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ABSTRACT

Hidden Markov Models (henceforth abbreviated to HMMs), taken
in their most general acception, that is, including models in which
the state space of the hidden chain is continuous, have become
a widely used class of statistical models with applications in di-
verse areas such as communications, engineering, bioinformatics,
econometrics and many more. This contribution focus on the com-
putation of derivatives of the log-likelihood and proposes a (com-
paratively!) simple and general framework, based on the use of
Fisher and Louis identities, to obtain recursive equations for com-
puting the score and observed information matrix. This approach
is thought to be simpler than (although equivalent to) the solution
provided by the so-called sensitivity equations. It is based on the
original remark that recursive smoothers for HMMs are also avail-
able for some functionals of the hidden states which do not reduce
to sum functionals. This view of the problem also suggests ways
in which these exact equations could be approximated using se-
quential Monte Carlo methods.
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1. INTRODUCTION

Hidden Markov models constitute a very important class of prob-
abilistic signal models. They have been used, sometimes with
great success, to model finite-valued data with finite-valued un-
derlying states (digital communications, bioinformatics), (multi-
variate) continuous sequences with finite-valued underlying states
(speech recognition) or continuous sequences with continuous hid-
den spaces (tracking, econometrics, etc.) Interestingly, it is only
recently, with a renewed interest in the theory of general HMMs
starting from the early 1990s, that the solidarity between the differ-
ent variants of HMMs considered in pioneering works such as [1]
(finite-valued HMMs) and [2] (Gaussian linear state-space mod-
els) has become clearer.

We focus here on the computation of derivatives of the log-
likelihood in general HMMs with emphasis on the score (first de-
rivative) and observed information matrix (opposite of the second
derivative). Although, parameter estimation obviously is a strong
motivation for computing such quantities (the score in particular)
we would like to stress that it is in no way the only motivation.
First, there exists a well-known likelihood optimization technique
which does not require the computation of the score, namely the
Expectation-Maximization (EM) algorithm [3], which isde facto
standard for training HMMs parameters. Second, the score and
observed information are important for other tasks such as hypoth-

esis testing – “does a pre-specified model fits my data correctly?”,
change detection, etc.

In the following we discuss recursive techniques for evaluat-
ing the score and observed information matrix, where “recursive”
means that each new observation may be taken into account with a
non-increasing (with the observation index) computational effort,
both in terms of actual computations and memory requirements. It
is precisely one of the strongest appeal of HMMs that, due to the
assumed Markov dependence of the hidden states, all quantities
of interest may be evaluated recursively using efficient algorithms.
Recursivity is also essential because it opens an opportunity for
on-line (as opposed to batch) processing which is of prime im-
portance in many applications, particularly in signal processing.
Finally, defining quantities of interest recursively is also required
in order to use sequential Monte Carlo techniques [4] which have
recently emerged as a powerful tool for handling general HMMs
for which exact computation is not feasible.

2. NOTATIONS AND BASIC DEFINITIONS

Although we limit our discussion to the case of HMMs, the tech-
niques discussed here also apply for more general models such as
Markov switching autoregressive models [5]. A hidden Markov
model is such that

1. {Xk}k≥0 is Markovian with initial distributionν and tran-
sition density functionq such that, for any functionf ,

E[f(X0)] =

Z
f(x) ν(x)dx

and

E[f(Xn)|X0:n−1] =

Z
f(x) q(Xn−1, x)dx

whereX0:n−1 is a concise notation for the collection of
variablesX0, . . . , Xn−1. The state space of the hidden
chain will be denoted byX. In the following, we assume
that all probability distributions admits densities with re-
spect to a measure onX which we simply denote bydx.
This convention is used only for notational simplicity and
the technique described here are valid in fairly general state
spaces [5].

2. {Yk}k≥0 is conditionally independent given{Xk}k≥0 with
(marginal) transition density functiong such that, for arbi-
trary functionsf0, . . . , fn,

E

"
nY

k=0

fk(Yk)

˛̨̨̨
˛X0:n

#
=

nY
k=0

Z
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whereg is sometimes referred to as the(conditional) like-
lihood function. In the following, we always considerg
as a function of its first argument only and writegk(x) =
g(x, Yk) for the conditional likelihood function evaluated
in Yk.

3. Since we consider models with an unknown parameter vec-
tor θ, quantities that do depend on the parameter will be
marked usingθ as a superscript.

It is well-known that1 the log-likelihood`θ
n

def
= log Lθ

n of the
observationsY0:n in this model may be evaluated as

`θ
n = log Lθ

0 +

nX
k=1
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Lθ
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Lθ
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»ZZ
φθ

k−1|k−1(x)qθ(x, x′)gθ
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–
whereφθ

k|k is thefiltering probability density function associated
to the distribution of the hidden stateXk given the observations
Y0:k up to indexk (and for the parameter valueθ). The filtering
probability density functionφθ

k|k may be evaluated recursively us-
ing the equation

φθ
k|k(xk) ∝

Z
φθ

k|k(xk−1)q
θ(xk−1, xk)gθ

k(xk)dxk−1 (2)

where the normalization factor is precisely the term that appears
between brackets in (1), which may also be interpreted as the like-
lihood ratioLθ

k/Lθ
k−1 [5, 6, 7].

To compute the derivatives of`θ
n, a traditional approach, usu-

ally known as thesensitivity equations methodconsists in differ-
entiating formally (2) with respect toθ [8]. This approach, which
was originally developed for Gaussian linear state-space models,
applies to HMMs in general as well [7] and has been used success-
fully for gradient-based parameter estimation [9, 10, 11]. It does
however give rise to somewhat complicated expressions since ev-
erything in (2), including the normalization constant, does depend
onθ.

A (in our view) simpler approach, advocated by [12], consists
in using Fisher and Louis identities [3, 13] which state that

∇`θ
n =

n−1X
k=0

Eθ[∇ log rθ
k(Xk, Xk+1) |Y0:n] (3)

and

∇2`θ
n +∇`θ

n
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respectively, where

rθ
k(x, x′)

def
= qθ(x, x′)gθ

k+1(x
′) (5)

1These relations will be established below in Section 3.

for k ≥ 1 and

rθ
0(x, x′)

def
= νθ(x)gθ

0(x′)qθ(x, x′)gθ
1(x′)

The notations∇ and∇2 stand for the gradient and the Hessian,
respectively, and the superscriptt denotes matrix transposition.

At first glance, (3) and (4) hardly seem reconcilable with the
principle behind the sensitivity equations since (3) and (4) involve
the joint smoothing distribution. It has been shown however by
[14] – see also [15] – that the conditional expectation of expres-
sions of the form taken by (3), that is, sum functionals of the hid-
den states, may be computed recursively. Note that this remark
also applies to the quantities that are needed to implement the EM
algorithm [5, 15]. The observed information matrix in (4) how-
ever implies a quantity (on the second and third lines) which is
obviously not a sum functional but the square of a sum functional.

The purpose of this contribution is to show that there exist
recursive smoothing relations for any functional{tn(x0:n)}n≥0

of the hidden states which is such that

tn+1(x0:n+1) = mn(xn, xn+1)tn(x0:n) + sn(xn, xn+1) (6)

where{mn}n≥0 and {sn}n≥0 are two sequences of, possibly
vector- or matrix-valued (with suitable dimensions), functions on
X× X andt0 is a function onX.

3. A GENERAL RECURSIVE SMOOTHING FORMULA

In this section, we establish our main result temporarily omitting
the dependence with respect to the parameter (superscriptθ) from
our notations.

Proposition 1. Let (tn)n≥0 be a sequence of integrable functions
defined by(6). The sequence of auxiliary functions{τn}n≥0 onX
such thatZ

f(x) τn(x)dx
def
= E [f(Xn) tn(X0:n)|Y0:n] (7)

for integrable functionsf , may be updated recursively according
to

τn+1(xn+1) = c−1
n+1

Z »
τn(xn) mn(xn, xn+1) (8)

+ φn|n(xn) sn(xn, xn+1)

–
rn(xn, xn+1)dxn

for n ≥ 12. At any indexn, E[tn(X0:n) |Y0:n] may be evaluated
by computing

R
τn(x)dx.

In order to use(8) it is required that the standard filtering
recursion be carried out in parallel where the notation

ck
def
=

ZZ
φk−1|k−1(xk−1)rk−1(xk−1, xk)dxk−1dxk

stands for the normalizing constant which is computed when nor-
malizing(2).

2The initialization of the recursion, that is, the computation ofτ0 and
τ1, is discussed below at the end of the proof of Proposition 1.



The auxiliary functionτn(x) as defined in Proposition 1 should
be understood as the minimal summary of the joint distribution
of the hidden statesX0:n given the observationsY0:n which still
allows for recursive computation ofE [ tn(X0:n)|Y0:n]. Proposi-
tion 1 is a simple consequence of the structure of the joint smooth-
ing distribution and of the particular choice of the smoothing func-
tional in (6).

Proof. Let φ0:n|n(x0:n) denote the joint probability density func-
tion of the hidden statesX0:n conditioned on the observationsY0:n

(which we call the “joint-smoothing” density). From the mod-
elling assumptions given at the beginning of Section 2, the joint
probability density function of the states and observations up to
timen is given by

n−1Y
k=0

rk(xk, dxk+1)

where the notation introduced in (5) has been used. Since the like-
lihoodLn is precisely obtained by marginalizing the above expres-
sion with respect to the state variables, Bayes rule implies that

φ0:n|n(x0:n) = L−1
n

n−1Y
k=0

rk(xk, dxk+1) (9)

Comparing the above expression for consecutive indicesn ≥ 1
andn+1 gives the following update equation for the joint smooth-
ing probability density function:

φ0:n+1|n+1(x0:n+1) =„
Ln+1

Ln

«−1

φ0:n|n(x0:n) rn(xn, xn+1) (10)

Marginalizing the previous relation with respect to all variables but
xn+1 yields the marginal filtering update

φn+1|n+1(xn+1) =„
Ln+1

Ln

«−1 Z
φn|n(xn) rn(xn, xn+1)dxn (11)

which also shows that the normalizing constantcn+1 = Ln+1/Ln

may be computed as

cn+1 =

ZZ
φn|n(xn) rn(xn, xn+1)dxndxn+1 (12)

By definition,

τn+1(xn+1) =Z
· · ·
Z

tn+1(x0:n+1) φ0:n+1|n+1(x0:n+1)dx0:n

Using the recursive structures oftn+1 andφ0:n+1|n+1 given by (6)
and (10), respectively, yields (forn ≥ 1)

τθ
n+1(xn+1) =Z

· · ·
Z h

mθ
n(xn, xn+1) tθ

n(x0:n) + sθ
n(xn, xn+1)

i
“
cθ

n+1

”−1

φθ
0:n|n(x0:n) rθ

n(xn, xn+1)dx0:n

Equation (8) then follows by evaluating the integrals with respect
to all the variables butxn.

The case of the first update (computation ofτ0 andτ1), which
is slightly different in form due to our definition ofr0, obviously
can be handled similarly starting with

c0 =

Z
ν(x0)g0(x0)dx0

φ0|0(x0) = c−1
0 ν(x0)g0(x0)

τ0(x0) = t0(x0) φ0|0(x0)

It is then easy to check thatτ1(x1) can be obtained by applying (8)
with r̃0(x0, x1) = q(x0, x1)g1(x1) rather than withr0 as defined
in (5).

Retrospectively, it is obvious that the choice of the functional
in (6) has been mainly guided by the objective of mimicking the
structure of the joint smoothing distributions{τn}n≥0. More pre-
cisely, tn+1(x0:n+1) should be easily expressed as a function of
tn(x0:n) and terms that only involve the last two variablesxn and
xn+1. It is clear that (6) is not the most general structure for which
a recursive smoothing relation similar to (8) holds. This type of
functional is sufficient, however, to handle our two main objects
of interest in the context of the present contribution, that is, the
score in (3) and the observed information matrix in (4).

4. APPLICATION TO THE SCORE AND OBSERVED
INFORMATION MATRIX

To apply Proposition 1 to the expression of the score given in (3),
one simply needs to remark that Fisher’s identity corresponds to a
sum functional which is such that

tθ
n(x0:n) =

n−1X
k=0

∇ log rθ
k(xk, xk+1)

Hence, we may use Proposition 1 withmθ
n ≡ 1 and

sθ
n(xn, xn+1) = ∇ log rθ

n(xn, xn+1)

In this case, (8) may be rewritten as

τθ
n+1(xn+1) =

“
cθ

n+1

”−1
Z »

τθ
n(xn) (13)

+ φθ
n|n(xn)∇ log rθ

k(xn, xn+1)

–
rθ

n(xn, xn+1)dxn

For the observed information matrix, (4) shows that in order to
evaluate∇2`θ

n on needs to compute three different terms. The first,
∇`θ

n

`
∇`θ

n

´t
, is a simple function of the score which we already

know how to compute. The second term,

n−1X
k=0

Eθ
h
∇2 log rθ

k(Xk)
˛̨̨
Y0:n

i
may be handled exactly as in the case of the score, upon defining
mθ

n ≡ 1 and

sθ
n(xn, xn+1) = ∇2 log rθ

n(xn, xn+1)



The third term is the most problematic as it involves a functional
of the form

tθ
n(x0:n) =

n−1X
k=0

n−1X
j=0

∇ log rθ
k(xk, xk+1)

“
∇ log rθ

j (xj , xj+1)
”t

If we definet̃θ
n(x0:n) by

t̃θ
n(x0:n) =

n−1X
k=0

∇ log rθ
k(xk, xk+1)

that is, the functional which appeared above in the case of the
score, we have the simple recursion

tθ
n+1(x0:n+1) = tθ

n(x0:n) + t̃θ
n(x0:n)

“
∇ log rθ

n(xn, xn+1)
”t

+∇ log rθ
n(xn, xn+1)

“
t̃θ
n(x0:n)

”t

+∇ log rθ
n(xn, xn+1)

“
∇ log rθ

n(xn, xn+1)
”t

Hence, ifτ̃θ
n denotes the auxiliary function associated to the score

by (7), which may be updated recursively according to (13), we
have the following update formula

τθ
n+1(xn+1) =

“
cθ

n+1

”−1
Z »

τθ
n(xn) (14)

+ τ̃θ
n(xn)

“
∇ log rθ

n(xn, xn+1)
”t

+∇ log rθ
n(xn, xn+1)

“
τ̃θ

n(xn)
”t

+ φθ
n|n(xn)∇ log rθ

n(xn, xn+1)
“
∇ log rθ

n(xn, xn+1)
”t

–
rθ

n(xn, xn+1)dxn

whereτθ
n is the auxiliary function corresponding to the Hessian

functionaltθ
n+1.

Of course, the practical usefulness of the above abstract recur-
sive formulas crucially depends on our ability to carry out the inte-
grations that appear in (13), (14) and similar equations. In practice,
exact computation is mostly feasible in case where the state space
X consists of a finite set of point (so-called discrete HMMs) or in
the case of Gaussian linear state-space models. We refer to Chapter
10 of [5] for some detailed examples of both situations. In general
HMMs, neither the above recursive smoothing equations nor the
simpler filtering recursion – Equations (11) and (12) – are feasi-
ble and approximate computations must be used. In this context,
however, the above recursive smoothing equations may nonethe-
less be used to derive numerical approximations schemes based on
the sequential Monte Carlo (or “particle filtering”) approach [16].

5. CONNECTION WITH THE SENSITIVITY
EQUATIONS APPROACH

There has been some debate as to whether the above framework
really is equivalent to the sensitivity equations approach briefly
outlined in Section 2 [7, 17, 18]. The apparent difference between
both methods is that when using the Fisher and Louis identities

one fundamentally computes expectations with respect to thejoint
smoothing distribution, that is, the distribution of all state variables
X0:n given the corresponding observationsY0:n; in contrast, the
sensitivity equations are obtained by differentiating, with respect
to the parameterθ, a decomposition – Equation (1) – which only
involves the sequence of filtering distributions (distributions ofXk

given the observations up to timek, Y0:k). Even if Proposition 1
shows that the computations can also be carried out recursively
in the first approach, the gap with the sensitivity equations seems
hard to bridge. It turn outs, however, that differentiation with re-
spect toθ, in particular of the normalization factorscθ

n, does give
rise to terms that cannot be expressed as function of the filtering
distributions anymore. In effect, both approaches are closely re-
lated, which we show below for the score function.

Recall that the log-likelihood may be written according to (1)
as the sum

`θ
n =

nX
k=0

log cθ
k (15)

wherecθ
k = Lθ

k/Lθ
k−1 is also the normalizing constant that appears

in the filtering recursion (11). To differentiate (11) with respect to
θ, we assume thatcθ

k+1 does not vanish and we use the identity

∇θ
u(θ)

v(θ)
= v−1(θ)∇θu(θ)− u(θ)

v(θ)
∇θ log v(θ)

to obtain

∇φθ
n+1|n+1(xn+1) =

ρθ
n+1(xn+1)− φθ

n+1|n+1(xn+1)∇ log cθ
n+1 (16)

where

ρθ
n+1(xn+1)

def
=
“
cθ

n+1

”−1

∇
Z

φθ
n|n(xn) rθ

n(xn, xn+1)dxn

(17)
We further assume that we may interchange integration and dif-
ferentiation with respect toθ. Thus, asφθ

n+1|n+1 is a probability

density function,∇
R

φθ
n+1|n+1(xn+1)dxn+1 = 0. Therefore,

integration of both sides of (16) with respect toxn+1 yields

0 =

Z
ρθ

n+1(xn+1)dxn+1 −∇ log cθ
n+1

Hence, the gradient of the log-likelihood incrementcθ
n+1 = `θ

n+1−
`θ
n may be expressed fromρθ

n+1 as

∇ log cθ
n+1 =

Z
ρθ

n+1(xn+1)dxn+1 (18)

Now, we evaluate the derivative in (17) assuming also thatrn is
non-zero to obtain

ρθ
n+1(xn+1) =

“
cθ

n+1

”−1
Z h

∇φθ
n|n(xn)

+∇ log rθ
n(xn, xn+1) φθ

n|n(xn)
i
rθ

n(xn, xn+1)dxn

Plugging (16) into the above equation yields an update formula for
ρθ

n+1:

ρθ
n+1(xn+1) =

“
cθ

n+1

”−1
Z h

∇φθ
n|n(xn)

+∇ log rθ
n(xn, xn+1) φθ

n|n(xn)
i
rθ

n(xn, xn+1)dxn

− φθ
n+1|n+1(xn+1)∇ log cθ

n (19)



where (11) has been used for the last term on the right-hand side.
In the above derivations, we used a new auxiliary functionρθ

n,
defined in (17), whose integral is the quantity of interest∇ log cθ

n.
Obviously, one can equivalently use as auxiliary function the deri-
vative of the filtering probability density function∇φθ

n|n, which

is directly related toρθ
n by (16). The quantity∇φn|n(·), which is

referred to as thetangent filterby [9], is also known as thefilter
sensitivityand may be of interest in its own right. Using∇φθ

n|n

instead ofρθ
n does not however modify the nature of algorithm.

Recall from Sections 3 – 4 that Proposition 1 asserts that the
score∇`θ

n may be computed as
R

τθ
n(xn)(dxn) for an auxiliary

functionτθ
n which is updated by (13). Comparing (13) with (19),

it is easily established by recurrence onn that

ρθ
n = τθ

n −

 
n−1X
l=0

∇θ log cθ
l

!
φθ

n|n (20)

for n ≥ 1. Hence, whereas
R

τθ
n(xn)dxn evaluates to∇`θ

n, the
gradient of the log-likelihood up to indexn,

R
ρθ

n(xn)dxn equals
the gradient of theincrementof the log-likelihood,̀ θ

n− `θ
n−1. But

in the latter case, the term̀θ
n−1 is indeed decomposed into the

telescoping sum̀θ
n−1 =

Pn−1
k=0 ∇ log cθ

k of log-likelihood incre-
ments. Thus, the sensitivity equations and the use of Fisher’s iden-
tity combined with the recursive smoothing algorithm of Proposi-
tion 1 are equivalent.

6. CONCLUSIONS

We have shown that it is possible to obtain generic and relatively
simple recursive smoothing relations for a large class of function-
als of the hidden state variables. This class of functionals includes
in particular the forms taken by the score and the observed in-
formation matrix when decomposed according to the Fisher and
Louis identities, respectively. Although the score and observed in-
formation equations can also be equivalently derived following the
sensitivity approach, we feel that the framework described in this
contribution offers a clearer point of view on the problem of com-
puting log-likelihood derivatives as well as a connection with the
more general task of recursively evaluating smoothed estimates.
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