
CT/RJ-Mix Transdimensional MCMC for Gaussian mixtures

Olivier Cappé, Tobias Rydén, Christian P. Robert

Version 3.6, October 6, 2005

Contents

1 Description and version information 1

2 How to 2
2.1 Obtain the source code . 2
2.2 Build the software . 2
2.3 Check that it works . 2
2.4 Troubleshooting . 3
2.5 Understand the program output . 3
2.6 Specify you own input . 4
2.7 Known limitations . 5

3 Technical appendix 6
3.1 Model . 6

3.1.1 Likelihood . 6
3.1.2 Prior . 6
3.1.3 Values of the hyperparameters . 6

3.2 Fixed k moves . 6
3.2.1 The moves . 6
3.2.2 Tuning the sampler parameters . 7

3.3 Birth or death moves . 7
3.4 Split or merge moves . 8

3.4.1 Split proposal . 8
3.4.2 Acceptance ratio . 8
3.4.3 Merge rate for the continuous time version 9
3.4.4 Choice of the sampler parameters . 9

3.5 Appendix: Formulas for normalized log-normal multiplicative RW 9

1 Description and version information

This is the C code that was used to produce the figures in Section 4 of

O. Cappé, C. Robert, and T. Rydén. Reversible jump, birth-and-death and more
general continuous time Markov chain Monte Carlo samplers. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), Volume 65, Issue 3, pages
679-700, 2003.

1

http://www.blackwell-synergy.com/links/doi/10.1111%2F1467-9868.00409
http://www.blackwell-synergy.com/links/doi/10.1111%2F1467-9868.00409
http://www.blackwell-synergy.com/links/doi/10.1111%2F1467-9868.00409
http://www.blackwell-synergy.com/links/doi/10.1111%2F1467-9868.00409

CT/RJ-Mix: Version 3.6, October 6, 2005 2

The purpose of this software is to implement transdimensional Markov Chain Monte Carlo
(MCMC) for inference in (scalar) Gaussian mixture models, with unknown number of compo-
nents. Two methods are implemented: Reversible Jump (RJ) MCMC for rj_mix and Continuous
Time (CT) for ct_mix. See the above mentioned article for further details and references about
the method.

The current version of the software is 3.6 as printed on all pages of this manual. This is the
second version that is made publicly available. Changes from the first version include removal
of misleading comments in alea.c and correction of an error in Gam which made sampling from
gamma distribution poorly reliable when a high value of the parameter was used. Each file has
its own individual version number (which differs from 3.6).

2 How to

2.1 Obtain the source code

Download it from http://www.tsi.enst.fr/˜cappe/ctrj mix/

2.2 Build the software

After unpacking the archive, enter the main directory (named ctrj_mix) and type make, you
should obtain the two executables rj_mix and ct_mix.

2.3 Check that it works

Cd to the sub-directory demo and type make demo. This will run the two programs rj_mix and
ct_mix on the data in galaxy.dat (this is the same centered galaxy dataset that was used in
the paper), using the settings found in galaxy.arg. You should see on the screen something
like this

$ make demo
../rj_mix galaxy
Data has 82 samples. Running 5000 x 8 iterations of the sampler...
SK0=1179069493
SK1=2853338688
SK2=1059189655
[snip]
../ct_mix galaxy
Data has 82 samples. Running 5000 x 8 iterations of the sampler...
SK0=469243900
SK1=500366318
SK2=168522948
[snip]

The following files will be created in the demo sub-directory:

galaxy.sts
galaxy.res
galaxy.st2
galaxy.rs2

galaxy.res and galaxy.rs2 are binary files whose coding may vary depending on the type of
machine (big-endian or low-endian) that you are using. On the other hand, galaxy.sts and

http://www.tsi.enst.fr/~cappe/ctrj_mix/

CT/RJ-Mix: Version 3.6, October 6, 2005 3

galaxy.st2 are text files that contain summary information on the output of the two program,
the content of these should not depend on your system, which you can check by running

$ make check
md5sum galaxy.sts
10b31093f6bf13acc531dcbe04d22d42 galaxy.sts
md5sum galaxy.st2
d55c5667ebf0913263c8eca8b68c7b13 galaxy.st2

(note that this will only work if you have the md5sum command installed on your system).
Another easy test is that the SK0=..., SK1=... and SK2=... lines in the text output of the
programs (see above) are the values of the seeds of the random generator after the program run.
These should also correspond to the excerpt given above.

On a 2 GHz Pentium IV machine the make demo command takes about 50s to complete
(each program performs 40 000 iterations, ct_mix being much slower than rj_mix for reasons
discussed in the paper).

2.4 Troubleshooting

The validity of the previous comments have been checked on several Intel-x86 based PCs run-
ning various versions of GNU/Linux or using Cygwin within Microsoft Windows. It has also
been tested on SPARC workstations running Sun Microsystems SunOS 5.8. It may be the
case however that for some other architectures, different implementations of the basic C func-
tions could render the output somewhat different. A possible source of problem would be if
unsigned long int corresponded to something else than 4 bytes variables (see the comments
at the beginning of the alea.h file).

If you don’t pass the tests above, the next thing to try is to check the output to see if you
obtain a figure comparable to the one shown in Section 2.5 below.

2.5 Understand the program output

The screen output by rj_mix and ct_mix is a copy of the content of the input .arg file
(galaxy.arg in the case of the demo) except for the fact that the SK0=..., SK1=... and
SK2=... lines are updated to the values of the seeds of the random generator after the program
run. This can be useful if you intend to run the program several times independently and want
to be able to reproduce the whole experiment.

The output formats of the two programs differ slightly:

rj mix The statistics file (.sts) is a text file with one line for each iteration:

| n iter | k | log-l | move type |
|

for type 1 (fixed k): | accpt w | accpt mu | accpt var |
for type 2 (birth/death): | birth | accpt | unused (-1)|
for type 3 (split/merge): | split | accpt | unused (-1)|

The results file (.res) is a binary file which contains floating point numbers (in C double
format). The results file is a succession of records, one for each recorded iteration, starting
with the initial value, where the records have the following structure:

w(i,1), ..., w(i,k(i)), mu(i,1), ..., mu(i,k(i)), var(i,1), ... var(i,k(i))

http://www.gnu.org/software/coreutils/manual/html_chapter/coreutils_6.html#SEC26

CT/RJ-Mix: Version 3.6, October 6, 2005 4

where i is the number of the iteration (i=0 is the initialization, and for i>0, i*SubSamp
is the corresponding iteration index). Each record is thus of length 3*k(i), which varies
with k. In order to read the .res file, it is thus necessary to use the second column of the
corresponding .sts file which gives the number of components for each iteration.

ct mix The statistics file (.st2) is a text file with one line for each iteration:

| n iter | k | log-l | move type |
|

for type 1 (fixed k): | base2(accpt w,mu,var) | weight |
for type 2 (birth/death): | birth | weight |
for type 3 (split/merge): | split | weight |

The structure of the results file (.rs2) is similar to that of rj_mix with varying-length
records, except that each record has a leading value which corresponds to the weight
(inverse duration) of the simulated state.

If you work with OCTAVE or MATLAB, you can use the provided functions readres.m and
readres2.m to load the outputs of, respectively rj_mix and ct_mix. The script galaxy.m can
be used to display some properties of the output obtained when running make demo. It should
display the following plot (in MATLAB only)

2.6 Specify you own input

When typing make demo, the two programs use the arguments contained in the text file galaxy.arg
(where each program is called with the name galaxy, without extension, as argument). The
structure of this file should be easy to understand:

SK0, SK1, SK2 Three seeds of the random generator (3 integer values)

NOut Number of iterations recorded in the result file (the initialization state will be added).

SubSamp Subsampling factor, the total number of iterations is NOut*SubSamp.

CT/RJ-Mix: Version 3.6, October 6, 2005 5

Data Name of the file that contains the data (should be a plain text file, with one number per
line).

M Maximum number of components.

Kappa Hyperparameter for the means (floating point value), see κ below.

AlphaVar Hyperparameter for the variances (floating point value), see α below.

BetaVar Hyperparameter for the variances (floating point value), see β below.

Eta Parameter of the fixed-k move for updating the weights (floating point value), see η below.

Rho Parameter of the fixed-k move for updating the means (floating point value), see ρ below.

Nu Parameter of the fixed-k move for updating the variances (floating point value), see ν below.

PFixed Probability of attempting the fixed-k moves (the third types of fixed-k moves are tried
in turn).

PBirth Probability of attempting a birth move.

PDeath Probability of attempting a death move.

PSplit Probability of attempting a split move.

Gamma S Parameter of the split proposal for the weights (floating point value), see γS below.

Rho S Parameter of the split proposal for the means (floating point value), see ρS below.

Nu S Parameter of the split proposal for the variances (floating point value), see νS below.

The probabilities should add to less than one since 1-PFixed-PBirth-PSplit will be the prob-
ability of attempting a merge move. They can be set to zero, meaning that the corresponding
move will never be attempted.

ct_mix use PFixed, PBirth and PSplit as rates for the corresponding type of moves and
hence only their relative values are of some importance (ct_mix discards PDeath as the death
and split rates have to be updated, based on the simulated configuration, when doing continuous
time sampling).

Be aware that the function that reads the .arg file is pretty primitive and won’t tolerate
neither spaces before or after the = sign nor case variations. The scanning of the file ends after
the Nu_S=... line and you can thus write whatever you want after this line.

2.7 Known limitations

The programs are reasonably optimized but certainly not overly sophisticated. In particular, all
arrays are allocated statically, with their size fixed at compile time. The program will thus only
accept data files with less than 2000 observations and the maximum value of M (maximum number
of components) is set to 20. This can be changed by editing the top section of mix_lib.h. If you
do so, please take so time to read the comments and modify the value of MaxKPairs accordingly.
Note that if you really have a lot of components, you should avoid using ct_mix for reasons
discussed in the paper.

CT/RJ-Mix: Version 3.6, October 6, 2005 6

3 Technical appendix

3.1 Model

3.1.1 Likelihood

Gaussian scalar mixture model with parameters (w1:k, µ1:k, υ1:k) (by convention υi are the
variances and Normal(0, ρ) has variance ρ)

log l(Y1:n|θ) =
n∑

t=1

log

(
k∑

i=1

wi√
2πυi

exp
[
−(Yt − µi)2

2υi

])
(1)

3.1.2 Prior

• k ∼ Uniform{1, . . . M}

• w1:k ∼ Dirichlet(1, . . . , 1) with pdf (k − 1)! on the simplex

• µ1:k ∼ ⊗Normal(0, κ) with log-pdf

log p(µ1:k|κ) = −k

2
log(2πκ)− 1

2κ

k∑
i=1

µ2
i (2)

• υ1:k ∼ ⊗ Inverse-Gamma(α, β) with log-pdf

log p(υ1:k|κ) = k(α log β − log Γ(α))−
k∑

i=1

[
(α + 1) log(υi) +

β

υi

]
(3)

3.1.3 Values of the hyperparameters

For the galaxy.dat dataset,

M = 15 (4)

κ = (max{Yi}1≤i≤n −min{Yi}1≤i≤n)2 (5)
α = 0.5 (6)

β = 10−3 (7)

are reasonably “non-informative” values, without being absolutely dispersed (note: birth moves
are simulated from the prior).

3.2 Fixed k moves

3.2.1 The moves

They are proposed with probability PF (k). We don’t use completion (ie. simulating the indicator
variables) on these moves, which are random walk like and proposed each in turn:

For w1:k I Normalized multiplicative RW MH with multiplicative distribution⊗Log-Normal(0, η).
The acceptance rate is (see Section 3.5 below)

log l(Y1:n|θ̃)− log l(Y1:n|θ) +
n∑

i=1

log
w̃i

wi
(8)

CT/RJ-Mix: Version 3.6, October 6, 2005 7

For µ1:k I RW MH with perturbation distribution ⊗Normal(0, ρ).
The acceptance ratio is just

log l(Y1:n|θ̃)− log l(Y1:n|θ)−
k∑

i=1

µ̃2
i − µ2

i

2κ
∧ 0 (9)

and the move can just as easily be carried out globally or one component at a time.

For υ1:k I Multiplicative RW MH with multiplicative distribution ⊗Log-Normal(0, ν).
The acceptance ratio is

l(Y1:n|θ̃)
l(Y1:n|θ)

× π(θ̃)
π(θ)

×
n∏

i=1

1
υi

Normal(log υi| log υ̃i, ν)
1
υ̃i

Normal(log υ̃i| log υi, ν)
∧ 1 (10)

or in log

log l(Y1:n|θ̃)− log l(Y1:n|θ) +
n∑

i=1

(
−(α + 1) log

υ̃i

υi
− β(

1
υ̃i
− 1

υi
)
)

+
n∑

i=1

log(
υ̃i

υi
) ∧ 0 (11)

The move can just as easily be carried out globally or one component at a time.

For the continuous time sampler, the fixed k move is proposed with rate λF (k) ∝ PF (k). As
in the RJMCMC case, it consists of the three MH proposals (weights, means, variances) with
independent accept/reject decisions.

3.2.2 Tuning the sampler parameters

Experimenting with the moves above on the galaxy.dat data set, it is found that the global
version of the moves with

η = 0.05
ρ =

κ

2000× k
ν = 0.08

(12)

is satisfying (with acceptance rates that stay in the range 0.3-0.7 for all values of k ≤ 15). The
normalization of ρ by k tends to stabilize the acceptance rate (with constant ρ, the acceptance
drops for high values of k).

3.3 Birth or death moves

When in a k components configuration, we propose a new component from the prior according
to

1. w̃k+1 ∼ Beta(1, k) with w̃1:k+1 = ((1− w̃k+1)w1:k, w̃k+1)

2. µ̃k+1 ∼ Normal(0, κ)

3. υ̃k+1 ∼ Inverse-Gamma(α, β)

CT/RJ-Mix: Version 3.6, October 6, 2005 8

The acceptance ratio for the corresponding RJ move is

l(Y1:n|θ̃k+1)
l(Y1:n|θk)

× PD(k + 1)
PB(k)

∧ 1 (13)

For the continuous time version of the move, if the birth rate is λB(k) ∝ PB(k), the death
rates are given by

l(Y1:n|θk)
l(Y1:n|θ̃k+1)

× λB(k)
k + 1

(14)

This is basically Stephens (2000) proposal.
In the current implementation, λF = PF , λB = PB and PD = (1− (PF + PB)) which are all

constant (ie. do not vary with k), except for obvious edge effects (PD(1) = 0, PB(M) = 0).

3.4 Split or merge moves

3.4.1 Split proposal

When in a k components configuration, we propose to split component i according to

1. wi −→ (w̃i, ˜̃wi) = (ξwi, (1− ξ)wi) with ξ ∼ Beta(γS , γS) (with γS ≈ 2)

2. µi −→ (µ̃i, ˜̃µi) = (µi − ξ, µi + ξ) with ξ ∼ Normal(0, ρS)

3. υi −→ (υ̃i, ˜̃υi) = (υi/ξ, υiξ) with ξ ∼ Log-Normal(0, νS)

3.4.2 Acceptance ratio

The acceptance ratio for a split move in min(1, A) where

A =
l(Y1:n|θ̃k+1)
l(Y1:n|θk)

× (k + 1)! p(θ̃k+1)
k! p(θk)

× PM (k + 1)/(k(k + 1)/2)
PS(k)/k

× (2 proposal pdf)−1 ×
∣∣∣∣∂ new
∂ old

∣∣∣∣
=

l(Y1:n|θ̃k+1)
l(Y1:n|θk)

× PM (k + 1)
PS(k)

× p(θ̃k+1)
p(θk)︸ ︷︷ ︸

T1

×proposal pdf−1︸ ︷︷ ︸
T2

×
∣∣∣∣∂ new
∂ old

∣∣∣∣︸ ︷︷ ︸
T3

with

Weights

T1 = k (15)

T2 =

(
Γ(2γS)
Γ(γS)2

w̃γS−1
i

˜̃wγS−1
i

w
2(γS−1)
i

)−1

(16)

T3 = wi (17)

Means

T1 =
1√
2πκ

exp
[
µ2

i − (µ̃2
i + ˜̃µ2

i)
2κ

]
(18)

T2 =
√

2πρS exp
[
(˜̃µi − µ̃i)2

8ρS

]
(19)

T3 = 2 (20)

http://www.stat.washington.edu/stephens/papers/vark.abstract.html

CT/RJ-Mix: Version 3.6, October 6, 2005 9

Variances

T1 =
βα

Γ(α)
υ
−(α+1)
i exp

[
β
(
υ−1

i − υ̃−1
i − ˜̃υ−1

i

)]
(21)

T2 =
√

2πνS

√
˜̃υi/υ̃i exp

[(
log

˜̃υi

υ̃i

)2

/(8νS)

]
(22)

T3 = 2
υi√
˜̃υi/υ̃i

(23)

3.4.3 Merge rate for the continuous time version

If λS(k) denotes the split rate, the merge rate is given by

l(Y1:n|θ̃k)
l(Y1:n|θk+1)

× 2λS(k)
k(k + 1)

× (T1 × T2 × T3)
−1

where T1, T2 and T3 are as given above.

3.4.4 Choice of the sampler parameters

In the current implementation, PS(k) and PM (k) are constant (with k), except for edge effects
(PM (1) = 0, PS(M) = 0). On the galaxy.dat dataset, the choice of parameters that maximizes
the rate of acceptance of the split or merge move is

γS = 1 (24)
ρS = 0.2 (25)
νS = 3 (26)

But the acceptance probability is then only of 5% (compared to 15% for the simpler birth or
death move).

3.5 Appendix: Formulas for normalized log-normal multiplicative RW

Consider the following proposal:

1. Generate ξ1, . . . , ξk from ⊗Log-Normal(log wi, τ
2) distribution

2. Take

$ = ξ1 + . . . + ξk

w̃1 = ξ1/$

. . .

w̃k = ξk/$

The proposal density can be obtained by the change of variable formula. Indeed, ($, w̃1, . . . , w̃k−1)
is then distributed from the density

1
(2πτ2)k/2

k∏
i=1

exp{−(log wi − log[$w̃i])2/2τ2}
$w̃i

×
∣∣∣∣ ∂(ξ1, . . . , ξk)
∂($, w̃1, . . . , w̃k−1)

∣∣∣∣
and

CT/RJ-Mix: Version 3.6, October 6, 2005 10

∣∣∣∣ ∂(ξ1, . . . , ξk)
∂($, w̃1, . . . , w̃k−1)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

w̃1 w̃2 . . . w̃k

$ 0 . . . −$
0 $. . . −$
...

...
. . .

...
0 0 . . . −$

∣∣∣∣∣∣∣∣∣∣∣
= $k−1

∣∣∣∣∣∣∣∣∣∣∣

w̃1 w̃2 . . . 1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣
= $k−1 .

Thus,

($, w̃1, . . . , w̃k−1) ∼
1

(2πτ2)k/2$

k∏
i=1

exp{−(log wi − log $ − log w̃i])2/2τ2}
w̃i

Now, if we denote ζ = log($), ζ is distributed as

k∏
i=1

exp
{
−(log wi − log w̃i − ζ)2/2τ2

}
(up to a multiplicative constant) conditionally on the w̃i’s. This is a normal density, meaning
that

ζ|w̃1, . . . , w̃k ∼ N

(
1
k

k∑
i=1

(log wi − log w̃i),
τ2

k

)
Therefore the marginal distribution of the vector (w̃1, . . . , w̃k−1) is available in closed form, that
is

(w̃1, . . . , w̃k−1) ∼
k∏

i=1

exp
{
−(log wi − log w̃i)2/2τ2

}
w̃i

× exp


(

k∑
i=1

(log wi − log w̃i)

)2/
2kτ2

 (27)

up to a multiplicative constant which is equal to

1
(2πτ2)k/2

×
√

2πτ√
k

=
1

(2πτ2)(k−1)/2
√

k
.

	Description and version information
	How to
	Obtain the source code
	Build the software
	Check that it works
	Troubleshooting
	Understand the program output
	Specify you own input
	Known limitations

	Technical appendix
	Model
	Likelihood
	Prior
	Values of the hyperparameters

	Fixed k moves
	The moves
	Tuning the sampler parameters

	Birth or death moves
	Split or merge moves
	Split proposal
	Acceptance ratio
	Merge rate for the continuous time version
	Choice of the sampler parameters

	Appendix: Formulas for normalized log-normal multiplicative RW

