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@ Analysis of the Explore-then-Commit Algorithm
Deviation Inequalities
Regret bounds
Adaptive ETC
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Why do We Need Deviation Inequalities?

Contrary to deterministic or purely randomized allocations, bandit allocation does not
preserve distributions: neither X (t), nor X (t)|Nk(t) = n are distributed as any of
the (Xk,m)kZL
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Facts About Bandit Allocation

The following is true:
* Xy|Hi1 ~va,;
® In the Bayesian approach, if a prior distribution X is specified on (v), the

posterior distribution, given H;_; is also available in close-form (as seen in the
previous course);

e Denoting Si,(t) = St X 1{As = k},
Sk(t) — pipNg(t) is a (H;) martingale increment
implying, in particular, that
E[Sk(t)] = prE[Nk ()]

D

Which is true as well if ¢ is replaced by a stopping time 7, due to Doob’s optinal
stoping theorem.
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Deviation Inequalities
Typical Use of Deviation Inequalities
But, the distribution of (Si(t), Ni(t)) is not fixed as it depends on the learning

algorithm.

® Cannot rely on distribution-dependent or asymptotic statistical results.
® Resort to (maximal) deviation inequalities, e.g.,

P ( N (X(t) — i) > 5) < P(max V(X — k) > 9)

1<m<

t
=P (3Em,1<m <t vVm(Xpm — <Y P (Vm(Xm — k) > 0)
m=1

(union bound)

There exist finer bounds that will not be discussed in this course, see, e. g.,
[Garivier & Cappé, 2011].
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

Lemma (Cramér-Chernoff Method)

Assume (X;)i>1 ii.d. ~ v, with E[e?1] < oo, VA € R. Let u = E[X{],
X, =1/n3"  X;, ¢(\) = logE[e?M1] and I(z) = ¢*(x) = supycp Az — ¢(N). For
T > p,

P (Yn > :U) < g e

N

Lemma (Underestimation Bound)

Under the same conditions, for x < y,

P (Yn < :1:) < e M@
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

These results are non improvable “in rate”, in the sense of the following Large
Deviation Theorem.

Theorem (Cramér Theorem)

Under the same conditions,

lim S logP (X, > ) = —I(z) (x > p)

n—00 7,

lim 1 logP (X, < z) = —I(z) (x < p)

n—oo N
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

Lemma (Gaussian Concentration Bound (Underestimation))
I X1 ~ N (11,0%), $() = No02/2 + p, 1(z) = (z — p)?/(207).

Hence, for x < u,

o (e=w?

P(X,<z)<e " 22

Corollary (Gaussian Upper Confidence Bound)
For any probability § € (0,1),

— 202 1
IP’(Xn+ ilog—<u>§(5
n 1)
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

Lemma (Hoeffding Lemma)

If X1 €1[0,1], #(\) < N2/8 +uX, e, ‘vis1/2 — sub-Gaussian”

Thus for X; € [0, 1], the previous bounds hold with o? = 1/4, in particular,

- 1 1
— log = <
P(Xn+ 2nlog5<u>_5

Warning: Assuming that rewards are in [0, 1] is the most common asumption in the
bandit literature (used in this course) but others —such as, e.g., Lattimore &
Szepesvari's book— consider instead 1-sub-Gaussian rewards.
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Analysis of the Explore-then-Commit Algorithm Regret bounds

Theorem (Regret of ETC)

The regret of the Explore- Then-Commit algorithm may be bounded as

K
E[Rr] < j{: Ay (Tn-+—2”e_qnzxi>
k=1

kel

® The interesting regime occurs when 1 < m < T

e Optimizing m requires knowledge of 7" and Apin < (Ag)
— not anytime, not adaptive!

® The latter is very conservative
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Analysis of the Explore-then-Commit Algorithm Regret bounds

Instance (or Parameter) Dependent Bound

Taking m = POLTW

A?nin
K
logT
SEEPIEICS )
ktk*

A

When K = 2, taking m = Fog(ALQAQ)—‘ if A > \/LT and anything otherwise,

E[Rr] < VT(1 +logT)
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Analysis of the Explore-then-Commit Algorithm Adaptive ETC

In simple cases, ETC can be made adaptive

Algorithm (Adaptive ETC (Two Arms))

Given an horizon T,
® M =1, play arms 1 and 2

* While | X1(2M) — X2(2M)| < \/y1logT/M:

® Play arms 1 and 2
° M+ +

® For1+2M <t <T, play Ay =1 if X1(2M) > X2(2M), or Ay = 2 otherwise
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Adaptive ETC
Proposition
For v > 2, Adaptive ETC satifisfies

(1+e€)logT

E[Ry] < 2 - +0,.(1)

for all ¢ > 0, where A denotes the gap between the two arms.

Proof Hint
Iz logT
E(Ry) < AE(M) + Tmz::l <X17m — X < —/ 2 nf >
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Roadmap

@® The Lai and Robbins Lower Bound
Kullback-Leibler Divergence
Lower Bound
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The Lai and Robbins Lower Bound Kullback-Leibler Divergence

Theorem (Data-Processing Ineqality)

Let (2, A) be a measurable space, and let P and ) be two probability measures on
(Q,A). Let X : Q — (X,B) be a random variable, and let PX (resp. Q~) be the
push-forward measures, i.e., the laws of X w.r.t. P (resp. Q). Then

KL(P,Q) > KL(P¥,QY)

Corollary

If X €[0,1],

KL(P,Q) > d(Ep[X], Eq[X])

where d is the Bernoulli Kullback-Leibler divergence

d(p,q) = plog(p/q) + (1 —p)log((1 —p)/(1 - q)) A
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The Lai and Robbins Lower Bound Kullback-Leibler Divergence

Two useful inequalities for d

Lemma ((Basic) Pinsker Inequality)

d(p,q) > 2(p — q)?

‘@

Lemma

1
d(p,q) > plog — — log 2
q

and

d(p,q) > (1 —p)log —log?2

1—g¢q
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The Lai and Robbins Lower Bound Lower Bound

Lemma (Change of Distribution)
Consider two stochastic MAB models with arm distributions v = (v1, ..., Vg, ..., VK)
and V' = (v1,...,v,...,VK), respectively,

KL(PJ X1 Q1 XT) = KL (v, v}, Ey [Ny,(T)]

V

Definition (Consistent Strategy)

A strategy is consistent if for any parameters v of the stochastic MAB model and all
a >0,

This implies that for all k£ # k*, limz_,00 B, [Nk(T)]/T“ =0
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The Lai and Robbins Lower Bound Lower Bound

For any consistent strategy and k # k*,

B [Nk(T)] 1
lim inf >
Tooo  logT = KL(vg,vv)

Corollary (Lai and Robbins Lower Bound)

For any consistent strategy,
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The Lai and Robbins Lower Bound Lower Bound

Proof hint

Assuming w.l.o.g. that k* = 1 under model v, consider

® p such that v is not the best arm, i.e, that n
Ep [ Xt < Euy [X14] |
® o/ such that vj, is the best arm, i.e, that “
Eu,’c [Xk,t] > Eu{ [Xkl,t] Jr\/\’ L =
while all other arms but k are unchanged under either v or v/

This implies in particular that, for any consistent strategy,
o LE,[Ny(T)] =0
° 1E,[Ny(T)] =1
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