
dcv : A set of MATLAB functions for blind

deconvolution of discrete signals

Olivier Cappé
ENST Dpt. TSI / CNRS-URA 820,

46 rue Barrault, 75634 Paris cedex 13, France.
cappe@tsi.enst.fr

August 28, 2012

Keywords: Blind estimation, deconvolution, system identifi-
cation, hidden Markov model, communications

Contents

1 About dcv 2

2 Wish list 2

3 Model and hypotheses 2

4 Model representation and data types 3

5 Estimation functions 4
5.1 Input-output estimation . 4
5.2 Blind estimation with EM . 4
5.3 Blind estimation using quasi-Newton optimization 4
5.4 Blind estimation with SEM 6
5.5 Blind estimation with SAEM 7
5.6 Bayesian estimation with the Gibbs sampler 7
5.7 Estimation of the symbols . 8

6 List of functions 8

7 Downloading dcv 9

1

1 About dcv

dcv is a set of functions for blind linear system identification and data detec-
tion in the case of a scalar discrete input signal (taking only a finite number
of distinct values). The name itself originated from the phrase “Discrete
ConVolution” which is not very informative! dcv is meant to handle both
real and complex signals and has a number of maximum likelihood (EM
algorithm, two stochastic versions of the EM algorithm) and Bayesian es-
timation schemes implemented. No elaborate data types are used and dcv

functions may all be used on MATLAB 4 as well as MATLAB 5. Among known
limitations is the fact that dcv basically only handles Single Input Single
Output (SISO) systems. The only way to (slighty) overcome this limitation
consists in defining a single input - two outputs model by specifying real
input symbols together with a complex filter.

The current version of the dcv 1.1. The only change from the first version
(1.0, dated from january 1998) is the inclusion of functions that allow for
a direct optimization of the log-likelihood using recursive update formulas
(dcv_llk, dcv_gllk and dcv_qn).

2 Wish list

(added November 25, 1999) For MATLAB 5.3 users, the current version
of Optimization Toolbox is 2.0 in which fminu is maintained only for back-
ward compatibility. With Optimization Toolbox 2.0, dcv_qn should thus be
modified so as to use fminunc which is more efficient and robust than the
old fminu (but also has a slightly differing syntax)...

3 Model and hypotheses

dcv is based on the following Moving Average (MA) convolution model

Xt =
L−1∑
l=0

h∗l εt−l +Nt , (1)

where {εt} is a sequence of iid. discrete (and possibly complex) random
variables, and {Nt} is a, possibly complex, white noise such that E[Nt] = 0,
E[|Nt|2] = σ2 and E[Re(Nt)Im(Nt)] = 0. In the current version, it is
assumed that all symbols (values of the input process {εt}) are equiprobable:
their probability of occurrence is 1/M where M is the number of different
symbols. In (1), the ∗ superscript denotes conjugation (or the Hermitian
adjoint for matrices). The reason why conjugation is needed at this point
may become clearer when noting that (1) is equivalent to

Xt = h∗Vt +Nt , (2)

2

where h , (h0, h1, . . . , hL−1)
∗ (with the convention that for vectors the

superscript ∗ indicates both transposition and complex conjugation) and
Vt , (εt, εt−1, . . . , εt−L+1)

′. Written as in (2), it is clear that Xt is a
(deterministic) function of a discrete multivariate Markovian process {Vt}
observed in additive noise. Stated differently, (1) corresponds to a finite
state-space Hidden Markov Model (HMM).

Note that the dimension of the state space of {Vt} is ML, which means
that it grows exponentially with the length of the filter. However, it is easily
seen that the transition matrix corresponding to {Vt} is sparse because each
line (and each column) contains only N non-zero elements.

It is clear from the above discussion that the MA blind convolution model
with a discrete input signal is just a particular case of finite state space HMM
with Gaussian state conditional densities. There are however at least three
good reasons that justify the development of specialized functions: (rather
than using the more general framework of the h2m toolbox1):

• The sparsity of the transition matrix can be used to simplify the fil-
tering procedures (such as the forward-backward recursion).

• The standard estimation procedures for HMMs have to be modified
since there is a single set of parameters (h and σ) for all the state
conditional distributions.

• h2m functions won’t handle complex parameters or observations.

4 Model representation and data types

If you just want to use the basic simulation (dcv_gen) and estimation func-
tions (dcv_io, dcv_em, dcv_sem, dcv_saem, dcv_baye, dcv_vit), you just
need to specify

A vector of observations: (usually denoted X) Observed signalX1, . . . XT .

A vector of symbols: (usually denoted v) M possible values of the input
signal.

A vector of filter coefficients: (usually denoted H) Vector h in (2).

A positive variance: (usually denoted sigma2) Variance σ2 of the noise
Nt.

Note that all vectors have to be specified as column vectors.
If you need to use the lower level functions (dcv_fb, dcv_psim), you will

have to create a representation of the transition matrix using dcv_init:

1http://www-sig.enst.fr/˜cappe/h2m/html/

3

http://www-sig.enst.fr/~{}cappe/h2m/html/

[AR,AC,V]=dcv_init(v,H);

This creates a ML×M matrix AR which contains the indexes of the non null
elements of the transition matrix for each row, AC is a M×ML matrix which
likewise gives the indexes of the non null elements in the transition matrix
for each column and V is a L×ML matrix which contains the ML possible
values of the state vector Vt stacked column-wise. If needed, the function
dcv_chk can be used to check that AR, AC, V and H are compatible and to
obtain the dimensions of the model. dcv_chk also sets a flag REAL_COEFF

which indicates whether the model is real or complex (by looking at the
symbols in the state vectors V and the filter coefficients in vector H).

5 Estimation functions

5.1 Input-output estimation

dcv_io estimates the parameters of the convolution model (filter and noise
level) when the input symbols are observed. In this case the maximum
likelihood estimate is obtained using a standard least squares procedure [9].

All other estimations procedures deal with the case of blind estimation
and are iterative in nature.

5.2 Blind estimation with EM

dcv_em implements blind estimation (that is without observing the input
symbols) using the Expectation Maximization (EM) algorithm. The E step
is carried out in dcv_fb using the forward-backward recursions of Baum et
al [13], [12]. The use of EM for this particular model is also detailed in many
papers dealing with telecommunications applications such as [8] or [1].

Note that dcv_em (and all the iterative estimation procedures) returns
the sequence of estimated parameters rather than just the parameters es-
timated during the last iteration. H(:,1) and sigma2(1) are the initial
values (as given in the input arguments of dcv_em) and H(:,Nit+1) and
sigma2(Nit+1) the values estimated at the last iteration.

5.3 Blind estimation using quasi-Newton optimization

dcv_qn implements blind estimation using a direct optimization on the log-
likelihood using a quasi-Newton technique. It requires fminu for optimiza-
tion and thus can only be used if Optimization Toolbox is installed.

As this is perhaps less well-known than EM, we briefly describe the pro-
cedure used to compute the gradient of the log-likelihood. A more detailed
account of the method can be found in [2]. For a sequence of observations

4

of length T , the log-likelihood can be written as

log p(x1, . . . xt) =
T∑
t=1

log

[
N∑
i=1

fi(xt)φt(i)

]
(3)

where fi(xt) = p(vt|Vt = vi) is the state conditional distribution (which is
complex Gaussian with mean h∗vi and variance σ2) and φt(i) , P (Vt =
vi|x1, . . . xt−1) denotes the state prediction filter. φt(i) can be updated
recursively using (see [14])

φ1(j) = P (v1 = j)

φt+1(j) =
1

ct

N∑
i=1

fi(xt)φt(i)Aij (t ≥ 1) (4)

where A denote the transition matrix (which is sparse in the case of the
model considered here). The normalization factors ct are given by

ct =
N∑
k=1

fk(xt)φt(k) (5)

The gradient of the log-likelihood is obtained by mere differentiation of (3)
as

∇θ log p(XT
1) =

T∑
t=1

1

ct

N∑
i=1

[φt(i)∇θfi(xt) + fi(xt)∇θφt(i)] (6)

Where ∇θφt(i) can be updated recursively using

∇θφt+1(j) =
1

ct

N∑
i=1

(Aij − φt+1(j)) [φt(i)∇θfi(xt) + fi(xt)∇θφt(i)] (7)

Since fi(xt) is the Gaussian density, we have

∂fi(xt)

∂h
=

(xtvi − viv
′
ih)

σ2
fi(xt) (8)

and
∂fi(xt)

∂κ
=

1

2

[(
xt − h′vi

σ

)2

− 1

]
fi(xt) (9)

for a real model, and

∂fi(xt)

∂h
= 2

(x∗tvi − viv
∗
i h)

σ2
fi(xt) (10)

and
∂fi(xt)

∂κ
=

[(
|xt − h∗vi|

σ

)2

− 1

]
fi(xt) (11)

5

for a complex one. In both case κ , log(σ2) is used as the noise parameter
(rather than σ) so that all model parameters (h and κ) are unconstrained.

The computation of the log-likelihood and its gradient is done, respec-
tively, in dcv_llk and dcv_gllk. dcv_qn (and its subroutines dcv_qn_f

dcv_qn_g) is just a function that makes the interface between dcv parame-
ter conventions and the fminu optimization routine. Because fminu does not
provide the intermediate optimization steps, dcv_qn only returns the value
of the estimated parameters H and sigma2 for the last itteration, which is
in contrast with the behavior of the other blind estimation routines.

In practise, it happens frequently that, at some point of the optimization,
numerical problems (underflows) occur in dcv_llk because of large steps on
the parameter κ required by fminu. To alleviate this problem, all functions
as been modified to allow the use of an optional variance offset Vmin such
that σ2 = exp(κ) + Vmin which guarantees that σ2 > Vmin and thus avoids
numerical problems which appear when computing the Gaussian likelihood
for very small variance values. The only change that is needed in the above
equations consists in multiplying (9) or (11) by

(σ2 − Vmin)/σ2

to account for the fact that differentiation is performed wrt. κ and not
wrt. log(σ2). By default, dcv_qn uses a variance offset (as defined by
VAR_OFFSET) that corresponds approximately to a 25 dB Signal to Noise
Ratio (SNR). Of course if the SNR is actually greater than that, this should
be modified by specifying the optional argument VAR_OFFSET to dcv_qn.
Note however that for lower values of the variance threshold you may expe-
rience some numerical problems if the algorithm is started from a value of
the parameters which is far from any local maximum of the likelihood.

5.4 Blind estimation with SEM

dcv_sem uses the Stochastic EM (SEM) procedure [5]. This algorithm be-
longs to the class of stochastic extensions of the EM algorithm since it uses
simulation and imputation of the missing data (the unobserved sequence of
input symbols) in place of the E step. The simulation of the unobserved
state vectors is carried out by dcv_psim using the principle explained in [3]
(forward filtering and backward conditional simulation). The simulation is
based on the relation

p(Vt|Vt+1, . . . ,VT , X1, . . . , XT) ∝ p(X1, . . . , Xt,Vt)p(Vt+1|Vt)

The first term on the right-hand side is computed by forward recursion (it
is exactly the forward variable in the Baum algorithm). The above relation
is then used for backward simulation (using it for t = T, T − 1, . . . , 1).

Rather than just a single number of iteration, dcv_sem expects the length
of the burn-in period (during which the estimated values are discarded) and

6

the number of subsequent iterations that will be used to obtain averaged
estimates. Note that contrary to what happens for EM, the likelihood of
the sequence of estimates has to be computed separately afterwards. This
extra computation is performed only if the likelihood is requested (as an
output argument) and can be omitted in order to save some time (the same
is true for dcv_saem).

5.5 Blind estimation with SAEM

dcv_saem implements the Stochastic Approximation EM (SAEM) algorithm
which is slightly different in spirit from the SEM, although it is also based
on the simulation of the unobserved input data. Almost sure convergence of
the SAEM iterates towards a local maxima of the likelihood under suitable
regularity conditions has been proved in [11].

dcv_saem uses a three stages strategy: first a burn-in period (no de-
crease of the stochastic approximation step size which is set to 1), then
a pure stochastic approximation procedure with proper step size decay so
as to ensure convergence and finally an averaged stochastic approximation
procedure [10]. After the burn-in period, dcv_saem uses stochastic approx-
imation step sizes that decrease proportionally to n−0.6 which is enough to
guarantee convergence but has no claim to optimality.

5.6 Bayesian estimation with the Gibbs sampler

dcv_baye also deals with the blind convolution model but is different in na-
ture since its goal is “fully Bayesian analysis” of the model using a Markov
Chain Monte Carlo (MCMC) approach [7]. Note that in the present case,
what prevent the use of a more direct analysis is the fact that the posterior
is a mixture of M (T+L−1) component distributions (as many as the num-
ber of different sequences of symbols). Thus, when T is large the direct
computation of the a posteriori distribution is not feasible.

dcv_baye uses a standard “non informative” prior for normal regression
models (with p(h, σ2) ∝ σ2) as described in [6, Sec. 8.3]. For a related
(though more elaborate) Bayesian model analysis, see [4]. dcv_baye uses a
systematic scan Gibbs sampler based on data augmentation [15]. Each cycle
of the Gibbs sampler features the following simulation steps:

• V1, . . .VT |X1, . . . , XT ,h, σ

• σ|X1, . . . , XT ,V1, . . .VT ,h

• h|X1, . . . , XT ,V1, . . .VT , σ

In the first step the unknown state vectors are drawn jointly (in block) using
dcv_psim [see [4] for a different implementation]. As you may experience
yourself (using xample_c for instance), in many cases, the above sampling

7

scheme does not provide a full exploration of the posterior density but rather
visits only one of its mode. This is due to the particular mixing properties
of the hidden Markov chain {Vt} and to the marked multimodal character
of the posterior distribution of h.

5.7 Estimation of the symbols

dcv_vit implements the so-called “Viterbi” or dynamic programming al-
gorithm to estimate the most likely sequence of symbols together with the
initial state. dcv_vit also returns the value of the symbol-optimized joint
log-likelihood

max
V1,...,VT

p(V1, . . . ,VT , X1, . . . , XT ; h.σ2)

6 List of functions

dcv baye Bayesian analysis of the blind convolution model with the Gibbs sampler
using a noninformative prior.

dcv chk Checks the parameters of a convolution model and returns its dimensions.

dcv em Blind identification using the EM algorithm.

dcv fb Computes likelihood and a posteriori state probabilities using the forward-
backward recursions.

dcv gen Generates synthetic data for a convolution model.

dcv gllk Computes the gradient of the log-likelihood using forward prediction.

dcv init Returns transition matrix and state vectors for a convolution model.

dcv io Input-output estimation of the convolution parameters.

dcv llk Computes the log-likelihood using the forward predictor.

dcv par Re-estimates the convolution parameters (filter and noise level).

dcv psim Simulates sequence(s) of states conditionnally to the observed data.

dcv qn Blind identification using quasi Newton optimization.

dcv saem Blind identification using the SAEM algorithm.

dcv sem Blind identification using the SEM algorithm.

dcv vit Computes the most likely sequence of symbols and initial state (using
“Viterbi” dynamic programming).

dcv2hmm Converts DCV parameters to HMM representation for the H2M tool-
box.

randgamm Generates one deviate from the Gamma(alpha, beta) distribution.

randindx Generates random indexes with a specified probability distribution.

xample c Illustration of the use of DCV functions for complex signals.

8

xample r Illustration of the use of DCV functions for real signals.

randgamm is not a very efficient gamma random generator, you may want
to use gamrnd instead if you have the Statistics toolbox installed. Note
that none of the settings of the example files xample_c and xample_r should
be considered as “optimal” as these files are just intended to illustrate the
various function calls. In particular, the number of iterations may have to
be set to higher values for practical applications (but you probably don’t
want to spend too much time in front of your screen for a simple demo). You
will also notice from these little examples that blind identification is indeed
a difficult task and that convergence of the estimation procedures strongly
depends on their initialization.

7 Downloading dcv

dcv is available as a unix gz-compressed tape archive at address http://perso.telecom-parsitech.fr/ /cappe/Code/Dcv/dcv.tar.gz.

References

[1] C. Antón-Haro, J. A. R. Fonollosa, and J. R. Fonollosa. Blind channel
estimation and data detection using hidden Markov models. IEEE
Trans. Signal Process., 45(1), January 1997.

[2] O. Cappé, V. Buchoux, and E. Moulines. Quasi-Newton method for
maximum likelihood estimation of hidden Markov models. In IEEE Int.
Conf. Acoust., Speech, Signal Processing (ICASSP), pages IV–2265–
IV–2268, Seattle, US, May 1998.

[3] C. K. Carter and R. Kohn. On Gibbs sampling for state space models.
Biometrika, 81(3):541–553, 1994.

[4] R. Chen and T. Li. Blind restoration of linearly degraded discrete
signals by gibbs sampling. IEEE Trans. Signal Process., 43(10):2410–
2413, 1995.

[5] J. Diebolt and E. H. S. Ip. Stochastic EM: method and application. In
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov
Chain Monte Carlo in Practice, pages 259–273. Chapman & Hall, 1996.

[6] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data
analysis. Chapman & Hall, 1995.

[7] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov
Chain Monte Carlo in Practice. Interdisciplinary Statistics Series.
Chapman & Hall, 1996.

9

http://perso.telecom-parsitech.fr/~/cappe/Code/Dcv/dcv.tar.gz
http://perso.telecom-paristech.fr/~cappe/papers/icassp98m.ps.gz
http://perso.telecom-paristech.fr/~cappe/papers/icassp98m.ps.gz

[8] G. K. Kaleh and R. Vallet. Joint parameter estimation and symbol de-
tection for linear or non-linear unknown channels. IEEE Trans. Com-
munications, 42(7), 1994.

[9] S. M. Kay. Fundamentals of statistical signal processing: Estimation
theory. Signal processing series. Prentice-Hall, 1993.

[10] H. J. Kushner and G. G. Yin. Stochastic approximation algorithms and
applications. Springer-Verlag, New York, 1997.

[11] M. Lavielle, B. Delyon, and E. Moulines. Convergence of a stochastic
approximation version of the EM algorithm. To appear in the Annals
of Statistics, 1998.

[12] I. L. MacDonald and W. Zucchini. Hidden Markov models and other
models for discrete-valued time series. Chapman & Hall, 1997.

[13] L. R. Rabiner. A tutorial on hidden Markov models and selected ap-
plications in speech recognition. Proc. IEEE, 77(2):257–285, February
1989.

[14] J.B. Moore R.J. Elliot, L. Aggoun. Hidden Markov models: Estimation
and control. Springer-Verlag, New York, 1994.

[15] A. F. M. Smith and G. O. Roberts. Bayesian computation via the
gibbs sampler and related Markov chain Monte Carlo methods. J.
Royal Statist. Soc. B, 55(1):3–23, 1993.

10

	About dcv
	Wish list
	Model and hypotheses
	Model representation and data types
	Estimation functions
	Input-output estimation
	Blind estimation with EM
	Blind estimation using quasi-Newton optimization
	Blind estimation with SEM
	Blind estimation with SAEM
	Bayesian estimation with the Gibbs sampler
	Estimation of the symbols

	List of functions
	Downloading dcv

