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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

Why do We Need Deviation Inequalities?

Contrary to deterministic or purely randomized allocations, bandit allocation does not
preserve distributions: neither Xk(t), nor Xk(t)|Nk(t) = n are distributed as any of
the (Xk,m)k≥1.
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

Facts About Bandit Allocation
The following is true:

• Xt|Ht−1 ∼ νAt ;
• In the Bayesian approach, if a prior distribution λ is specified on (νk), the

posterior distribution, given Ht−1 is also available in close-form (as seen in the
previous course);

• Denoting Sk(t) =
∑t

s=1Xs1{As = k},

Sk(t)− µkNk(t) is a (Ht) martingale increment

implying, in particular, that

E[Sk(t)] = µkE[Nk(t)]

P
Which is true as well if t is replaced by a stopping time τ , due to Doob’s optinal
stoping theorem.
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

Typical Use of Deviation Inequalities

But, the distribution of (Sk(t), Nk(t)) is not fixed as it depends on the learning
algorithm. P

• Cannot rely on distribution-dependent or asymptotic statistical results.
• Resort to (maximal) deviation inequalities, e.g.,

P
(√

Nk(t)(Xk(t)− µk) > δ
)
≤ P

(
max

1≤m≤t

√
n(Xk,m − µk) > δ

)
= P

(
∃m, 1 ≤ m ≤ t :

√
m(Xk,m − µk) > δ

)
≤

t∑
m=1

P
(√
m(Xk,m − µk) > δ

)
(union bound)

There exist finer bounds that will not be discussed in this course, see, e. g.,
[Garivier & Cappé, 2011].
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

Lemma (Cramér-Chernoff Method)

Assume (Xi)i≥1 i.i.d. ∼ ν, with E[eλX1 ] <∞, ∀λ ∈ R. Let µ = E[X1],
Xn = 1/n

∑n
i=1Xi, φ(λ) = logE[eλX1 ] and I(x) = φ∗(x) = supλ∈R λx− φ(λ). For

x > µ,
P
(
Xn > x

)
≤ e−nI(x)

P

Lemma (Underestimation Bound)

Under the same conditions, for x < µ,

P
(
Xn < x

)
≤ e−nI(x)
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

These results are non improvable “in rate”, in the sense of the following Large
Deviation Theorem.

Theorem (Cramér Theorem)

Under the same conditions,

lim
n→∞

1

n
logP

(
Xn > x

)
= −I(x) (x > µ)

lim
n→∞

1

n
logP

(
Xn < x

)
= −I(x) (x < µ)
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

Lemma (Gaussian Concentration Bound (Underestimation))

If X1 ∼ N (µ, σ2), φ(λ) = λ2σ2/2 + µλ, I(x) = (x− µ)2/(2σ2).

Hence, for x < µ,

P
(
Xn < x

)
≤ e−n

(x−µ)2

2σ2

P

Corollary (Gaussian Upper Confidence Bound)

For any probability δ ∈ (0, 1),

P

(
Xn +

√
2σ2

n
log

1

δ
< µ

)
≤ δ

P
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Analysis of the Explore-then-Commit Algorithm Deviation Inequalities

Lemma (Hoeffding Lemma)

If X1 ∈ [0, 1], φ(λ) ≤ λ2/8 + µλ, i.e., “ν is 1/2 — sub-Gaussian”
P

Thus for X1 ∈ [0, 1], the previous bounds hold with σ2 = 1/4, in particular,

P

(
Xn +

√
1

2n
log

1

δ
< µ

)
≤ δ

Warning: Assuming that rewards are in [0, 1] is the most common asumption in the
bandit literature (used in this course) but others –such as, e.g., Lattimore &
Szepesvári’s book– consider instead 1–sub-Gaussian rewards.
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Analysis of the Explore-then-Commit Algorithm Regret bounds

Theorem (Regret of ETC)

The regret of the Explore-Then-Commit algorithm may be bounded as

E[RT ] ≤
K∑
k=1
k 6=k∗

∆k

(
m+ T e−m∆2

k

)

P

• The interesting regime occurs when 1� m� T

• Optimizing m requires knowledge of T and ∆min ≤ (∆k)
— not anytime, not adaptive!

• The latter is very conservative

48 / 57



Analysis of the Explore-then-Commit Algorithm Regret bounds

Instance (or Parameter) Dependent Bound

Taking m =
⌈

log T
∆2

min

⌉
,

E[RT ] ≤
K∑
k=1
k 6=k∗

∆k

(
1 +

log T

∆2
min

)

P

Minimax Bound

When K = 2, taking m =
⌈

log(T∆2)
∆2

⌉
if ∆ > 1√

T
and anything otherwise,

E[RT ] ≤
√
T (1 + log T )

P
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Analysis of the Explore-then-Commit Algorithm Adaptive ETC

In simple cases, ETC can be made adaptive (but not anytime)

Algorithm (Adaptive ETC (Two Arms))

Given an horizon T ,

• M = 1, play arms 1 and 2

• While |X1(2M)−X2(2M)| ≤
√
γ log T/M :

• Play arms 1 and 2
• M + +

• For 1 + 2M ≤ t ≤ T , play At = 1 if X1(2M) > X2(2M), or At = 2 otherwise
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Analysis of the Explore-then-Commit Algorithm Adaptive ETC

Proposition

For γ > 2, Adaptive ETC satifisfies

E[RT ] ≤ γ(1 + ε) log T

∆
+Oγ,ε(1)

for all ε > 0, where ∆ denotes the gap between the two arms.

Proof Hint

E(RT ) ≤ ∆E(M) + T

T/2∑
m=1

P

(
X1,m −X2,m < −

√
γ log T

m

)

P
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The Lai and Robbins Lower Bound Kullback-Leibler Divergence

Theorem (Data-Processing Ineqality)

Let (Ω,A) be a measurable space, and let P and Q be two probability measures on
(Ω,A). Let X : Ω→ (X ,B) be a random variable, and let PX (resp. QX) be the
push-forward measures, i.e., the laws of X w.r.t. P (resp. Q). Then

KL(P,Q) ≥ KL(PX , QX)

Corollary

If X ∈ [0, 1],
KL(P,Q) ≥ d(EP [X],EQ[X])

where d is the Bernoulli Kullback-Leibler divergence
d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) P
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The Lai and Robbins Lower Bound Kullback-Leibler Divergence

Two useful inequalities for d

Lemma ((Basic) Pinsker Inequality)

d(p, q) ≥ 2(p− q)2

P

Lemma

d(p, q) ≥ p log
1

q
− log 2

and

d(p, q) ≥ (1− p) log
1

1− q
− log 2

P
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The Lai and Robbins Lower Bound Lower Bound

Lemma (Change of Distribution)

Consider two stochastic MAB models with arm distributions ν = (ν1, . . . , νk, . . . , νK)
and ν ′ = (ν1, . . . , ν

′
k, . . . , νK), respectively,

KL(PX1...,XT
ν , QX1...,XT

ν′ ) = KL(νk, ν
′
k)Eν [Nk(T )]

P

Definition (Consistent Strategy)

A strategy is consistent if for any parameters ν of the stochastic MAB model and all
α > 0,

lim
T→∞

Eν [RT ]

Tα
= 0

This implies that for all k 6= k∗, limT→∞ Eν [Nk(T )]/Tα = 0
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The Lai and Robbins Lower Bound Lower Bound

Proposition

For any consistent strategy and k 6= k∗, and under regularity conditions,

lim inf
T→∞

Eν [Nk(T )]

log T
≥ 1

KL(νk, ν∗)

Corollary (Lai and Robbins Lower Bound)

For any consistent strategy,

lim inf
T→∞

Eν [RT ]

log T
≥

K∑
k=1
k 6=k∗

∆k

KL(νk, ν∗)
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The Lai and Robbins Lower Bound Lower Bound

Proof hint

Assuming w.l.o.g. that k∗ = 1 under model ν, consider

• ν such that νk is not the best arm, i.e, that
Eνk [Xk,t] < Eν1 [X1,t]

• ν ′ such that ν ′k is the best arm, i.e, that
Eν′k [Xk,t] > Eν′1 [Xk1,t]

while all other arms but k are unchanged under either ν or ν ′

This implies in particular that, for any consistent strategy,

• 1
T Eν [Nk(T )]→ 0

• 1
T Eν′ [Nk(T )]→ 1

P
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