tn(Tom) = Z Vlog ri(xk, Tr+1) rise to terms that cannot be expressed as function of the filtering
k=0 distributions anymore. In effect, both approaches are closely re-
that is, the functional which appeared above in the case of thelated, which we show below for the score function.
score, we have the simple recursion Recall that the log-likelihood may be written according to (1)
as the sum .
~ t
o1 (Toms1) = th(Tom) + T (on) (V log 9 (mn,xn+1)) 0, =" logcj, (15)
k=0
~ t . - .
+ V1ogrl (2n, Zni1) (ti (:vom)) wherec] = LY /LY _, is also the normalizing constant that appears
. in the filtering recursion (11). To differentiate (11) with respect to
+ Vlog 72 (@n, 2ny1) (V log 72 (2, xnﬂ)) 0, we assume thaf, , ; does not vanish and we use the identity
Hence, if7¢ denotes the auxiliary function associated to the score Vo OB (0)Vou(0) — 20 Vo logv(0)
by (7), which may be updated recursively according to (13), we )
have the following update formula to obtain
-1 V¢Z nt1(Tng1) =
Tg+1(l‘n+1) = (CZ-H) / |:Tg($n) (14) o +19 o 0
Prt1(Tni1) — ¢n+1|n+1(1’n+1) Viogcnyr (16)
t
+ 7 (2n) (V IOngL(mn,mnH)) where
t def -1
+ Vlog rﬁ(;cn,xwrl) (7:2(3%)) ﬂfz+1($n+l) = (sz+1) V/¢Z|n($n)rfl($n7$n+1)d$n
0 0 0 ¢ 17
+ Gnpn(zn) Viogry (Tn, Tnt1) (V logry, (wn,:rn+1)) We further assume that we may interchange integration and dif-
. ferentiation with respect t. Thus, asiﬁﬂwrl is a probability
:|rn(xnaxn+1)dmn density function,V [ ¢% .1 (¥ns1)dzni1 = 0. Therefore,

integration of both sides of (16) with respectitg,; yields

wherer? is the auxiliary function corresponding to the Hessian 0 0
functionalt? ;. 0= /Pn+1(mn+1)d$€n+1 —Viogecyia
Of course, the practical usefulness of the above abstract recur-
sive formulas crucially depends on our ability to carry out the inte- Hence, the gradient of the log-likelihood incremefat ; = £5,,., —
grations that appear in (13), (14) and similar equations. In practice, £, may be expressed fropf,,; as
exact computation is mostly feasible in case where the state space
X consists of a finite set of point (so-called discrete HMMs) or in Vieged 4 = /pf1+1(xn+l)dmn+l (18)
the case of Gaussian linear state-space models. We refer to Chapter
10 of [5] for some detailed examples of both situations. In general Now, we evaluate the derivative in (17) assuming also thais
HMMs, neither the above recursive smoothing equations nor the NON-zero to obtain
simpler filtering recursion — Equations (11) and (12) — are feasi- 1
ble and approximate computations must be used. In this context, Pnt+1(Tn+1) = (CZH) /[V(;bi\n(mn)
however, the above recursive smoothing equations may nonethe-
less be used to derive numerical approximations schemes based on + Vlog rl (zn, Tni1) qﬁﬁ‘n(m’n)} 2 (T, Tpy1)dan,

the sequential Monte Carlo (or “particle filtering”) approach [16]. ) ) ) )
Plugging (16) into the above equation yields an update formula for
6

5. CONNECTION WITH THE SENSITIVITY Prt1

EQUATIONS APPROACH -1
PZ+1($n+1) = (CZH) /[V¢z\n(1’n)
There has been some debate as to whether the above framework

really is equivalent to the sensitivity equations approach briefly + Vlog rfL(xn, Tnt1) ¢ﬁ|n(xn)]r§(xn, Tnt1)dTn
outlined in Section 2 [7, 17, 18]. The apparent difference between o 0
both methods is that when using the Fisher and Louis identities — Pntijnt1(Tns1) Vioge,  (19)



where (11) has been used for the last term on the right-hand side. [6] A. Doucet, S. Godsill, and C. Andrieu,

In the above derivations, we used a new auxiliary funcpif,)n
defined in (17), whose integral is the quantity of intefédbg .
Obviously, one can equivalently use as auxiliary function the deri-
vative of the filtering probability density functioﬁcﬁfm, which
is directly related tg?, by (16). The quantity¢,,,, (), which is
referred to as théangent filterby [9], is also known as thélter
sensitivityand may be of interest in its own right. Usim}z)fm
instead ofp’, does not however modify the nature of algorithm.

Recall from Sections 3 — 4 that Proposition 1 asserts that the
scoreV¢4, may be computed ag 75 (z,,)(dz,) for an auxiliary
function7? which is updated by (13). Comparing (13) with (19),
it is easily established by recurrencemthat

n—1
st (z v mgcf) .

1=0

(10]

(20)

for n > 1. Hence, wherea§ ¢ (x,)dz, evaluates tdv¢5, the
gradient of the log-likelihood up to index, fpfl(wn)dxn equals
the gradient of thincremenbf the log-likelihood ¢%, — ¢2 _, . But

in the latter case, the terif,_, is indeed decomposed into the
telescoping sund?,_, = 37"} Vlog ¢}, of log-likelihood incre-
ments. Thus, the sensitivity equations and the use of Fisher’s iden-
tity combined with the recursive smoothing algorithm of Proposi-
tion 1 are equivalent.

(7]

(8]

9]

(11]

(13]

6. CONCLUSIONS

We have shown that it is possible to obtain generic and relatively [14]

simple recursive smoothing relations for a large class of function-
als of the hidden state variables. This class of functionals includes
in particular the forms taken by the score and the observed in-

formation matrix when decomposed according to the Fisher and[15

Louis identities, respectively. Although the score and observed in-
formation equations can also be equivalently derived following the
sensitivity approach, we feel that the framework described in this
contribution offers a clearer point of view on the problem of com-
puting log-likelihood derivatives as well as a connection with the
more general task of recursively evaluating smoothed estimates.

(16]

(17]
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