

Soutenue par
Ferdinanda CAMPORESI
le 23 janvier 2017  

THÈSE DE DOCTORAT  
de l’Université de recherche Paris Sciences et Lettres 
PSL Research University
 

 

Préparée à l’École normale supérieure

Dirigée par Jérôme FERET
 Radhia COUSOT

Formal and exact reduction for differential models
of signalling pathways in rule-based languages

COMPOSITION DU JURY :  

Mme. YANG, Jean
Carnegie Mellon University, Rapporteur 

M. GIACOBAZZI, Roberto
Università di Verona, Rapporteur 

M. FAGES, François
INRIA, Membre du jury

M. FERET, Jérôme
INRIA & ÉNS, Membre du jury

M. HARMER, Russ
CNRS & ÉNS Lyon, Membre du jury

M. THIEFFRY, Denis
ÉNS, Membre du jury

Ecole doctorale n°386  
 
École doctorale de Sciences Mathématiques de Paris Centre

 
Spécialité Informatique

i

Résumé

Le comportement d’une cellule dépend de sa capacité à recevoir, propager
et intégrer des signaux, constituant ainsi des voies de signalisations. Les
protéines s’associent entre elles sur des sites de liaisons, puis modifient la
structure spatiale des protéines voisines, ce qui a pour e↵et de cacher ou de
découvrir leurs autres sites de liaisons, et donc d’empêcher ou de faciliter
d’autres interactions.

En raison du grand nombre de di↵érents complexes biomoléculaires, nous
ne pouvons pas écrire ou générer les systèmes di↵érentiels sous-jacents. Les
langages de réécritures de graphes à sites o↵rent un bon moyen de décrire ces
systèmes complexes. Néanmoins la complexité combinatoire resurgit lorsque
l’on cherche à calculer de manière e↵ective ce comportement. Ceci justifie
l’utilisation d’abstractions.

Nous proposons deux méthodes pour réduire la taille des modèles de voies
de signalisation, décrits en Kappa. Ces méthodes utilisent respectivement la
présence de symétries parmi certains sites et le fait que certaines corrélations
entre l’état de di↵érentes parties des complexes biomoléculaires n’ont pas
d’impact sur la dynamique du système global. Des sites qui ont la même
capacité d’interaction sont liés par une relation de symétrie. Nous montrons
que cette relation induit une bisimulation qui peut être utilisée pour réduire la
taille du modèle initial. L’analyse du flot d’information détecte les parties du
système qui influencent le comportement de chaque site. Ceci nous autorise
à couper les espèces moléculaires en petits morceaux pour écrire un nouveau
système. Enfin, nous montrons comment ra�ner cette analyse pour tenir
compte d’information contextuelle.

Les deux méthodes peuvent être combinées. La solution analytique du
modèle réduit est la projection exacte de la solution originelle. Le calcul du
modèle réduit se fait au niveau des règles, en évitant l’exécution du modèle
initial.

ii

iii

Abstract

The behaviour of a cell is driven by its capability to receive, propagate and
communicate signals. Proteins can bind together on some binding sites. Post-
translational modifications can reveal or hide some sites, so new interactions
can be allowed or existing ones can be inhibited.

Due to the huge number of di↵erent bio-molecular complexes, we can no
longer derive or integrate ODE models. A compact way to describe these
systems is supplied by rule-based languages. However combinatorial com-
plexity raises again when one attempt to describe formally the behaviour of
the models. This motivates the use of abstractions.

We propose two methods to reduce the size of the models, that exploit
respectively the presence of symmetries between sites and the lack of corre-
lation between di↵erent parts of the system. The symmetries relates pairs of
sites having the same capability of interactions. We show that this relation
induces a bisimulation which can be used to reduce the size of the original
model. The information flow analysis detects, for each site, which parts of the
system influence its behaviour. This allows us to cut the molecular species
in smaller pieces and to write a new system. Moreover we show how this
analysis can be tuned with respect to a context.

Both approaches can be combined. The analytical solution of the reduced
model is the exact projection of the original one. The computation of the
reduced model is performed at the level of rules, without the need of executing
the original model.

iv

v

Man könnte den ganzen Sinn

des Buches etwa in die Worte

fassen: Was sich überhaupt

sagen lässt, lässt sich klar

sagen; und wovon man nicht

reden kann, darüber muss man

schweigen.

Ludwig Wittgenstein, TLP

Grazie Jérôme.

vi

Contents

1 Introduction 1
1.1 Context and motivation . 1
1.2 Case studies . 3

1.2.1 A protein with independent sites 3
Model . 3
Model reduction . 4
Dependence index . 7

1.2.2 A protein with information flow 8
Model . 8
Model reduction . 9
Dependence index for the second example 10

1.2.3 A protein with symmetries 11
Model . 11
Model reduction . 12

1.2.4 A protein with information flow and symmetries 13
1.2.5 Conclusive remarks . 15

1.3 Overview . 16
1.3.1 Kappa . 16
1.3.2 Symmetries based reduction 17
1.3.3 Context-insensitive flow analysis 17
1.3.4 Context-sensitive flow analysis 18

1.4 Related works . 19
1.4.1 Bisimulation . 19
1.4.2 Information flow . 19
1.4.3 Stochastics semantics 20
1.4.4 Other model reduction 20

1.5 Outline . 21

2 Reduction of di↵erential semantics 23
2.1 Concrete semantics . 23
2.2 Exact reduction . 25

vii

viii CONTENTS

2.3 Projections-based reductions 28
2.4 Combining model reductions 31
2.5 Conclusion . 33

3 Kappa 35
3.1 Example . 35
3.2 Syntax . 38

3.2.1 Signature . 38
3.2.2 Patterns . 39
3.2.3 Rules . 41

Rules with side e↵ects. 43
3.3 Semantics . 44

3.3.1 Operational semantics 44
3.3.2 Di↵erential semantics 52

3.4 Conclusion . 54

4 Symmetries 55
4.1 Case studies . 55

4.1.1 First case study . 55
4.1.2 Second case study . 57
4.1.3 Third case study . 59
4.1.4 Fourth case study . 61

4.2 Permutations of sites in Kappa 64
4.2.1 Transpositions of sites 64
4.2.2 Action of a transposition on patterns 65

Action of a transposition of binding types on a pattern 65
Action of a transposition of states on a pattern. 65

4.2.3 Action of a transposition on a rule 67
4.2.4 Action of a transposition on a rule application 67
4.2.5 Symmetric sites . 73

4.3 Symmetries and rule applications 76
4.4 Conclusion . 78

5 Production/consumption of a pattern 81
5.1 Consumption/production of a species 81

5.1.1 Consumption . 82
5.1.2 Production . 82
5.1.3 Balance . 83

5.2 Consumption/production of a pattern 83
5.3 Proper consumption of a pattern 85

5.3.1 Condition . 86

CONTENTS ix

5.3.2 Gluing . 87
5.3.3 Contribution . 93

5.4 Proper production of a pattern 95
5.4.1 Condition . 96
5.4.2 Inverse substitution . 97
5.4.3 Contribution . 99

5.5 Conclusion . 101

6 Information flow 103
6.1 Motivating example . 103
6.2 Contact map and annotated contact map 106
6.3 Fragments . 108
6.4 Flow analysis . 113

6.4.1 Trivial rules . 113
6.4.2 Side e↵ects . 114
6.4.3 Valid annotation . 114

6.5 Reduced model . 115
6.5.1 Contribution of proper consumption 116

Trivial rules . 116
Non-trivial rules . 117

6.5.2 Contribution of proper production 121
Trivial rules . 121
Non-trivial rules . 123

6.5.3 Balance . 131
6.6 Conclusion . 131

7 Context-sensitive abstractions 133
7.1 Category of Sigma-graphs . 133

7.1.1 Sigma-graphs . 133
7.1.2 Homorphisms between Sigma-graphs 134

7.2 Basic elements of Abstract Interpretation 136
7.2.1 Ordered sets . 137
7.2.2 Galois connections . 137

7.3 Abstraction of relations among sites 141
7.3.1 Relations among sites 141
7.3.2 Approximation of relations among sites 143

8 Partitioned flow 149
8.1 Case study . 149
8.2 Context-sensitive model reduction 154

8.2.1 Prefragments . 154

x CONTENTS

8.2.2 Flow analysis . 157
8.3 Reduced model . 164

8.3.1 Contribution of proper consumption 165
Trivial rules . 166
Non-trivial rules 167

8.3.2 Contribution of proper production 171
Trivial rules . 171
Non-trivial rules . 174

8.3.3 Balance . 182
8.4 Conclusion . 182

9 Conclusion 183
9.1 Contributions . 183
9.2 Future works . 184

9.2.1 Dealing with cycles . 184
9.2.2 Tuning the context-sensitivity of the analysis 185
9.2.3 Contextual symmetries 185

Bibliography 187

Chapter 1

Introduction

1.1 Context and motivation

The behaviour of a cell is driven by its capability to receive, propagate and
communicate signals. These communications are carried out by interactions
between proteins. Proteins can bind together on some binding sites and
modify their spatial structure. This can reveal or hide some binding sites,
so new communications can be allowed or existing ones can be inhibited.
Signalling pathways gather several interactions that describe how a specific
signal induces the activation of a given protein. Since each protein has several
interaction sites, these systems su↵er from combinatorial complexity. This
has several impacts and makes these systems very hard to be represented
and simulated.

We are interested in mechanistic models that reflect in a direct way the
underlying mechanisms in the systems we study. A common way to rep-
resent the knowledge we have on this kind of systems is by the means of
pathway maps. A pathway map is a graph where each node represents a pro-
tein, a bio-molecular complex (that we call a species) or a pattern, and each
arc represents some kind of interaction described in some informal language.
Pathway maps supply a good way to organise knowledge but no formal se-
mantics is associated with them. Another approach is based on the use of
systems of ordinary di↵erential equations (ODEs). Generally each variable
denotes the concentration of some species and the system describes the way
the variables evolve in time. Since the number of species is huge it is im-
possible to write the system and a lot of simplifications are made. Typical
solutions are to neglect some species or to quotient some others. The way
these simplifications are made is often not so clear and once that the model
is written we cannot assign it a meaning. So it is not even possible to update

1

2 CHAPTER 1. INTRODUCTION

them. Furthermore, a model should not be considered as a single entity. We
are indeed more interested in families of models corresponding to some vari-
ations of common meta-models. Then, it is important to ease the navigation
between models in order to test various sets of assumptions about mecha-
nistic details [2,24,35]. There are two main reasons for which ODEs models
can hardly achieve this goal. The first one is that they do not describe the
biochemical structure of components, the second one is due to their size.

Rule-based languages, as Kappa, supply a powerful way to describe for-
mally the knowledge we have on biological systems and allow to model their
behaviour. Any kind of modification is a completely local process so it be-
comes easy to change the behaviour of the system we want to study. The
language is close to the representation of the knowledge and for each rule
we are able to give a description in natural language. At the same time
each rule is a formal object to which we can assign a semantics. Between all
the possible choices we focus on di↵erential semantics, where each connected
component in the rules is associated to an equation describing the evolution
in time of the species concentration related to it. By means of rule-based
languages we can write compact and handy models but, sadly, the combina-
torial complexity problem appears again if we want to run a simulation of
the system. There is need for abstraction.

Abstract Interpretation has been introduced forty years ago by Patrick
and Radhia Cousot. This is a theory of sound approximation of mathemat-
ical structures. In particular it allows to formally relate semantics models
given at di↵erent precision levels. Abstract Interpretation has been being
used successfully in several areas of computer science [17], ranging among
semantics, verification and proof, model-checking, program transformation
and optimisation, typing, etc. One of its main application is static analysis
of programs. The behaviour of a program is described as the least fixpoint
of a monotonic operator F over the elements of a concrete domain D. The
abstraction changes the descriptional level of the program behaviour. This
change is performed by introducing a new abstract domain D7 with an ab-
stract operator F7 defined on it. This can be formalised in several way. The
most common approach is based on Galois connection.

In our work, we use Abstract Interpretation for several purposes.

1. We provide a generic framework to describe exact model reductions
of ODEs semantics. The solution of the reduced system is the exact
projection of the solution of the initial system and the abstraction is
formalised as a change of variables. Abstract Interpretation provides
convenient ways to define abstractions compositionally. The principle
of concepts separation allows for the design of very complex abstrac-

1.2. CASE STUDIES 3

tions as a composition of simpler ones. Following this guideline, we
propose a generic way to combine model reductions.

2. We define an abstraction based on symmetries between sites. Two sites
are defined as symmetric when they play the same role in the semantics.
For example, if we have k phosphorylation sites that are symmetric and
ps1, . . . , skq is the tuple describing their state, we can replace the tuple
with an integer n P r1, ks specifying the number of them that is phos-
phorylated and neglecting their position. We show that an equivalence
relation based on symmetries induces a bisimulation and we use this
bisimulation to reduce the dimension of the ODEs semantics.

3. We define an abstraction that tracks the information flow between dif-
ferent regions of chemical species. Our method is based on the idea
that, as described by rules, the transformations are purely local. So
instead of considering a full species we can consider just a part of that.
From this information, we can detect statically when the correlation
between the state of two sites matters for the semantics. Abstracting
away useless correlations allows us to cut species into partial species,
that we call fragments. The set of fragments defines our abstract do-
main, from we which we can derive a reduced systems.

1.2 Case studies

We begin with examining several case studies in order to facilitate intuitions
about the model reductions we aim to achieve. For the sake of simplicity,
we use reaction networks. In the following chapters, we will show how to
compute these model reductions automatically from a high level specification
in Kappa, without ever generating the underlying reaction networks.

1.2.1 A protein with independent sites

Let us start with an example from [25].

Model

We consider a simple set of reactions.

p1q A,B Ø AB kA, k
1
A

p2q A,BC Ø ABC kA, k
1
A

p3q B,C Ø BC kC , k
1
C

p4q AB,C Ø ABC kC , k
1
C

4 CHAPTER 1. INTRODUCTION

This system describes an agent B that can bind simultaneously and reversibly
to two other agents, A and C.

The first reaction states that an agent B can bind to an agent A at a
rate constant kA (direct arrow). This reaction is reversible as illustrated by
the reverse arrow and the agents can dissociate at a rate constant k1

A. The
second reaction states that a complex BC can bind to an agent A at a rate
constant kA and also that this reaction is reversible with a rate constant equal
to k1

A. The third reaction states that an agent B can bind to an agent C at a
rate constant kC and also that this reaction is reversible with a rate constant
equal to k1

C . The fourth reaction states that a complex AB can bind to an
agent C at a rate constant kC and also that this reaction is reversible with a
rate constant equal to k1

C .
Totally, six species are possible: A, B, C, AB, BC and ABC.
The behaviour of this system of reactions can be defined by the means of

the mass action principle, stating that the reactants and the products of each
reaction are consumed and produced according to the rate of this reaction.
The rate of a reaction is defined as the product between the rate constant
and the concentration of the reactants of this reaction.

For example, the rate of the second reaction, whereA bindsB, is kArAsrBs
(rAs is the traditional notation for the concentration of A, that is the amount
of As per unit volume).

So, we can write the associated system of di↵erential equations describing
the time derivative for each of the six possible species.

rAs1 “ k1
AprABs ` rABCsq ´ kArAsprBs ` rBCsq

rBs1 “ k1
ArABs ` k1

CrBCs ´ rBspkArAs ` kCrCsq
rCs1 “ k1

CprBCs ` rABCsq ´ kCrCsprBs ` rABsq
rABs1 “ kArAsrBs ` k1

CrABCs ´ rABspk1
A ` kCrCsq

rBCs1 “ kCrBsrCs ` k1
ArABCs ´ rBCspk1

C ` kArAsq
rABCs1 “ kArAsrBCs ` kCrABsrCs ´ rABCspk1

A ` k1
Cq.

We can observe that the di↵erential system is autonomous, meaning that
the time derivatives of variables do not explicitly depend on time.

Once the values of initial state and the rate constants have been fixed, it
is possible to integrate the system and to calculate the time course of each
variable.

Model reduction

By observing the set of reactions, we can see that the rate constant of the
reactions:

1.2. CASE STUDIES 5

A,B Ñ AB

and:

A,BC Ñ ABC

is equal to kA in both cases. This can be interpreted as the fact that for a
given B, its capability to bind with an A does not depend on the fact that
it is already bound to a C or not.

Analoguously, the rate constant of the reactions:

AB Ñ A,B

and:

ABC Ñ A,BC

is k1
A in both cases. This means that the capability of an A to dissociate

from a B does not depend on the fact that B is linked to a C or not.
The same way the rate constant of the reactions:

B,C Ñ BC

and:

AB,C Ñ ABC

is the same (kC), and also the one of the reactions:

BC Ñ B,C

and:

ABC Ñ AB,C

that is equal to k1
C .

So we can imagine that it is possible to split our system into two indepent
ones, where we cut B in two parts and for each part we retain only the
information about its bond to A (or to C) and we forget all the information
about the fact that is bond to C (respectively to A) or not.

The two subsystems are shown in Figure 1.1.
For the moment, let us consider just the subsystem on the left (where we

forget the information about C). We introduce two new variables: rAB?s
to denote the total concentration of AB and ABC, rB?s to denote the total
concentration of B and BC. More specifically:

rAB?s :“ rABs ` rABCs
rB?s :“ rBs ` rBCs.

6 CHAPTER 1. INTRODUCTION

B

A C

A

B

C

B

Figure 1.1: The original system is split into two independents subsystems.

So in our subsystem we will have three di↵erent “species”: A, B? and AB?.
We can write the following di↵erential system to describe the time deriva-

tive of our new species:

rAs1 “ k1
ArAB?s ´ kArAsrB?s

rAB?s1 “ rABs1 ` rABCs1 “ kArAsrB?s ´ k1
ArAB?s

rB?s1 “ rBs1 ` rBCs1 “ k1
ArAB?s ´ kArAsrB?s.

In the same way it is possible to write a di↵erential system of equations also
for the subsystem showed on the right of Figure 1.1. There we will introduce
the two following new variables:

r?BCs :“ rBCs ` rABCs
r?Bs :“ rABs ` rBs

and obtain the following system of di↵erential equations:

rCs1 “ k1
Cr?BCs ´ kCrCsr?Bs

r?BCs1 “ rBCs1 ` rABCs1 “ kCrCsr?Bs ´ k1
Cr?BCs

r?Bs1 “ rBs1 ` rABs1 “ k1
Cr?BCs ´ kCrCsr?Bs.

1.2. CASE STUDIES 7

Dependence index

The example shows us that it is possible to exploit structural features of a
given di↵erential system to infer specific linear combinations of its variables
with a self-consistent dynamics.

Now we wonder if, once that we have split the original system into two
separated ones, we are able to recover the original information. To this
purpose we introduce a new variable:

r?B?s “ r?Bs ` r?BCs “ rB?s ` rAB?s
to denote the total concentration of B.

So:

1.
rABCs
r?B?s gives the proportion of Bs with both an A and a C attached,

2.
rAB?s
r?B?s gives the proportion of Bs with an A attached,

3.
r?BCs
r?B?s gives the proportion of Bs with a C attached.

The fact that a protein B is bound to A is independent from the fact that
it is bound to C if, and only if, the first expression is the product of the two
following ones. That is to say:

rABCs
r?B?s “ rAB?s

r?B?s ¨ r?BCs
r?B?s .

This is equivalent to:

rABCs ¨ r?B?s “ rAB?s ¨ r?BCs
and to:

rABCs
r?BCs “ rAB?s

r?B?s .

That is to say that the probability of B to be linked with A knowing that it
is bound to C is equal to the probability of B to be linked with A knowing
nothing about C.

By this equation we can define a dependence index � as follows:

� :“ rABCs ¨ r?B?s ´ rAB?s ¨ r?BCs,

8 CHAPTER 1. INTRODUCTION

and after a computation we obtain:

d�

dt
“ ´�pkArAs ` kCrCs ` k1

A ` k1
Cq.

So the property:

rABCs “ rAB?s ¨ r?BCs
r?B?s

is an invariant of the system, if it hold at time t, it holds at any time t1 • 0.

1.2.2 A protein with information flow

Now we present a second example. This model is a particular instance of a
generic example that can be found in [6]. This generic example describes a
protein in which several sites, called master sites, control the behaviour of
some other sites, that we call subordinate. In such a case, we say that there
is a flow of information from the master sites to the subordinate sites. In
this section, we focus to the case when there is only one master site and two
subordinate sites, but our framework can deal with any number of master
sites and any number of subordinate sites.

Model

Now we assume that we have a protein with three sites. We denote a protein
as a tuple of symbols among p and u. p denotes a phosporylated site, whereas
u denotes an unphosporylated one. So, for instance, a protein that has all
its three sites phosporylated is denoted as pp, p, pq.

Our system is fully described by the following set of reactions.

p1q pu, u, uq Ñ pu, p, uq kc
p2q pu, p, uq Ñ pp, p, uq kl
p3q pu, p, pq Ñ pp, p, pq kl
p4q pu, p, uq Ñ pu, p, pq kr
p5q pp, p, uq Ñ pp, p, pq kr

The set describes a system where, in a protein that has all the sites not
activated, the first one to be activated is the central one (as asserted by
the first reaction). Once that a protein has the central site activated it can
activate also the left and the right ones.

The first reaction states that a protein with no site activated can activate
the central one with a rate constant equal to kc. The second rule states that
a protein which has the central site activated can activate the left one with

1.2. CASE STUDIES 9

a rate constant equal to kl. The third rule states that a protein which has
the central and the right site activated can activate the left one with a rate
constant equal to kl. The fourth rule states that a protein which has the
central site activated can activate the right one with a rate constant equal
to kr. The fifth rule states that a protein which has the central and the left
site activated can activate the right one with a rate constant equal to kr.

Model reduction

We can notice that the rate constants of the reactions:

pu, p, uq Ñ pp, p, uq
and:

pu, p, pq Ñ pp, p, pq
are both equal to kl.

This suggests us that the capability of the left site to be activated does
not depend on the fact that the right site is activated or not.

The same way, the rate constants of the reactions:

pu, p, uq Ñ pu, p, pq
and:

pp, p, uq Ñ pp, p, pq
are both equal to kr.

This suggests us that the capability of the right site to be activated does
not depend either on the fact that the left site is activated or not. As before,
we can imagine to split our system into two smaller ones as showed by Figure
1.2.

We introduce two new variables for the subsystem on the left:

rpu, p, ?qs :“ rpu, p, uqs ` rpu, p, pqs,
rpp, p, ?qs :“ rpp, p, uqs ` rpp, p, pqs

and two new variables for the subsystem on the right:

rp?, p, uqs :“ rpu, p, uqs ` rpp, p, uqs, rp?, p, pqs :“ rpu, p, pqs ` rpp, p, pqs.
We can compute the dynamic of the new subsystem and, for the one on

the left, we obtain:

rpu, u, uqs1 “ ´kcrpu, u, uqs,
rpu, p, ?qs1 “ ´klrpu, p, ?qs ` kcrpu, u, uqs,
rpp, p, ?qs1 “ klrpu, p, ?qs.

10 CHAPTER 1. INTRODUCTION

c

rl

c

rl

c

rl

Figure 1.2: The original system is split into two independents subsystems.

Whereas for the one on the right we get:

rpu, u, uqs1 “ ´kcrpu, u, uqs
rp?, p, uqs1 “ ´krrp?, p, uqs ` kcrpu, u, uqs
rp?, p, pqs1 “ krrp?, p, uqs.

Dependence index for the second example

As in the previous example, we wonder if, once that we have split the original
system into two separate ones, we are able to recover the original information.
Again we introduce a new variable:

rp?, p, ?qs :“ rp?, p, uqs ` rp?, p, pqs “ rpu, p, ?qs ` rpp, p, ?qs.
p?, p, ?q denotes a protein that has the central site phosphorylated, but of
which we ignore the status of the left and right sites.

The states of the left site and the right one will be independent if, and
only if, the probability that the right site is activated knowing that the left

1.2. CASE STUDIES 11

site is activated will be equal to the probability that the right site is activated
knowing nothing about the left site, that is:

rpp, p, pqs
rpp, p, ?qs “ rp?, p, pqs

rp?, p, ?qs .

By this equation we can define a dependence index � as follows:

� :“ rpp, p, pqs ¨ rp?, p, ?qs ´ rp?, p, pqs ¨ rpp, p, ?qs
and after a computation we get:

d�

dt
“ ´� ¨ pkl ` krq ` kc ¨ rpp, p, pqs ¨ ru, u, us.

So the property � “ 0 is not an invariant of the system. This suggest that
we can split the system into two subsystems, but we cannot recombine the
system without errors, in a time independent way.

1.2.3 A protein with symmetries

The first two examples we have seen so far exploit the same kind of idea to
reduce a model. They are based on the fact that whenever the correlations, if
any, between di↵erent parts of the system have an influence on the behaviour
of no other site, it is possible to abstract these correlations away. Which
means intentionally that we can split proteins into independent subparts.

Another kind of phenomenon that may appear, and that we can use to
reduce a system, is the one of “redundancy”. We can have a system with
several parts that represent the same kind of information and capabilities,
so we can collapse all these di↵erent parts in only one and taking in account
the cardinality.

Model

For a better understanding, let us have a look to a concrete example. The
system showed in Figure 1.3 describes the behaviour of a protein with three
sites px1, x2, yq. More specifically:

- reactions 1 ´ 4 describe the phosporylation of the site x1;

- reactions 5 ´ 8 describe the phosporylation of the site x2;

- reactions 9 ´ 12 describe the phosporylation of the site y.

12 CHAPTER 1. INTRODUCTION

p1q pu, u, uq Ñ pp, u, uq km

p2q pu, u, pq Ñ pp, u, pq km

p3q pu, p, uq Ñ pp, p, uq km

p4q pu, p, pq Ñ pp, p, pq km

(a) Phosphorylation of x1.

p5q pu, u, uq Ñ pu, p, uq km

p6q pu, u, pq Ñ pu, p, pq km

p7q pp, u, uq Ñ pp, p, uq km

p8q pp, u, pq Ñ pp, p, pq km

(b) Phosphorylation of x2.

p9q pu, u, uq Ñ pu, u, pq k0

p10q pu, p, uq Ñ pu, p, pq k1

p11q pp, u, uq Ñ pp, u, pq k1

p12q pp, p, uq Ñ pp, p, pq k2

(c) Phosphorylation of y.

Figure 1.3: A model with symmetric sites.

Model reduction

As we can observe, the activation rate constant of x1 and x2 is the same: km.
Moreover, the activation rate constant of y changes according to the number
of the sites xi that are phosporylated (it is equal to k0 when both x1 and x2

are unphosporylated, to k1 when just one of them is phosporylated, and to
k2 when they are both phosporylated).

This peculiarity can be used to reduce our model. The idea is to for-
get about which sites xi are phosporylated and to remember just how many
phosporylated sites we have. When two or more sites have the same capa-
bility of interaction, as x1 and x2 in our case, we define them symmetric.
This equivalence relation over sites can be lifted to an equivalence relation
„ over proteins, so we say that two proteins are „-equivalent if the number
of phosphorylated sites among x1 and x2 is the same for both proteins.

In our case we have the following equivalence classes over states:

paq pu, p, uq „ pp, u, uq
pbq pu, p, pq „ pp, u, pq,

and the original system is equivalent to the following reduced one:

p1q pu, u, uq Ñ pp, u, uq 2km
p2q pu, u, pq Ñ pp, u, pq 2km
p3q pp, u, uq Ñ pp, p, uq km
p4q pp, u, pq Ñ pp, p, pq km
p5q pu, u, uq Ñ pu, u, pq k0
p6q pp, u, uq Ñ pp, u, pq k1
p7q pp, p, uq Ñ pp, p, pq k2.

Where:

- reaction 1 describes the activation of one site xi (i P t1, 2u) in a protein
where all sites are unphosporylated;

1.2. CASE STUDIES 13

- reaction 2 describes the activation of one site xi in a protein where all
the sites xi are unphosporylated the site y is phosporylated;

- reaction 3 describes the activation of a site xi in a protein where the
other site xj is phosporylated and the site y is unphosporylated;

- reaction 4 describes the activation of a site xi in a protein where the
other site xj is phosporylated and the site y is phosporylated too;

- reaction 5 describes the activation of the site y where no site xi is
phosporylated;

- reaction 6 describes the activation of the site y in a protein that has
one site xi phosporylated;

- reaction 7 describes the activation of the site y in a protein where all
the sites xi are phosporylated.

So we partitioned the set of reachable configurations for the protein X into
pm ` 1q2n„-equivalence classes, where, in our case, m “ 2 and n “ 1. From
this, we have been able to pass from an original set of twelve reactions to a
simplified one with just seven reactions.

1.2.4 A protein with information flow and symmetries

The two kinds of model reduction that we have seen respectively in Sections
1.2.1 and 1.2.2, and in Section 1.2.3 can be combined. Let us introduce an
example to illustrate this.

We consider two kinds of agents, P and X. Instances of P denotes phos-
phate ions, whereas instances of X denote copies of a given protein. We
assume that each protein X has two kinds of sites:

• m sites x1, .., xm;

• n sites y1, .., yn;

where m and n are two integer parameters of the model.
We assume that each site can recruit at most one phosphate ion P and,

then, dissociate from it.
The state of a protein A is denoted as an (ordered) tuple of symbols

among tu, pu. The symbol u indicates an unphosphorylated site, whereas
the symbol p indicates a phosphorylated one. For example, if m “ 2 and
n “ 1, a protein X having the sites x1 and y1 phosphorylated and the site
x2 unphosphorylated is denote by Xrp, u, ps.

14 CHAPTER 1. INTRODUCTION

P `Xru, u, us Ø Xrp, u, us
P ` Xru, u, ps Ø Xrp, u, ps
P ` Xru, p, us Ø Xrp, p, us
P ` Xru, p, ps Ø Xrp, p, ps

(a) Phosphorylation and
dephosphorylation of the
first site.

P `Xru, u, us Ø Xru, p, us
P ` Xru, u, ps Ø Xru, p, ps
P ` Xrp, u, us Ø Xrp, p, us
P ` Xrp, u, ps Ø Xrp, p, ps

(b) Phosphorylation and
dephosphorylation of the
second site.

P `Xru, u, us Ø Xru, u, ps
P ` Xru, p, us Ø Xru, p, ps
P ` Xrp, u, us Ø Xrp, u, ps
P ` Xrp, p, us Ø Xrp, p, ps

(c) Phosphorylation and
dephosphorylation of the
third site.

Figure 1.4: Chemical reactions for m “ 2 and n “ 1.

We assume that the sites x1, .., xm can all be phosphorylated at the same
rate constant k. This means that for each integer i between 1 and m the
phosphorylation of the site xi does not depend on the phosphorylation state
of the other sites. Moreover, we also assume that for every integer j between
1 and n, the phosphorylation of the site yj depends both on the index j and
on the number of sites among x1, .., xm which are currently phosphorylated
in the protein X. The rate constant of activation of the site yj in a protein
X which have exactly i sites among x1, .., xm activated is denoted by kj,i.
Lastly, we assume that every phosphorylated site can be unphosphorylated
at the same rate constant kd.

In Figure 1.4 we show the set of reactions for the model with parameters
m “ 2 and n “ 1.

In the general case, there are 2m`n reachable configuration for the protein
X. Thus, when m`n gets big, we can no longer enumerate chemical species,
nor reactions, and the integration of the di↵erential semantics is impossible
due to combinatorial complexity. We notice that we can use symmetries
among the sites x1, .., xm so as to reduce the dimension of the semantics.
Indeed, what is important is how many sites xi of the protein are phospho-
rylated and not which of these sites are phosphorylated. Thus we propose
to ignore any distinction between them. In this way, the set of reachable
configurations for the protein X is partitioned into pm ` 1q2n „-equivalence
classes. A simplified set of reactions can be proposed, by choosing a repre-
sentative among each „-equivalence class. Indeed, up to updating reaction
rate constants, we may assume that the sites x1, .., xm are always phospho-
rylated in increasing order, and dephosphorylated in decreasing order. In
Figure 1.5 we show the set of the so obtained simplified reactions (for m “ 2
and n “ 1). We can notice that whenever the sites x1 and x2 are both un-
phosphorylated, only the site x1 can be phosphorylated (with a rate twice as
big as in the initial reaction) and that whenever the sites x1 and x2 are both
phosphorylated, only the site x2 can be dephosphorylated (at a rate constant
twice bigger than in the initial reaction).

1.2. CASE STUDIES 15

P `Xru, u, us Ø Xrp, u, us
P ` Xru, u, ps Ø Xrp, u, ps

(a) Phosphorylation and
dephosphorylation of the
first site.

P ` Xrp, u, us Ø Xrp, p, us
P ` Xrp, u, ps Ø Xrp, p, ps

(b) Phosphorylation and
dephosphorylation of the
second site.

P `Xru, u, us Ø Xru, u, ps
P ` Xrp, u, us Ø Xrp, u, ps
P ` Xrp, p, us Ø Xrp, p, ps

(c) Phosphorylation and
dephosphorylation of the
third site.

Figure 1.5: Simplified chemical reactions for m “ 2 and n “ 1.

This reduced system can be refined further by noticing that the behaviour
of each site yj is only controlled by the state of the sites xi (when the integer
i ranges among 1 and m). As a consequence, we can safely cut each protein
into n parts, each one documenting the state of only one site yj and the state
of every site xi. As a result, we obtain a self-consistent di↵erential equations
made of 2pm ` 1qn variables (instead of 2m`n in the initial model).

1.2.5 Conclusive remarks

We have described four examples where we have been able to reduce the
dimension of the underlying systems of ODEs.

In the two first ones we have been able to split the original system into
two independent ones, by exploiting a lack of flow of information between
some sites. More specifically, in the first example we got two independent
subsystems. The transformation is invertible and we are able to recover the
concentration of any species. This is a strong property which is hard to prove
and which is hardly ever satisfied. In the second example we obtained two
self-consistent subsystems. There we abstracted away some information and
we are not able to recover the concentration of any species any longer. This
reduction is based on a weaker property, that we are more likely to encounter
in realistic models.

In the third example we exploited another kind of property. We observed
that some sites exhibit the same capabilities so we can forget about their
position and consider just their cardinality. Unlike the two first examples,
we do not cut the species, but still we carry less information about them.

In the fourth example, we showed that it is possible to combine the re-
ductions that are based on the lack of information flow and the ones that are
based on symmetries.

By these examples we showed that it is possible to exploit structural
features of a given di↵erential system to identify a set of macro-variables,
i.e. a specific combination of the system variables, that have a self-consistent
dynamic. In the rest of the thesis we will show also how this can be done in the

16 CHAPTER 1. INTRODUCTION

case where the dynamic is described by rules, and not just by reactions. As we
will see, working with rules as a big advantage. In fact it is possible to exploit
the high level of description o↵ered by the rules, so as to derive directly the
reduction from the rules without having to ever explicitly consider the ground
set of corresponding reactions.

1.3 Overview

1.3.1 Kappa

Kappa is a formal language based on site graph rewriting. Proteins are
typically denoted by agents. The properties of a given agent are expressed
by some sites that may carry an internal state. Moreover, potential links
between proteins are specified by bonds between agent sites. Interactions
between sites are described by the means of rules. These rules are context-
free, which means that there is no need to describe the whole state of each
chemical species, but only the information that matters to trigger or to tune
the speed of the interaction.

For example, a rule of the form:

A

1

pbq, B
2

paq Ñ A

1

pbB2@aq, B
2

paA1@bq

describes how the proteins A and B bind together. This can happen when
the site b in A and the site a in B are both free. In the rule, there is no need
to consider the sites of the proteins the state of which has no influence on the
reaction. For instance, we may assume (as in the example of Section 1.2.1)
that the protein B has another site that can bind to a protein C and that
this potential bond does not influence the capability of B to bind with A.
Under this assumption, our rule is a symbolic representation for the following
set of reactions:

p1q A,B Ñ AB,
p2q A,BC Ñ ABC.

Kappa is formally introduced in Chapter 3. There we describe the e↵ect
of applying a rule to a pattern. This is used to define the set of reactions
induced by a set of Kappa rules. Then we introduce the di↵erential semantics
of a Kappa model as the solution of the set of di↵erential equations that
are obtained by applying the principle of mass action. This construction is
required to state and prove the soundness of our analyses. Yet we will never
compute e↵ectively neither the underlying set of reactions, nor the set of
di↵erential equations.

1.3. OVERVIEW 17

In Chapter 5, we show that we can factor the consumption and the pro-
duction of a given pattern as an expression of other patterns. It is worth
noting that we deal faithfully with potential side e↵ects, i.e. transformations
that are not explicitly described by the rules (for instance, in the case we
delete an agent without checking that all of its sites are free).

1.3.2 Symmetries based reduction

Some biological systems exhibit proteins with sites having the same capabil-
ities of interaction. For example, a protein can have several phosphorylation
sites, but the only relevant information is given by the number of them that
are phosphorylated and not what is their position. We define this kind of
sites as symmetric. Roughly speaking, we say that two sites x and y are
symmetric for a system of rules R if any potential interaction with the site
x can be done with the site y instead, and at the same rate constant.

This notion is formalised in Chapter 4. There we introduce an operation
of transposition that permutes the state of sites in agent instances. Then this
operation is lifted to the level of patterns, rules, agent matchings, pattern
embeddings and transition labels. It follows that our notion of symmetry is
compatible with the operational semantics: it induces a bisimulation.

Bisimulations [43] are an established form of equivalence for transition
systems. Here we use a quantitative version of bisimulation that accounts
for ODEs semantics. Given two systems, a bisimulation is a couple of equiv-
alence relations between their states and their transitions. A system with
symmetries is equivalent to a reduced system where the states are lumped
according to their equivalence classes.

1.3.3 Context-insensitive flow analysis

In computations, the final value of a variable x may depend on the initial
value of a variable y. This is captured by the notion of information flow [1].
In our specific example we say that the variable y flows into x. When a
variable x flows in n variables y1, . . . , yn we face to a potential correlation.
Symmetrically, when n variables y1, . . . , yn flow in a single variable z, the
correlation among y1, . . . , yn may constrain the behaviour of the variable z.

In Chapter 6 we propose a method to over-approximate all useful correla-
tions. The result is a linear change of variables which reduces the dimension
of the initial semantics. The reduced system is computed directly at the
level of rules and we do not need any e↵ective computation of the original
one. Given a set of species and a set of rules we firstly compute a symbolic
representation of all the possible species. We call this representation contact

18 CHAPTER 1. INTRODUCTION

map. Then, scanning rule by rule, we annotate the contact map with some
information between the sites that are tested and sites that are modified.
This annotation induces a set of patterns, that we call fragments. Roughly
speaking, fragments are patterns that are obtained by starting from a single
site and extending the pattern by following the information flow backward.
That is to say that a fragment describes only the states of the sites that im-
pact the behaviour of the starting site. By construction, we can prove that
the consumption and the production of every fragment can be expressed as
an expression of the concentration of the other fragments.

1.3.4 Context-sensitive flow analysis

The analysis in Chapter 6 is context-insensitive. It gathers all the information
about the sites of each protein in a single node, regardless the state of its
sites.

Between a concrete representation of a set of species and the one that
is based on the contact map, there are several intermediate representations.
We show that it is possible to tune the description of the information flow by
changing the level of representation. In Chapter 7, we introduce ⌃-graphs
to generalise the concept of contact map. In ⌃-graphs, each kind of agent
may occur several times, which enables to refine the annotation of the flow
of information according to di↵erent contextual conditions.

In Chapter 8, we show how to abstract the flow of information at di↵erent
levels of resolution with respect to the choice of a ⌃-graph and we extend
the definition of fragments accordingly. We notice that, in this more general
setting, the constraints on the flow of information are not enough to ensure
the self-consistency of the fragments. Indeed, we notice that the soundness of
our approach relies on the fact that the grain of resolution in the abstraction
of the reactants of a reaction should always be at least as refined as the one of
the products of this reaction: this is the principle of backward compatibility.
We propose a closure operator about the annotations of ⌃-graphs, which
computes the least annotation that is backward compatible. As a result, we
get a sound annotation of arbitrary ⌃-graphs, that induces self-consistent
sets of fragments.

Our method is a kind of partitioning [7], a generic method for refining
abstractions.

1.4. RELATED WORKS 19

1.4 Related works

1.4.1 Bisimulation

In [9] is proposed a notion of bisimulation for weighted labeled transition
systems. It is shown that it is possible to reduce them by merging individual
states into equivalence classes while the behaviour of the complete automaton
is preserved. Our notion of bisimulation is induced by an equivalence on
variables, so less general. Yet, we do this restriction in order to have means
to discover e�ciently these bisimulations. The framework presented in [9]
provides a very general definition of bisimulation, but this is not clear how
to find these bisimulations in practice.

In [13], equivalence relations among variables are used to induce bisimu-
lations also in the context of reaction networks. Indeed the characterisation
of the most general bisimulation that can be expressed this way is provided,
as well as an e↵ective algorithm to compute it. Yet, the models we address
in this thesis are highly combinatoric and they usually cannot be described
compactly as a reaction network. Thus, the approach that is proposed in [13]
does not scale for our purpose. In [44], a more general framework to discover
linear changes of variables in reaction networks is proposed. The same prob-
lem of scalability persists.

In [12], it is shown how to relate two reaction networks, automatically,
by the means of a bisimulation induced by an equivalence relation over the
variables of the system. Even this method needs the computation of the
reaction networks and su↵ers from the same problems of scalability.

The concept of bisimulation is highly related to the one of lumpability [8].
A Markov chain is lumpable with respect to a given aggregation (quotienting)
of its states, if the lumped chain preserves the Markov property. The relation
between lumpability and bisimulation is studied in [29].

1.4.2 Information flow

Dependencies between sites and reactions have been used in systematic meth-
ods for (hand-)writing coarse-grained models. In [6] it is showed, by exam-
ples, that a mechanistic reduction of the system can by computed using
hierarchical control relationships between sites. In [15] a reduced model is
written directly from the so called control graph, characterising the informa-
tion flow. However these methods are not automated (there is no semantics)
and su↵er from combinatorial blow up in the case of chains of agents and
site modifications that propagate through bindings [16]. This problem can
be solved by neglecting some species but then the dynamics of the system is

20 CHAPTER 1. INTRODUCTION

not preserved. The framework in [5], for automatically reducing the ODEs of
protein networks, su↵ers from the same lack of soundness when site modifi-
cations propagate through bindings. Our approach deals e�ciently with this
case: even in the case of site modifications that propagate through bindings,
we capture just enough information to ensure soundness, but few enough
information to ensure scalability.

Our context-insensitive information flow analysis improves and extends
the fully context insensitive ones that have been proposed in [25, 28]. There
the species are cut in a homogeneous way just according to a type informa-
tion. It is worth noting that in [28] it is considered a set of 71 rules expanding
into 18 051 984 143 555 729 567 species that is reduced into 175 988 frag-
ments. Our analysis is a strict improvement of the one presented there.

[36] proposes a fully context sensitive analysis where the abstraction of
the information flow is done on the concrete, thanks to a direct interaction on
molecular species. Then a self consistent change of variables is computed by
saturation. Moreover, it applies on pure Kappa only (without side e↵ects).
Our framework provides a full span of intermediary abstractions and accounts
for side e↵ects.

1.4.3 Stochastics semantics

Reduced models have been proposed also for stochastics semantics. In [30],
stochastics fragments are proposed to track the flow in CTMCs models. The
reduction is not very impressive. This is due to the fact that more potential
correlations become meaningful in a stochastic setting.

In [39, 40], it is shown that the di↵erential semantics is the expected
behaviour of the stochastic one when both the initial mixture size and the
volume diverge with a constant ratio. In this case, ground refinements with
lower arities, corresponding to epis which do not preserve the number of
components, are negligible anyway.

1.4.4 Other model reduction

Other kinds of reduction have been studied. In [32], it is proposed a com-
parison between models based on topological properties. The perspective is
more on explaining which transformations are necessary to go from a model
to another one, regardless of quantitave properties.

Concentrations and time-scales separation plays a very important role in
model reduction. The framework in [34, 45] applies concentration and time-
scales separation to reduce linear reaction networks. The reduced system is
build on the base of a dominant kinetic system over the constant rate of the

1.5. OUTLINE 21

original one. Tropicalisation [46,47] permits to generalise these approaches to
arbitrary systems of ODEs. Those methods rely on a solid physical justifica-
tion. Yet, they perform numerical approximations without providing explicit
bounds on the accumulated errors. There are valid under the asymptotic
assumption that fast reactions are infinitely quicker than slow one. In [3],
these methods are applied to Kappa models but no proof of soundness is
given.

In [41, 42], the authors use time-scale separation to reduce models of
metabolic networks. They rely on the fact that some species always reach a
fast equilibrium, to replace their transient concentration, by their concentra-
tion at equilibrium.

1.5 Outline

In Chapter 2, we describe a generic framework to define and reduce di↵eren-
tial semantics for systems of ODEs. We also explain how to combine di↵erent
kinds of model reduction. In Chapter 3, we introduce Kappa. We define its
syntax, semantics and we show how the consumption and the production
of species can be expressed directly at the level of rules. In Chapter 4, we
propose a framework that exploits symmetries between sites, showing how a
relation based on sites having the same capabilities of interaction induces a
bisimulation. In Chapter 5, we show how to express the consumption and the
production of patterns as an expression of the concentration of other patterns.
In Chapter 6, we show how to construct an abstract semantics tracking the
flow of information between di↵erent regions of chemical species. In Chapter
7, we introduce ⌃-graphs as a means to describe relations among the sites of
species, at di↵erent levels of resolution. In particular we study structure pre-
serving functions to build correspondences between ⌃-graphs and between
relations on their respective sites. In Chapter 8, we study a framework to
tune the analysis accordingly to a context and we supply a way to find smaller
reduced di↵erential models.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Reduction of di↵erential
semantics

In this chapter we describe a generic framework to define and reduce dif-
ferential semantics. A first version of this framework has been introduced
in [25, 28]. We have extended this framework in [10,11].

2.1 Concrete semantics

Let V be a finite set. Maps from V to R form a normed vector space with
the norm } ¨ } that is defined as follows:

}⇢} :“ maxXPV |⇢pXq|
where, for every real number x, |x| denotes the absolute value of x.

For U a subset of V Ñ R, we define }U} “ sup⇢PU}⇢} § `8. If V is a
set of species and ⇢pXq the concentration of the species X, then }⇢} controls
the total number (per unit volume) of species in the system. A map ⇢ such
that for all X P V , ⇢pXq • 0 is called a state.

Let V be a set of variables. We define a state over V as a mapping ⇢ from
V to R such that:

⇢paq • 0 for all a P V .

We define an autonomous system as a pair pV ,Fq, where V is a finite set
of variables and F is a continuously di↵erentiable function from V Ñ R to
V Ñ R.

Example 2.1.1. We illustrate this definition on the case study of Section
1.2.1. Following the principle of mass action law, the reactions:

23

24 CHAPTER 2. REDUCTION OF DIFFERENTIAL SEMANTICS

p1q A,B Ø AB kA, k
1
A

p2q A,BC Ø ABC kA, k
1
A

p3q B,C Ø BC kC , k
1
C

p4q AB,C Ø ABC kC , k
1
C .

are inducing the following system of di↵erential equations:

rAs1 “ k1
AprABs ` rABCsq ´ kArAsprBs ` rBCsq

rBs1 “ k1
ArABs ` k1

CrBCs ´ rBspkArAs ` kCrCsq
rCs1 “ k1

CprBCs ` rABCsq ´ kCrCsprBs ` rABsq
rABs1 “ kArAsrBs ` k1

CrABCs ´ rABspk1
A ` kCrCsq

rBCs1 “ kCrBsrCs ` k1
ArABCs ´ rBCspk1

C ` kArAsq
rABCs1 “ kArAsrBCs ` kCrABsrCs ´ rABCspk1

A ` k1
Cq.

This system of di↵erential ordinary equations can be described as an au-
tonomous system pV ,Fq where:

- V :“ tA,B,C,AB,BC,ABCu;

- F :“

$
’’’’’’’’’’’’’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’’’’’’’’’’’’’%

RV Ñ RV

⇢ fiÑ

$
’’’’’’’’’’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’’’’’’’’’’%

V Ñ R
A fiÑ k1

Ap⇢pABq ` ⇢pABCqq
´kA⇢pAqp⇢pBq ` ⇢pBCqq

B fiÑ k1
Cp⇢pBCq ` ⇢pABCqq

´kC⇢pCqp⇢pBq ` ⇢pABqq
C fiÑ k1

A⇢pABq ` k1
C⇢pBCq

´⇢pBqpkA⇢pAq ` kC⇢pCqq
AB fiÑ kA⇢pAq⇢pBq ` k1

C⇢pABCq
´⇢pABqpk1

A ` kC⇢pCqq
BC fiÑ kC⇢pBq⇢pCq ` k1

A⇢pABCq
´⇢pBCqpk1

C ` kA⇢pAqq
ABC fiÑ kA⇢pAq⇢pBCq ` kC⇢pABq⇢pCq

´⇢pABCqpk1
A ` k1

Cq.

By the Cauchy-Lipschitz theorem [37], for any state ⇢0 over V , the system
of equations: #

⇢1ptq “ Fp⇢ptqq
⇢p0q “ ⇢0

2.2. EXACT REDUCTION 25

has a unique maximal di↵erentiable solution: f⇢0 : r0, T⇢0q Ñ pV Ñ Rq, with
T⇢0 § `8.

The concrete semantics of the system pV ,Fq is the mapping JV ,FK which
associates the unique maximal di↵erentiable solution f⇢0 to each state ⇢0
over V (in this context, ⇢0 is called the initial state). An autonomous system
pV ,Fq is said to be positive if, and only if, for any state ⇢0 over V and any
t P r0, T⇢0q, f⇢0ptq is a state over V as well.

It is worth noting that any autonomous system that is defined by the
means of the mass action law principle is positive.

2.2 Exact reduction

Starting from a positive autonomous di↵erential system, we want to define
a specific notion of linear reduction for it. To do this we recur to ideas from
Abstract Interpretation, a general framework to approximate the semantics
of programs [18]. This way, the notion of system reduction that we use
can be seen as an abstraction map, that is a transformation from a concrete
state space to an abstract one. For us, the concrete state space is given by
the set of species concentrations, whereas the abstract one is given by the
concentrations of some abstract observables.

If we consider two sets V and V 7, a map from V Ñ R to V 7 Ñ R is:

- positive if for all ⇢ • 0, p⇢q • 0;

- expansive if for all subset U of V Ñ R`, } pUq} † `8 implies }U} †
`8.

We write : RA(RB whenever is a linear positive expansive map from
the normed vector space RA to the normed vector space RB.

We define a model reduction as a tuple pV ,F,V 7, ,F7q where:

• the pair pV ,Fq is an autonomous system,

• V 7 is a (finite) set of abstract variables,

• is a linear positive expansive map from pV Ñ Rq to pV 7 Ñ Rq,

• F7 a continuously di↵erentiable function from pV 7 Ñ Rq to pV 7 Ñ Rq,

and such that the following diagram commutes:

26 CHAPTER 2. REDUCTION OF DIFFERENTIAL SEMANTICS

RV7 RV7

RV RV

˝

˝

//F7

//F

Since is positive we have that (concrete) states are mapped to (abstract)
states.

Example 2.2.1 (continued). Keeping on with the example of Section 1.2.1,
the autonomous system pV ,Fq can be completed into a model reduction as
follows.

The set of observables V 7 is defined as tA,AB?, B?, C, ?BC, ?Bu. The
concentration of these observables is defined by the following constraints:

rAB?s “ rABs ` rABCs
rB?s “ rBs ` rBCs
r?BCs “ rBCs ` rABCs
r?Bs “ rBs ` rABs

which can be formalised by the following abstraction function :

 :

$
’’’’’’’’’’’’’&

’’’’’’’’’’’’’%

RV Ñ RV7

⇢ fiÑ

$
’’’’’’’’’’’&

’’’’’’’’’’’%

V Ñ R
A fiÑ ⇢pAq

AB? fiÑ ⇢pABq ` ⇢pABCq
B? fiÑ ⇢pBq ` ⇢pBCq
C fiÑ ⇢pCq

?BC fiÑ ⇢pBCq ` ⇢pABCq
?B fiÑ ⇢pABq ` ⇢pBq.

The behaviour of the observables is defined by the following equations:

rAs1 “ k1
ArAB?s ´ kArAsrB?s

rAB?s1 “ kArAsrB?s ´ k1
ArAB?s

rB?s1 “ k1
ArAB?s ´ kArAsrB?srCs1 “ k1

Cr?BCs ´ kCrCsr?Bs
r?BCs1 “ kCrCsr?Bs ´ k1

Cr?BCs
r?Bs1 “ k1

Cr?BCs ´ kCrCsr?Bs.

These equations can be encoded in the function F7 that is defined as fol-

2.2. EXACT REDUCTION 27

lows:

F7 :

$
’’’’’’’’’’’’’&

’’’’’’’’’’’’’%

RV7 Ñ RV7

⇢7 fiÑ

$
’’’’’’’’’’’&

’’’’’’’’’’’%

V 7 Ñ R
A fiÑ k1

A⇢
7pAB?q ´ kA⇢

7pAq⇢7pB?q
AB? fiÑ kA⇢

7pAq⇢7pB?q ´ k1
A⇢

7pAB?q
B? fiÑ k1

A⇢
7pAB?q ´ kA⇢

7pAq⇢7pB?q
C fiÑ k1

C⇢
7p?BCq ´ kC⇢

7pCq⇢7p?Bq
?BC fiÑ kC⇢

7pCq⇢7p?Bq ´ k1
C⇢

7p?BCq
?B fiÑ k1

C⇢
7p?BCq ´ kC⇢

7pCq⇢7p?Bq.
The following theorem holds.

Theorem 2.2.2 (Soundness). Let pV ,F,V 7, ,F7q be a model reduction. Let
⇢0 be an initial state over V. We denote as f : r0, T q Ñ RV the maximal
solution of the autonomous system pV ,Fq with initial condition fp0q “ ⇢0
and as f 7 : r0, T 7q Ñ RV7

the maximal solution of the autonomous system
pV 7,F7q with initial condition f 7p0q “ p⇢0q.

With these notations, we have: T “ T 7 and f 7 “ ˝ f .

Proof. Since f is di↵erentiable on r0, T q and because is linear, the function
 ˝ f is diferentiable on r0, T q.

Moreover, for t † T , one has:

p ˝ fq1ptq “ pf 1ptqq
“ pFpfptqqq
“ F7p pfptqqq

because is linear, f is a solution of F and ˝ F “ F7 ˝ by assumption.
Hence ˝ f is di↵erentiable on r0, T q, and it is the (unique) solution of the
autonomous system pV 7,F7q for the initial condition p⇢0q on r0, T q. In other
words, on r0, T q we have ˝ f “ f 7. It follows that T § T 7. But, in fact,
T “ T 7. To see this, suppose T † 8, then }fptq} diverges as t tends to T
and being expansive, so does } pfptqq}.

It follows from Theorem 2.2.2 that if the system pV ,Fq is positive, then
the system pV 7,F7q is positive as well.

The reduction guarantees that:

1. trajectories of abstract variables can be computed directly in the ab-
stract without loss of information;

28 CHAPTER 2. REDUCTION OF DIFFERENTIAL SEMANTICS

2. positivity is preserved;

3. the life-time of the system is also preserved.

This way, our reduction not only preserves the value of the observables, but
also the life-time of the initial model. We do not consider, as a valid model
reduction, a change of variables that may lose a vertical asymptote. This
situation can be compared to what happens with program slicing. With
syntactic program slicing, a slice of a non-terminating program may termi-
nate, whereas some version of semantics slicing ensures by definition that the
slicing process preserves non-termination [14,33].

2.3 Projections-based reductions

In this section, we specialise this framework to the case where the model
reduction can be induced by a bisimulation relation induced by an equivalence
relation over the variables of the system.

We start by taking:

1. a concrete autonomous system pV ,Fq,
2. a function r from V to V such that r is idempotent (i.e. r ˝ r “ r).

We use the function r to define an equivalence relation over V , by saying
that v1 „r v2 if and only if rpv1q “ rpv2q. Moreover, for any variable v P V
the variable rpvq is called the representative of the equivalence class of v.
We define two linear projections Pr and Zr as follows:

Prp⇢q :
#

V Ñ R
v fiÑ ∞t⇢pv1q | rpv1q “ vu, and Zrp⇢q :

$
’&

’%

V Ñ R
v fiÑ ⇢pvq if rpv1q “ v

v fiÑ 0 otherwise.

Pr is used to gather the values of each „r-equivalent variable and to store
the result to the value of the representative of each „r-equivalence class. Zr

ignores the values of the variables which are not the representative of their
„r-equivalence class.

We notice that Pr : RV (RV and that the following diagram commutes:

//Pr

��

Pr

⇤⇤

Zr

2.3. PROJECTIONS-BASED REDUCTIONS 29

Now we provide additional requirements over the relation r so that it
induces a bisimulation relation over the states of the system.

Definition 2.3.1. Given an autonomous system pV ,Fq and a relation r, we
say that that r induces a bisimulation over pV ,Fq if and only if for any pair
p⇢, ⇢1q of states over V, if Prp⇢q “ Prp⇢1q, then PrpFp⇢qq “ PrpFp⇢1qq.

The previous definition is equivalent to say that the relation r induces a
bisimulation if, and only if, the following diagram commutes:

//F

✏✏

Pr

//
F

##

Pr

;;

Pr

The following theorem states that whenever the relation r induces a bisim-
ulation, then the projections Pr and Zr can be used to define a model reduc-
tion.

Theorem 2.3.2. If r induces a bisimulation, then pV ,F,V , Pr, Pr ˝ F ˝ Zrq
is a model reduction.

Proof. The proof is given by the following commutative diagram:

//F

˝

Pr

⇢⇢

Pr

//
Zr

˝

Pr

//
F

//
Pr

More precisely, given ⇢ P RV , we have:

PrpFp⇢qq “ PrpFpPrp⇢qqq
“ PrpFpZrpPrp⇢qqqq
“ rPr ˝ F ˝ ZrspPrp⇢qq.

30 CHAPTER 2. REDUCTION OF DIFFERENTIAL SEMANTICS

pu, uq Ñ pp, uq @k1
pu, pq Ñ pp, pq @k1

(a) Phosphorylation of the
first site.

pu, uq Ñ pu, pq @k1
pp, uq Ñ pp, pq @k1

(b) Phosphorylation of the
second site.

pp, pq Ñ @k2

(c) Degradation.

Figure 2.1: Chemical reactions.

pu, uq Ñ pp, uq @2k1

(a) Phosphorylation of the
first site.

pp, uq Ñ pp, pq @k1

(b) Phosphorylation of the
second site.

pp, pq Ñ @k2

(c) Degradation.

Figure 2.2: Simplified chemical reactions.

Example 2.3.3. We instantiate our framework on a simple example.
In this example we consider one kind of protein. We suppose that this

protein has two sites. The state of a protein is denoted as an ordered couple
of symbols among tu, pu. The symbol u indicates an unphosphorylated site,
whereas the symbol p indicates a phosphorylated one. For example, a protein
having both sites phosphorylated is denoted as pp, pq.

We start by considering the reactions that are given in Figure 2.1. Each
site of a protein can be phosphorylated with the same rate constant k1. More-
over, we assume that a protein that has both sites phosphorylated can be
degraded with a rate constant k2. Intuitively, both sites of the protein play
exactly the same role. Our goal is to justify that we can abstract each instance
of a protein by the number of its sites that are phosphorylated. This way, we
would get the simplified rules that are given in Figure 2.2.

The set of variables V is defined as:

tpu, uq, pu, pq, pp, uq, pp, pqu.
We want to identify the proteins that have exactly one activated site, no
matter if it is the first or the second one. Thus, we define the mapping r by

rpu, uq “ pu, uq,
rpu, pq “ rpp, uq “ pu, pq,

rpp, pq “ pp, pq.
Since we have only unary reactions, the underlying di↵erential system is

linear, and we can use matrix notation (but our framework also apply to non
linear systems).

2.4. COMBINING MODEL REDUCTIONS 31

We denote each element ⇢ of RV as a vector r⇢pu, uq, ⇢pu, pq, ⇢pp, uq, ⇢pp, pqs.
We get, by using a matrix notation:

F “
»

——–

´2k1 0 0 0
k1 ´k1 0 0
k1 0 ´k1 0
0 k1 k1 ´k2

fi

��fl, Pr “
»

——–

1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1

fi

��fl, and Zr “
»

——–

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

fi

��fl.

Then we can check that:

Pr ˆ F ˆ Zr “
»

——–

´2k1 0 0 0
2k1 ´k1 0 0
0 0 0 0
0 k1 0 ´k2

fi

��fl,

thats to say that the matrix Pr ˆ F ˆ Zr is exactely the one that is induced
by the set of the simplified reaction in Figure 2.2.

2.4 Combining model reductions

An existing model reduction can be abstracted further thanks to a bisimula-
tion induced by an equivalence relation over the concrete variables.

Theorem 2.4.1. Let pV ,F,V 7, ,F7q be a model reduction, r be an idempo-
tent mapping over V such that r induces a bisimulation over the autonomous
system pV ,Fq, and r7 be an idempotent mapping over V 7. We assume that the

following square:

Pr

Pr7

commutes.
Under this assumption, the tuple pV ,F,V 7, Pr7 ˝ , Pr7 ˝F7 ˝Zr7q is a model

reduction.

Proof. The proof is given by the following commutative diagram:

Pr

F

F Pr

Pr

Pr7

Zr7

Pr7F7

Pr7
Pr7

32 CHAPTER 2. REDUCTION OF DIFFERENTIAL SEMANTICS

More precisely, given ⇢ P RV , we have that:

rPr7 ˝ spFp⇢qq “ r ˝ PrspFp⇢qq
“ pPrpFp⇢qqq
“ pPrpFpPrp⇢qqqq
“ Pr7p pFpPrp⇢qqqq
“ Pr7pF7p pPrp⇢qqqq
“ Pr7pF7pPr7p p⇢qqqq
“ Pr7pF7pZr7pPr7p p⇢qqqqq

This way, the abstraction function is obtained as composing the initial
abstraction function with the projection Pr7 over the abstract observables.
Moreover, the abstract counterpart is defined as Pr7 ˝F7 ˝Zr7 , meaning that:

1. firstly, we ignore the contribution of each observable which is not the
representative of its equivalence class;

2. then, we apply the former abstract counterpart function F7;

3. finally, we collect the contribution of each observable according to their
representative.

It is interesting to observe that no commutative diagram is required to
relate the functions F7 and Pr7 . As a conseguence, we just need to prove that
r induces a bisimulation in the concrete. Then, to derive this construction,
we have to prove that Pr7 ˝ “ ˝ Pr. To prove this, only the structure
of the abstract variables matters (not their dynamics), so the proof is quite
simple.

Example 2.4.2. We can use our framework to formalise the reduction we
have introduced for the example in Section 1.2.4.

In this example, the protein X has m ` n sites: m sites x1,. . . ,xm which
are pair-wisely symmetric, and n sites y1,. . . ,yn which are controlled only by
the state of the sites x1,. . . ,xm.

We define the function r that maps each configuration of the protein X,
to the configuration in which:

1. the state of the site yj is the same for every i between 1 and n,

2. the number of phosphorylated sites among the sites x1,. . . ,xm is the
same,

2.5. CONCLUSION 33

3. there exists k between 1 and m, such that xi is phosphorylated if and
only if i ranges between 1 and k.

Since the state of each yj is only controlled by the state of the sites xi. We
can cut each configuration of the protein X into n fragments. Each fragment
documents the state of a site yj and the state of all sites xi. The abstraction
function maps each state to the function mapping each fragment to the
sum of the concentration of the configurations which have the same state for
the site yj and the same state for every site xi.

It is worth noting, that whenever a fragment describes the state of a site,
it also describes the state of any site that is symmetric to this site. As a
consequence we can define, the function r7 which maps each fragment of the
protein X, to the fragment in which:

1. the same site yj is documented and with the same state,

2. the number of phosphorylated sites among the sites x1,. . . ,xm is the
same,

3. there exists k between 1 and m, such that xi is phosphorylated if and
only if i ranges between 1 and k.

We can check that the following diagram:

Pr

Pr7

commutes.
As a conclusion, we can simplify the fragments further by taking into

account symmetric sites. In fine, we get 2pm ` 1qn fragments.

2.5 Conclusion

We have introduced a generic framework to formalise model reductions for
the ODEs semantics of reaction networks. We have considered two kinds of
reduction. The first one is based on generic changes of variables. The second
one has more structure, it is induced by a bisimulation that is defined by the
means of an equivalence relation over the variables of the ODEs. We have
shown how to combine these two kinds of model reduction.

We have stated the soundness of our approach: the maximal solutions
of the reduced models are the exact projection of the solutions of the initial
system.

34 CHAPTER 2. REDUCTION OF DIFFERENTIAL SEMANTICS

We are left to profide e↵ective ways of discovering changes of variables
and species-based bisimulations. Whereas some frameworks in the literature
[44] have proposed to explore the set of potential reductions directly at the
description level of reaction networks, we will use the high level representation
o↵ered by Kappa. This way, our algorithm will only scan the set of Kappa
rules and we will never compute the underlying set of chemical reactions.

Chapter 3

Kappa

We introduce Kappa. Kappa is a formal language, based on site graph-
rewriting, that is suitable to represent and simulate models of signalling
pathways [22,26].

In Kappa chemical species are described as graphs, made of agents. These
agents may denote proteins and they may contain some sites. These sites can
be bound pair-wise, which encodes for links between proteins. Additionally,
sites may carry internal states, that denote properties (as a phosphorylation
state for instance). Unlike other site graph-rewriting languages as BNGL [4],
in Kappa, in each agents, sites are fully identified by a unique site identifier.
The main advantage is that it reduces the potential number of embeddings
between site-graphs. Indeed, the number of embeddings from a connected
site-graph into another connected site-graph is at most linear in the number
of agents of the latter one, whereas it can be exponential with more general
classes of site-graph.

Interactions between sites are described by the means of rules. These
rules are context-free, which means that there is no need to describe the
whole state of each chemical species, but only the information that matters
to trigger or to tune the speed of the interaction. Because of this, Kappa
o↵ers a high level description of chemical interactions. We will see in further
chapters that this granularity of description is helpful to discover important
properties of interest, that can then be used to reduce the combinatorial
complexity of models.

3.1 Example

Let us recall the example from Section 1.2.1.

35

36 CHAPTER 3. KAPPA

B

A C

a c

b b

b

A
b

CBa c

Ba c

b

A

B

C

a c

b

(1) (2) (3)

(4) (5)

(6)

Figure 3.1: Set of species.

We had the following set of reactions:

p1q A,B Ø AB kA, k
1
A

p2q A,BC Ø ABC kA, k
1
A

p3q B,C Ø BC kC , k
1
C

p4q AB,C Ø ABC kC , k
1
C

over the following set of species:

1. A

2. B

3. C

4. AB

5. BC

6. ABC.

In Figure 3.1 we can see a graphical representation of this set. In Kappa,
these species are syntactically denoted as follows:

1. A
1

pbq

3.1. EXAMPLE 37

b

A

Ba

Ba

b

A

(a) A
1

pbq, B
2

paq Ø A
1

pbB2@aq, B
2

paA1@bq

b

A

B c

B c

b

C

(b) B
1

pcq, C
2

pbq Ø B
1

pcC2@bq, C
2

pbB1@cq

Figure 3.2: Graphical representation of the rules in the example.

2. B
1

pa, cq
3. C

1

pbq
4. A

1

pbB2@aq, B
2

paA1@b, cq
5. B

1

pa, cC2@bq, C
2

pbB1@cq
6. A

1

pbB2@aq, B
2

paA1@b, cC3@bq, C
3

pbB2@cq.
In Kappa rules, the “don’t care, don’t write” principle matters: we do not

have to specify the whole reactants involved in a reaction but it is enough to
express the minimal context that influences this interaction. So a rule can
be seen as a symbolical representation for the set of the reactions that can
be obtained as a refinement [23, 24] of this rule.

In our example, the set of reactions can be transformed in the following
set of rules:

paq A

1

pbq, B
2

paq Ø A

1

pbB2@aq, B
2

paA1@bq kA, k
1
A

pbq B

1

pcq, C
2

pbq Ø B

1

pcC2@bq, C
2

pbB1@cq kC , k
1
C .

The first rule states that whenever an agent A has a site b that is free, A
can bind, by the site b, to an agent B that has its site a free (and neglecting
the state of the site c of B, that is to say neglecting whether or not the agent
B is already bound to an agent C).

That was expressed by both following reactions:

p1q A,B Ø AB kA, k
1
A

p2q A,BC Ø ABC kA, k
1
A.

The same way, the second rule states that whenever an agent C has a site c
that is free, C can bind, by the site c, to an agent B that has its site c free

38 CHAPTER 3. KAPPA

b

A Ba

Ba

b

A

b

A Ba

Ba

b

A

c

c

(a) When the second site of B is free.

b

A Ba Ba

b

A

b

A Ba

Ba

b

A

c c

b

c

b

c

(b) When the second site of B is bound.

Figure 3.3: Reactions for binding the first site of B.

(and neglecting the state of the site a of B, i.e. neglecting if the agent B is
already bound to an agent A).

That was expressed by both following reactions:

p3q B,C Ø BC kC , k
1
C

p4q AB,C Ø ABC kC , k
1
C .

In Figures 3.2(a) and 3.2(b) we can see a graphical representation of the two
rules. In Figure 3.3 we give an intuition of the rewriting procedure that allow
us to pass from rules to reactions. This will be explained deeper in the next
paragraphs.

3.2 Syntax

In Kappa, proteins are typically represented by agents. The properties of
a given agent are expressed by some sites that may carry an internal state.
Moreover, potential links between proteins are specified by bonds between
agent sites.

3.2.1 Signature

Now let us formally introduce the syntax of Kappa.
We assume that we are given:

1. a finite set of agents types A (representing di↵erent kinds of proteins);

2. a finite set of sites S (corresponding to protein domains);

3.2. SYNTAX 39

a ::“ Nlp�q (agent)
s ::“ n�◆ (site)
N ::“ A P A (agent type)
n ::“ x P S (site name)
l ::“ i P N | ī P N̄ (agent identifier)
� ::“ ✏ | Nl@n | N@n | ´ | ? (binding state)
� ::“ ✏ | s, � (interface)
◆ ::“ ✏ | w P I (internal state)

Figure 3.4: Syntax for agents.

3. a finite set I of non empty strings (corresponding to internal states);

4. two signature maps ⌃◆ and ⌃�, from A to PpSq assigning a set of sites
to each agent type.

Intuitively, ⌃◆pAq is the set of sites which can bear a modifiable internal state
w P I (such as a level of energy), whereas ⌃�pAq is the set of sites which can
be bound to some other sites. We also denote by ⌃ the signature map that
associates to each agent type A P A the combined interface ⌃◆pAq Y ⌃�pAq.

3.2.2 Patterns

The full syntax for agents is given by the grammar in Figure 3.4.
An agent identifier l belongs to the set N of natural numbers, or to a copy

N of the set of natural numbers. Most agents will be identified by numbers in
N, whereas identifiers in N will be used temporary when agents are created,
before that a proper identifier is allocated.

An interface � is a list of sites with internal states (denoted as subscripts)
and binding states (denoted as superscripts). For every agent A, the set of
its internal sites is given by ⌃◆pAq, whereas the set of its binding sites is given
by ⌃�pAq. A site x that has an internal state w P I is written as x

w

.
When a site is written as x✏ it means that it does not have an internal

state. This can happen:

1. if x P ⌃pAqz⌃◆pAq,
2. or if the internal state is not specified.

We usually omit the symbol ‘✏’ in examples.

40 CHAPTER 3. KAPPA

If a site x is in ⌃�pAq, x can be free or bound to some other site. There
are several levels of knowledge about the binding states and also several levels
of information about the bonds. More specifically:

1. The symbol ‘✏’ means that the site is free.

2. The question mark ‘?’ is used when there is no information about the
binding site (it can be free or bound).

3. A binding type B@y is used to denote that the site is linked to the site
y of some agent B.

4. A site address Bl@y means that the site is linked to the site y of the
agent B with identifier l.

5. A wildcard bond ‘´’ is used to denote a site that is bound but there is
no information about its pattern.

As in the case of internal states, the symbol ‘✏’ is generally omitted.
Sometimes we refer to a site as a triple pA, i, xq in A ˆ N ˆ S.

Definition 3.2.1 (Agent). An agent is defined by a type A in A, an identifier
l and an interface �. Such an agent is denoted by Alp�q.
Definition 3.2.2 (Expression). An expression E is a sequence of agents such
that:

1. each agent is di↵erent, by the type or by the identifier, from all the
others;

2. for every interface �, each site appears at most once in the interface �;

3. each site name occurring in the interface of the agent A occurs in ⌃pAq;
4. each site name which occurs in the interface of the agent A with an

internal state distinct from ‘✏’ occurs in ⌃◆pAq;
5. each site name which occurs in the interface of the agent A with a

binding state distinct from ‘✏’ occurs in ⌃�pAq.
Given an expression E and an agent A, we define by agentspE,Aq the

set of identifiers l such that there exists an agent A in E with identifier l.

Definition 3.2.3 (Structural equivalence). The structural equivalence is de-
fined as the smallest equivalence relation on expressions such that:

1. E,Alp�, s, s1, �1q, E 1 ” E,Alp�, s1, s, �1q, E 1

3.2. SYNTAX 41

2. E, a, a1, E 1 ” E, a1, a, E 1

This equivalence states that the order of sites inside interfaces and the
order of agents inside expressions do not matter.

Definition 3.2.4 (Pattern). A pattern is an expression E such that if there
is an agent Al that holds a site x wich carries a bound A1

l1@x1, then there is
an agent in E of type A1 with identifier l1, that exhibits a site x1 with a bound
Al@x.

So a pattern has no dangling reference. A pattern is said to be proper if
it has only proper agent identifiers (in N).

A pattern is disconnected if E ” E 1, E2 where E 1 and E2 are both not
empty patterns. Otherwise, it is connected. A disconnected pattern can be
decomposed in a set of connected patterns, called its connected components.

Definition 3.2.5 (Pattern component). A pattern component is a connected
pattern.

Definition 3.2.6 (Mixture). A mixture M is a proper pattern that is fully
specified, i.e. such that for every agent A in M the interface of A is fully
documented (that is to say it describes the binding state of each site in ⌃�pAq
and the internal state of each site in ⌃◆pAq).
Definition 3.2.7 (Species). A species is a non-empty connected mixture or,
equivalently, a fully specified non-empty pattern component.

In Figure 3.5 we can see a graphical representation of two agents, respec-
tively R

1

pY1
p

, lq and R

2

pY1
p

, lE@rq. Both agents are of type R with two sites:
Y 1, that expresses an internal state, and l, that expresses a binding state.
The agent of Figure 3.5(a) has the internal state of Y 1 phosphorylated (this
is denoted by p) whereas the state of the site l is free. The agent of Figure
3.5(b) has the internal state of Y 1 phosphorylated as well, but the site l is
linked to the site r of some agent E (this is denoted by the binding type
E@r).

In Figure 3.6 we can see a species composed by two agents, R1 and E1,
that are connected by a bond (there is a link between the site l of the agent
R1 and the site r of the agent E1).

3.2.3 Rules

The dynamic of a system is described by the means of rules. A rule is given by
a pair of patterns pE`, Erq and a rate constant k (which is a non negative real

number), and is usually written as E`
kÑ Er (or, equivalently, E` Ñ Er @k).

42 CHAPTER 3. KAPPA

l

Y1

p

1
R

(a) R
1

pY1
p

, lq

l

Y1

p

E@r

2
R

(b) R
2

pY1
p

, lE@rq

Figure 3.5: Two agents.

l Y1

p
r

11 RE

Figure 3.6: A species.

The left hand part (lhs), E`, describes the context of application for a rule.
The right hand part (rhs), Er, describes the transformations to be performed.

Definition 3.2.8. (Constraints on rules) Given a rule E`
kÑ Er, it has to

be possible to obtain Er from E` in the following way (the order matters):

1. creation: some agents Aīp�q with their full interfaces ⌃pAq, with all
sites free and all sites s P ⌃◆ defined, are added (̄i P N̄);

2. unbinding: some occurences of the wildcard ‘´’, some binding type and
some site addresses Ai@n are removed;

3. deletion: some agents are removed;

4. modification: some (non empty) internal states are replaced with other
(non empty) internal states;

5. binding: some free sites are bound pairwise by using appropriate site
addresses.

Between the agents that are neither removed, nor created, there is a
bijective correspondence assured by agent types and identifiers. Any two
proper agents in correspondence have the same type and their interfaces
document the same sites. Note that, according to Definition 3.2.8, binding
types and wildcards can be removed but not created.

3.2. SYNTAX 43

Rules with side e↵ects.

We say that a system of rules has side e↵ects if it is possible to modify the
state of sites that are not documented in the left hand side of the rules. More
precisely, it may happen only in the two following cases:

1. when we remove an agent without checking the binding state of all its
sites;

2. when we remove a bond denoted by a binding type or the symbol ‘´’.

In the first case a side e↵ect is possible (may semantics), in the latter one a
side e↵ect is sure (must semantics).

Definition 3.2.9 (May set). Given a rule r we define MAYprq as the set
of sites in r that may raise side e↵ects when the rule is applied.

Definition 3.2.10 (Must set). Given a rule r we define MUST prq as the
set of sites in r that raise side e↵ects whenever the rule is applied.

Example 3.2.11. Let us consider the following rule r1:

A

1

pq kÑ H

that is deleting an agent of type A without any check. If we apply the rule to
a mixture of the form:

A

1

pbq,
it happens that all the agents in the mixture are documented in the rule.
Instead, if we apply the rule to the following mixture:

A

1

pbB1@aq, B
1

paA1@bq,

it happens that the agent B
1

is modified even if it is not documented in the
rule. So MAYpr1q is equal to the site b of the agent A.

Let us consider now the following rule r2:

A

1

pbB@aq kÑ H

that is deleting an agent of type A with a link to the site a of some agents
B. In this case, even if it is not directly documented by the rule, an agent of
type B is modified every time that the rule is applied. So MUST pr2q is equal
to the site b of the agent A.

44 CHAPTER 3. KAPPA

3.3 Semantics

Now we describe the semantics of Kappa. Firstly, we formalise the e↵ect
of applying a rule on a pattern. We use this to define the set of (ground)
reactions that are induced by a set of rules in Kappa. Then, we introduce
the di↵erential semantics of a Kappa model, as the solution of the set of
di↵erential equations that are obtained by applying the principle of mass
action over the underlying set of reactions.

3.3.1 Operational semantics

Now we will describe how to apply a rule r, E`
kÑ Er, to a mixture E. First

of all, it is necessary that the context expressed by the lhs is present in E.
Technically speaking, we will say that E` embeds into E.

Example 3.3.1. To have an intuition, we can have a look to Figure 3.7 and
observe that the pattern described on the left matches, in some intuitive way,
the species described on the right. There we have (on the left) an agent of
type R that documents two sites: Y 1 that is specified to be unphosphorylated
and l that shows a bond to an agent E by some site s. So we can imagine
that the agent R on the left can be matched with the agent R on the right.
This one exhibits exactly the same two sites, Y 1 and l.

The state of Y 1 is the same (u) both for the pattern on the left and for
the species on the right, so they match. The binding state, denoted by l,
corresponds to a binding type in the pattern and to an explicit link in the
species. Since the binding type of the pattern denotes a bond to an agent E
through the site r whereas the species exhibits an explicit link to the agent E1

by the site r, they match as well.

Let us describe those concepts formally.

Definition 3.3.2 (Substitution). A substitution � is a partial mapping from
pairs agent/identifier pA, lq (in A ˆ pNY N̄q) to agent identifiers (in NY N̄).

Clearly, given a pattern E, a substitution � can be applied only if pA, lq P
domp�q for any l P agentspE,Aq.

The purpose of a substitution � is to replace the agent identifier l with
�pA, lq (in the agent).

Definition 3.3.3 (Injective substitution). A substitution � is injective if,
and only if, for any agent type A and for any two identifiers l, l1, we have
�pA, lq “ �pA, l1q ñ l “ l1.

3.3. SEMANTICS 45

l

Y1

u

r

1

l

Y1

u

E@r

1

1

R
R

E

Figure 3.7: Example of a pattern that can be embedded in a species.

◆ “ ◆`, ✏ ùñ ◆ |ù ◆`
� “ �` ùñ � |ù �`
Nl@n |ù N@n
Nl@n |ù ´

� |ù ?
◆ |ù ◆` ^ � |ù �` |ù n�◆ |ù n�`◆`

� |ù ✏
s |ù s` ^ � |ù �` ùñ s, � |ù s`, �`

� |ù �` ùñ Nlp�q |ù Nlp�`q

Figure 3.8: Agent matching.

An injective substitution is a good candidate to identify the agents of
two patterns. More precisely, each agent A`p�`q in the first pattern can be
identified with the agent Alp�q if:

1. agents identifiers are the same, i.e. l “ �pA, `q;
2. the signature � contains more information than the signature �`.

This second property is formalized by the matching relation |ù given in Figure
3.8.

Yet, since interfaces are defined up to permutations of sites, one may have
to reorder the sites before applying the matching relation. This is possible
thanks to the structural equivalence defined in Definition 3.2.3.

Now we are ready to define an embedding between two patterns.

Definition 3.3.4 (Embedding). An embedding � between two patterns E`

and E is an injective substitution such that:

46 CHAPTER 3. KAPPA

1. domp�q “ tpA, lq | A P A, l P agentspE`, Aqu,
2. for any pA, lq P domp�q, there exists an agent a1 such that a ” a1 and

a1 |ù �̄pa`q, where a` is the unique agent in E` of type A with identifier
l and a is the unique agent in E of type A with identifier �pA, lq.

Example 3.3.5 (continued). In our example (eg. see Figure 3.5), the embed-
ding between the pattern R

1

pY1
p

, lq on the left, and the pattern R

2

pY1
p

, lE@rq
on the right is induced by the injective substitution that maps the pair pR, 1q
to the agent identifier 2.

Definition 3.3.6 (Clean substitution). A clean substitution is a substitution
such that for any couple pA, l̄q P pA ˆ N̄q X domp�q, we have:

�pA, l̄q “ l̄.

Definition 3.3.7 (Clean embedding). An embedding is clean if it is a clean
substitution.

Definition 3.3.8 (Isomorphic embedding). Whenever there exist an embed-
ding � between E` and E and an embedding �1 between E and E` we say that
� is an isomorphic embedding.

We notice that embeddings between two species are isomorphic embed-
dings.

Generally, given two pattern components C1 and C2 there can be several
embeddings of the former into the latter. We will write rC1, C2s for the set of
such embeddings. In usual graph theory, the number of embeddings between
two connected graphs may be exponential with respect to the size of these
graphs. In Kappa, the number is at worst linear due to the fact that sites
are uniquely named. We call this the rigidity principle.

Lemma 3.3.9 (rigidity). An embedding of a pattern component C1 into a
pattern component C2 is fully defined by the image of one agent. That is to
say, whenever there are i, �, and �1 such that � P rC1, C2s, �1 P rC1, C2s and
�piq “ �1piq, then � “ �1.

Proof. Given two agents, n and n1 we say that there is a basic path from A0

to A1 if there exist a site x belonging to n and a site x1 belonging to n that
are bound together. We denote it as n.x " x1.n1.

Given two agents, n and n1 we say that there is a path from n to n1, if
there exists a finite sequence of agents Ai such that A0 “ n and for any i it
exists a basic path from Ai to Ai`1.

We denote a path between n and n1 as a sequence

n.x " pxi.Ai`1.xi`1 "q‹x1.n1

3.3. SEMANTICS 47

� “ ✏, N@n,´, ? ùñ �̄p�q “ �
�̄pNl@nq “ N�pN,lq@n

�̄pn�◆ q “ n
�̄p�q
◆

�̄ps, �q “ �̄psq, �̄p�q
�̄pNlp�qq “ N�pN,lqp�̄p�qq

Figure 3.9: Agent substitution.

where n is the starting agent, x is the site of n that is linked to the successor,
n1 is the final agent and x1 is its entry site. Between n and n1 there could be
a possibly empty list of agents denoted as xi.ni.xi`1, where ni is the agent,
xi is the entry site and xi`1 is the exit site.

Now, let C1 and C2 be two pattern components and �, �1 be two di↵erent
embeddings in rC1, C2s.

Let us suppose it exists n P AC1 such that �pnq “ �1pnq. If there is
just one agent in C1 then � “ �1 and we have done. Otherwise, since C1 is
connected, it exists an agent n1 in C1 such that there is a path from n to n1
in C1.

Let p “ n.x " x1.n1.x2 " ¨ ¨ ¨ " x1.n1 be this path. So the image of p by
� is in C1.

We know that �pnq “ �1pnq, so �pnq.x “ �1pnq.x and �pn1q “ �1pn1q.
Since this is true for all the steps in the path, we have � “ �1.

In general an epimorphism (epi) is an embedding � P rC1, C2s such that,
for all �1 P rC2, C3s, �2 P rC2, C3s, �1� “ �2� implies �1 “ �2.

Lemma 3.3.10. An embedding between two non-empty connected compo-
nents is necessarily an epimorphism. That is to say, if C is a pattern com-
ponent, � P rC 1, Cs is an epi if and only if C 1 is not empty.

Proof. We have to prove that if �1 ˝ � “ �2 ˝ �, then �1 “ �2.
Let C be a pattern component, C 1 be non-empty and � P rC 1, Cs. Let C2

be another pattern component and �1,�2 P rC,C2s. Since C 1 is not empty
we can consider n P C 1 such that �1p�pnqq “ �2p�pnqq.

Let n1 “ �pnq. We have �1pn1q “ �2pn1q. Since C2 is a pattern component
we can apply Lemma 3.3.9, so �1 “ �2.

Corollary 3.3.11. � P rZ1, Z2s is an epi if and only if the image of Z1

intersects each component of Z2.

48 CHAPTER 3. KAPPA

◆r✏s “ ◆ ◆rwrs “ wr

�r✏s “ ✏ �rNl@ns “ Nl@n
�rN@ns “ �

�r´s “ �
�r?s “ �

n�◆ rn�r◆r s “ n
�r�rs
◆r◆rs

�r✏s “ �
ps, �qrsr, �rs “ srsrs, �r�rs

Nlp�qrNlp�rqs “ Nlp�r�rsq

Figure 3.10: Agent replacement.

Now, let E be a pattern, let r :“ E`
kÑ Er be a rule and let � be an embed-

ding between E` and E. Since for any agent A we have agentspE`, Aq Ñ N,
� is clean. We are ready to define the result of the application of the rule r
to the pattern E.

In order to do this, we need to consider three di↵erent kinds of agents:

1. the agents Al`p�`q that are preserved by the rule: Al`p�`q appears in E`

and there exists an interface �r such that Al`p�rq appears in Er;

2. the agents Alrp�rq that are created by the rule: Alrp�rq appears in Er

but there is no agent of type A with identifier lr that appears in E`;

3. the agents Al`p�`q that are deleted by the rule: Al`p�`q appears in E`

but there is no agent of type A with identifier l` that appears in Er.

We need to extend the embedding � in order to be able to deal with
newly created agents. Thus we define the clean injective substitution �‹
over domp�q Y pA ˆ N̄q by �‹pA, iq “ �pA, iq for any pA, iq P domp�q and
�‹pA, īq “ ī when ī P agentspEr, Aq X N̄ (this way, �‹ preserves temporary
identifiers).

Then:

1. for any agent Al`p�`q that is removed, the agent of type A with identifier
�pA, l`q is removed in E;

2. for any agent Arp�rq that is created, the agent �‹pArp�rqq is added in
E;

3. and for any agent Al`p�`q that is preserved:

3.3. SEMANTICS 49

(a) we denote by Arp�rq and Ap�q the agents in Er and E which have
the same type and the same identifier as the agent A`p�`q;

(b) then we select an agent A1p�1q (the choice does not matter) such
that Ap�q ” A1p�1q and A1p�1q |ù �̄pA`p�`qq;

(c) then the agent Ap�q is replaced with agent A1p�1qr�̄‹pArp�rqqs,
where .r.s is the replacement function defined in Figure 3.10.

We denote by ErErs� the obtained expression (which is well defined up
to ”-equivalence). One shall notice that ErErs� might not be a pattern,
because there might be some pending bonds, which are sites with a binding
state of the form Al@x such that:

1. either the agent of type A and identifier l has been removed;

2. or the site x of the agent A and identifier l has been made free.

In order to remove pending bonds, we introduce a function clean such that
cleanpEq is obtained by replacing with the symbol ✏ each site address Al@x
such that:

1. there is no agent A of identifier l in E;

2. or the site x of the agent type A with identifier l is free.

When we apply a rule to a mixture, we expect that the result of the
application of the rule will be a mixture as well. Anyway, we notice that
cleanpErErs�q might not be a mixture because of temporary identifiers. To
allocate fresh proper identifiers for the newly created agents, we introduce
a function fresh between patterns. freshpEq is obtained by replacing any
temporary identifier ī of the agent A by MpAq ` i ` 1, where MpAq is the
maximum element of the set t0u Y tN X agentspE,Aqu.

Now we can define the operational semantics as a labeled transition sys-
tem.

The states of the system are mixtures (up to ”). We shall notice that

the impact of applying a rule E`
kÑ Er on a mixture is fully defined (up to

”) by the clean embedding � between the lhs E` of the rule and the mixture
E. So, we define the set L of labels as the set of tuples pr, E,�q, where:

1. r is a rule,

2. E is a state, and

3. � is an embedding between the left hand part of the rule and E.

50 CHAPTER 3. KAPPA

In such a case we write:

E
pr,E,�q›Ñ freshpcleanpErErs�qq

Example 3.3.12. Let us consider the following example.
We consider the following signature:

A “ tAu
I “ H
S “ ta, bu

⌃�pAq “ ta, bu
⌃◆pAq “ H,

the following mixture:

A

1

paA2@b, bA3@aq, A
2

pa, bA1@aq, A
3

paA1@b, bq
and the following rule:

A

1

paq kÑ A

¯

0

pa, bq.
Intuitively, this rule can be applied with an agent of type A, that has the site
a which is free (and without considering the state of the site b). Applying the
rule consists in removing the agent A

1

paq before creating a new agent A
0

pa, bq
of type A with both sites a and b free (no site is preserved).

There exists only one embedding between the lhs A
1

paq of the rule and the
mixture E, that is:

� “ rA, 1 Ñ 2s.
ErE`s� is equal to the expression

A

1

paA2@b, bA3@aq, A
¯

0

pa, bq, A
3

paA1@b, bq.
This expression has a dangling bond on the site a of the agent A

1

:

A

1

paA2@b, bA3@aq,
so the primitive clean is applied to remove it.

Indeed the result of:
cleanpErErs�q

is equal to the expression:

A

1

pa, bA3@aq, A
¯

0

pa, bq, A
3

paA1@b, bq.
Then the temporary identifier ¯0 is replaced with 4 by the primitive fresh

and the result of:

3.3. SEMANTICS 51

A
a

b Ab a

A

a

b
3

21

Figure 3.11: Mixture E of the example.

A
a

b Ab a

A

a

b

3

21

A a
1

A
a

bAb a

A

a

b

3

4 1

A a

0
b -

Figure 3.12: Application of the rule to the mixture E.

52 CHAPTER 3. KAPPA

freshpcleanpErErs�qq
is equal to:

A

1

paA2@b, bA3@aq, A
4

pa, bq, A
3

paA1@b, bq,
as depicted in Figure 3.12.

3.3.2 Di↵erential semantics

In order to define the concrete di↵erential semantics for Kappa, we need to
consider a set of rules R and a finite set of species V such that:

1. V is closed under application of the rules in R,

2. V has at most one representative for each species isomorphism class.

More formally:

1. for any mixture E, any pattern component which is isomorphic to an
element in V , any rule E` Ñ Er, and any embedding � between E`

and E, each pattern component in cleanpErErs�q is isomorphic to an
element in V ;

2. for any pair pv, v1q of elements in V , if there exists an embedding be-
tween v and v1, then v “ v1.

In order to ensure the finiteness of the set V , we assume that species
contain no cycle. Formally, for any species S, we define the non-oriented
graph GpSq, by the following constraints:

1. the nodes of GpSq are the agents of the species S;

2. there is an edge between to nodes pA, iq and pA1, i1q in GpSq if and only
if, there exists two site names x and x1 such that there is a link between
the site pA, i, xq and pA1, i1, x1q in the species S.

For any species S, we assume that:

1. for every two agents pA, iq and pA1, i1q, there is at most one link in the
species S, between the sites of the agent pA, iq and the sites of the agent
pA1, i1q;

2. the graph GpSq is acyclic.

3.3. SEMANTICS 53

The states ⇢ of the system are mappings from chemical species v P V to
real numbers in R` (⇢pvq denotes the concentration of the species v). So
as to define the function F which specifies the behavior of the system, we
consider the set of chemical reactions which are generated by the set of rules
R.

Given a rule r :“ E`
kÑ Er in R, we may assume without any loss

of generality that E` is written as C1, . . . , Ck where each Ci is a pattern
component.

A reaction is obtained, by choosing for any integer i between 1 and k,
a reachable species vi P V and an embedding �i between Ci and vi. The
expression v1, . . . , vk might not be a mixture because distinct species may
share some agent identifiers. In order to define the product of a reaction, we
choose k species w1, . . . , wk and k embedding 1, . . . , k such that w1, . . . , wk

is a mixture, and that for any i between 1 and k, i is an embedding between
vi and wi. This way, we form a composite embedding � “ ∞

i i ˝�i between
E` and w1, . . . , wk. The result of the application of the rule r on w1, . . . , wk

along � is isomorphic to a tuple of species in V that we denote by p1, . . . , pl
(we can check that p1, . . . , pl does not depend on the choice of the w1, . . . , wk).

Then the function F is obtained by summing up the contribution of each
reaction. The consumption of the reactants will give the following negative
contribution:

Fp⇢qpvjq “́ �
π

i
p⇢pviq | 1 § i § kq.

whereas the positive contribution is given by the production of species in V :

Fp⇢qppj1q “̀ �
π

i
p⇢pviq | 1 § i § kq.

Where:

1. � is the quotient between k and the number of embeddings from E` to
itself,

2. j ranges between 1 and k, and

3. j1 ranges between 1 and l.

The obtained autonomous system pV ,Fq is positive. Indeed, for any
species v P V , Fpvq can be written as:

´⇢pvq ¨ P r⇢pv1q, . . . , ⇢pvmqs ` Qr⇢pv1
1q, . . . , ⇢pv1

nqs,
where P and Q are two polynomial mappings with positive coe�cients

and v1, . . . , vm, v
1
1, . . . , v

1
n are m ` n species in V .

54 CHAPTER 3. KAPPA

3.4 Conclusion

We have introduced the syntax and the semantics of Kappa. We have seen
that Kappa o↵ers a compact description of reaction networks. Indeed each
rule denotes a symbolic representation of a set of reactions, that applies the
same transformation in di↵erent contexts of application.

We have introduced the ODEs semantics of a set of rules as the ODEs
system that is obtained by applying the principle of mass action law to
the underlying set of reactions. This is a mathematical definition that is
mandatory to state the soundness of our approach. We will never compute
the underlying set of reactions of a Kappa model explicitly.

Chapter 4

Symmetries

In this chapter we investigate a class of sites with specific properties of sym-
metry. Given two sites x and y in an agent A and a set of rules R, we will
say that they are symmetric if they play the same role respect to the set of
rules R.

After providing some intuitions over well-chosen examples, we will for-
malise the notion of “playing the same role”. Then, we show that the equiv-
alence relation, that identifies the species that can be obtained by swapping
symmetric sites, induces a bisimulation over the semantics of R, hence a
model reduction.

4.1 Case studies

We start with a series of examples to illustrate how to detect when some
sites have the same capability of interaction. This information will be used
to transform the original system into a more compact one.

4.1.1 First case study

In our first example, we consider one kind of agent, A. We suppose that an
agent A has two sites:

1. a site x,

2. a site y.

The state of a protein A is denoted as an ordered couple of symbols among
tu, pu. The symbol u indicates an unphosphorylated site, whereas the symbol
p indicates a phosphorylated one. For example, a protein A having both sites
x and y phosphorylated is denoted as Arp, ps.

55

56 CHAPTER 4. SYMMETRIES

Aru, us k1Ñ Arp, us
Aru, ps k1Ñ Arp, ps

(a) Phosphorylation of the
first site.

Aru, us k1Ñ Aru, ps
Arp, us k1Ñ Arp, ps

(b) Phosphorylation of the
second site.

Arp, ps k2Ñ

(c) Degradation.

Figure 4.1: Chemical reactions for first case study.

Aru, us 2¨k1Ñ Arp, us

(a) Phosphorylation of the
first site.

Arp, us k1Ñ Arp, ps

(b) Phosphorylation of the
second site.

Arp, ps k2Ñ

(c) Degradation.

Figure 4.2: Simplified chemical reactions for first case study.

We start by considering the set of reactions given in Figure 4.1. The sites
x and y of the protein A can all be phosphorylated at the same rate constant
k1. Moreover, we assume that a protein A that has both sites phosphorylated
can be degraded with a rate constant k2.

This model can be encoded in Kappa thanks to the following set of rules:

1. A
1

px
u

q Ñ A

1

px
p

q @ k

1

2. A
1

py
u

q Ñ A

1

py
p

q @ k

1

3. A
1

px
p

, y
p

q Ñ @ k

2

.

The first spontaneous observation is that x and y have exactly the same
activation rate.

Now we wonder if x and y play an identical role in each instance of the
protein A. So, for each rule, we propose to replace the occurrence of each site
with all the combinations among x and y, while dividing the kinetic rates by
the number of combinations (in all the set). By performing this change, we
need to take care of gain and loss of automorphisms.

In our specific case the site x in the first rule will be substituted twice,
once with x and once with y. Since there are two possible combinations the
rate constant k1 will be divided by 2.

From our set of rules we obtain the following substitutions:

1. A
1

px
u

q Ñ A

1

px
p

q @ k

1

4.1. CASE STUDIES 57

(a) A

1

px
u

q Ñ A

1

px
p

q @
k

1

2

(by changing nothing)

(b) A

1

py
u

q Ñ A

1

py
p

q @
k

1

2

(by replacing x with y)

2. Apy
u

q Ñ Apy
p

q @ k

1

(a) Apx
u

q Ñ Apx
p

q @
k

1

2

(by replacing y with x)

(b) Apy
u

q Ñ Apy
p

q @
k

1

2

(by changing nothing)

3. A
1

px
p

, y
p

q Ñ @ k

2

(a) A

1

px
p

, y
p

q Ñ @
k

2

2

(by changing nothing)

(b) A

1

py
p

, x
p

q Ñ @
k

2

2

(by replacing x with y and y with x).

By summing up the rules that are syntactically equivalent, we obtain the
following set:

1. A
1

px
u

q Ñ A

1

px
p

q @
k

1

2

` k

1

2

(given by 1.paq ` 2.paq)

2. A
1

py
u

q Ñ A

1

py
p

q @
k

1

2

` k

1

2

(given by 1.pbq ` 2.pbq)

3. A
1

px
p

, y
p

q Ñ @
k

2

2

` k

2

2

(given by 3.paq ` 3.pbq).

So we find a set of rules that is identical to the one we started from. By this,
we can conclude that the sites x and y play exactly the same role and that
the set of reactions showed in Figure 4.2 is equivalent to the one showed in
Figure 4.1.

4.1.2 Second case study

As in the first case study, we will consider an agent A carrying two sites,
x and y, that can be phosphorylated or not. Anyway the behaviour of the
system will be slightly modified. Like before the sites can be both activated,
but that time x has an activation rate constant equal to k1, whereas y has

58 CHAPTER 4. SYMMETRIES

an activation rate constant equal to k2. Once that a protein A has both sites
x and y phosphorylated, it can be degraded with a rate constant equal to k3.

The behaviour of the system is described by the set of reactions given in
Figure 4.3 and it corresponds to the following set of Kappa rules.

1. Apx
u

q Ñ Apx
p

q @ k

1

2. Apy
u

q Ñ Apy
p

q @ k

2

3. Apx
p

, y
p

q Ñ @ k

3

.

As before, we wonder if x and y play exactly the same role for each instance
of the protein A. So, again, we propose to replace each rule with all the
combinations of rules that can be obtained by replacing (independently) each
occurrence of x and y with x or y and dividing the kinetic rates by the number
of combinations (in all the set). By performing this change, we need to take
care of gain and loss of automorphisms.

With our example we obtain the following set of substitutions.

1. A
1

px
u

q Ñ A

1

px
p

q @ k

1

(a) A

1

px
u

q Ñ A

1

px
p

q @
k

1

2

(by changing nothing)

(b) A

1

py
u

q Ñ A

1

py
p

q @
k

1

2

(by replacing x with y)

2. A
1

py
u

q Ñ A

1

py
p

q @ k

2

(a) A

1

px
u

q Ñ A

1

px
p

q @
k

2

2

(by changing nothing)

(b) A

1

py
u

q Ñ A

1

py
p

q @
k

2

2

(by replacing x with y)

3. A
1

px
p

, y
p

q Ñ @ k

3

(a) A

1

px
p

, y
p

q Ñ @
k

3

2

(by changing nothing)

(b) A

1

py
p

, x
p

q Ñ @
k

3

2

(by replacing x with y and y with x)

And we get the following set of rules.

1. A
1

px
u

q Ñ A

1

px
p

q @
k

1

2

` k

2

2

(given by 1.paq ` 2.paq)

4.1. CASE STUDIES 59

Aru, us k1Ñ Arp, us
Aru, ps k1Ñ Arp, ps

(a) Phosphorylation of the
first site.

Aru, us k2Ñ Aru, ps
Arp, us k2Ñ Arp, ps

(b) Phosphorylation of the
second site.

Arp, ps k3Ñ

(c) Degradation.

Figure 4.3: Chemical reactions for the second case study.

2. A
1

py
u

q Ñ A

1

py
p

q @
k

1

2

` k

2

2

(given by 1.pbq ` 2.pbq)

3. A
1

px
p

, y
p

q Ñ @
k

3

2

` k

3

2

(given by 3.paq ` 3.pbq)

As we can observe, in order to recover the set of rules that we started
from, it is necessary that k1 “ k2. So, the site x and y play exactly the same
role if and only if k1 “ k2. In this case, we are back to the example of Section
4.1.1.

4.1.3 Third case study

In our third example, we consider a protein A carrying two sites, x and y.
This two sites can be free or can be bound to another instance of the same
site (in a di↵erent protein). Here we face with a case of polymerisation, so
it is not possible anymore to write the full set of reactions. Anyway the
behaviour of the system can be summarised by the following set of Kappa
rules.

1. A
1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @ k

2. A
1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @ k.

As in the previous cases we would like to understand if x and y play
exactly the same role in each instance of the protein A. Again, we propose
to replace each rule with all the combinations of rules that can be obtained
by replacing (independently) each occurrence of x and y with x or y and
dividing the kinetic rates by the number of combinations (in all the set). By
performing this change, we need to take care of gain and loss of automor-
phisms.

From our example we obtain the following set of substitutions.

1. A
1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @ k

60 CHAPTER 4. SYMMETRIES

(a) A

1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @
k

4

(by changing nothing)

(b) A

1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq @
k

4

¨ 1

2

(by replacing x with y in A1)

(c) A

1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @
k

4

¨ 1

2

(by replacing x with y in A2)

(d) A

1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @
k

4

(by replacing x with y in both A1 and A2)

2. A
1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @ k

(a) A

1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @
k

4

(by changing nothing)

(b) A

1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @
k

4

¨ 1

2

(by replacing y with x in A1)

(c) A

1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq @
k

4

¨ 1

2

(by replacing y with x in A2)

(d) A

1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @
k

4

(by replacing y with x in both A1 and A2)

and we obtain the following set of rules:

1. A
1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @
k

2

(given by 1.paq ` 2.pdq)

2. A
1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @
k

2

(given by 2.paq ` 1.pdq)

4.1. CASE STUDIES 61

3. A
1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @
k

2

(given by 1.pbq ` 1.pcq ` 2.pbq ` 2.pcq).
So, since the third rule does not belong to the original set, the two systems
are equivalent if, and only if, k is equal to 0.

4.1.4 Fourth case study

In our last example, we consider again a protein A carrying two sites, x and
y. The two sites can be bounded together or to another instance of the same
site. As before, that system allows polymerization, so it is not possible to
write the full set of reactions. Anyway, we can describe its behavior by the
following set of Kappa rules.

1. A
1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @ k

1

2. A
1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @ k

2

3. A
1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @ k

3

4. A
1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq @ k

4

.

If we apply the transformation that replaces each rule with all the combi-
nations of rules which can be obtained by replacing (independently) each
occurence of x and y with x or y, we get this result.

1. A
1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @ k

1

(a) A

1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @
k

1

4

(by changing nothing)

(b) A

1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq @
k

1

4

¨ 1

2

(by replacing x with y in A1)

(c) A

1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @
k

1

4

¨ 1

2

(by replacing x with y in A2)

(d) A

1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @
k

1

4

(by replacing x with y both in A1 and A2)

62 CHAPTER 4. SYMMETRIES

2. A
1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @ k

2

(a) A

1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @
k

2

4

(by changing nothing)

(b) A

1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @
k

2

4

¨ 1

2

(by replacing y with x in A1)

(c) A

1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq @
k

2

4

¨ 1

2

(by replacing y with x in A2)

(d) A

1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @
k

2

4

(by replacing y with x both in A1 and A2)

3. A
1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @ k

3

(a) A

1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @
k

3

4

(by changing nothing)

(b) A

1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @
k

3

4

¨ 2
(by replacing x with y in A1)

(c) A

1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @
k

3

4

¨ 2
(by replacing y with x in A2)

(d) A

1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq @
k

3

4

(by replacing x with y in A1 and y with x in A2)

4. A
1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq @ k

4

(a) A

1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq @
k

4

4

(by changing nothing)

(b) A

1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @
k

4

4

¨ 2
(by replacing y with x in A1)

4.1. CASE STUDIES 63

(c) A

1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @
k

4

4

¨ 2
(by replacing x with y in A2)

(d) A

1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @
k

3

4

(by replacing y with x in A1 and x with y in A2).

By summing up syntactically equivalent rules, we obtain:

1. A
1

pxq, A
2

pxq Ñ A

1

pxA2@xq, A
2

pxA1@xq @
k

1

4

` k

2

4

` k

3

2

` k

4

2

(given by 1.paq ` 2.pdq ` 3.pcq ` 4.pbq)

2. A
1

pyq, A
2

pyq Ñ A

1

pyA2@yq, A
2

pyA1@yq @
k

1

4

` k

2

4

` k

3

2

` k

4

2

(given by 1.pdq ` 2.paq ` 3.pbq ` 4.pcq)

3. A
1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq @
k

1

8

` k

2

8

` k

3

4

` k

4

4

(given by 1.pcq ` 2.pbq ` 3.paq ` 4.pdq)

4. A
1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq @
k

1

8

` k

2

8

` k

4

4

` k

4

4

(given by 1.pbq ` 2.pcq ` 3.pdq ` 4.paq).

We notice that the rules:

A

1

pxq, A
2

pyq Ñ A

1

pxA2@yq, A
2

pyA1@xq

and:

A

1

pyq, A
2

pxq Ñ A

1

pyA2@xq, A
2

pxA1@yq
perform exactly the same action. Thus we can gather their contribution. As
a result, we can conclude that the initial system and the transformed one
will have the same behaviour if, and only if, k1 “ k2 “ k3 ` k4.

64 CHAPTER 4. SYMMETRIES

A z

#l

B.x

A z

#l

B.y

Figure 4.4: Transposition of binding types.

4.2 Permutations of sites in Kappa

4.2.1 Transpositions of sites

In this section, we formalise the action of a transposition of two sites on
patterns and rules. This notion will be used to define when two sites are
symmetric for a given set of rules.

We consider two kinds of transformation of patterns:

1. transposition of binding types;

2. transposition of states.

The former one consists in replacing a site name with another one in an
instance of a binding type. This is defined as follows:

Definition 4.2.1 (Transposition of binding types). A transposition of bind-
ing types is defined as a tuple pA, l, z, B, x, yq P A ˆNˆ S ˆ A ˆ S ˆ S such
that z P ⌃�pAq and x, y P ⌃�pBq.

In Figure 4.4 we can see an agent A with a site z that exhibits a binding
type B@x that is replaced with a binding type B@y. The second kind of
transposition consists in permuting the state of two sites in one agent. This
is defined as follows:

Definition 4.2.2 (Transposition of states). A transposition of states is de-
fined as a tuple pA, l, x, yq P A ˆ pN Y N̄q ˆ S ˆ S such that the following
properties are satisfied:

1. the site x belongs to the set ⌃pAq;
2. the site x belongs to ⌃◆pAq if and only if the site y belongs to ⌃◆pAq;
3. the site x belongs to ⌃�pAq if and only if the site y belongs to the set

⌃�pAq.

4.2. PERMUTATIONS OF SITES IN KAPPA 65

A y

#l

x

p

u

A y

#l

x

u

p

Figure 4.5: Transposition of states.

In Figure 4.5 a transposition of states is applied to an agent A that has
the site x phosphorylated and the site y unphosphorylated. The result is an
agent A where the states of the two sites are swapped (after the transposition
the site x is unphosphorylated and the site y is phosphorylated).

A transposition is either a transposition of binding types or a transposi-
tion of states. The set of all transpositions is denoted by T.

4.2.2 Action of a transposition on patterns

We will see how transpositions operate on patterns.

Action of a transposition of binding types on a pattern

Let E be a pattern. A transposition of binding type t :“ pA, l, z, B, x, yq
operates on E in the following way (as showed in Figure 4.4):

1. if E contains an agent A with identifier l documenting the site z, then
if the binding state of z is the binding type B@x, it is replaced with
the binding type B@y;

2. else if the binding state of z is the binding type B@y, then it is replaced
with the binding type B@x;

3. in any other cases, E is not modified.

Action of a transposition of states on a pattern.

Let E be a pattern. If E exhibits an agent A with identifier l, the transposi-
tion of states pA, l, x, yq denotes that we want to permute the internal state

66 CHAPTER 4. SYMMETRIES

or the binding state of the sites x and y in the agent A with identifier l (as
showed in Figure 4.5). The transformation is defined in two steps.

Firstly we define E1 as the expression which is obtained by replacing any
instance of a site address Al@x with the site address Al@y and vice versa.

Let us write E1 as a sequence a1
1, .., a

1
n of agents. We know that there exists

a unique agent a1
k in E1 of type A and identifier l. Let us write a1

k :“ Alp�q.
We define the expression E2 by replacing in E1 the agent a1

k with the agent
Alp�1q where �1 is defined as the interface where:

1. the site x appears in �1 if and only if the site y appears in �, then the
value of the two sites is the same;

2. the site y appears in �1 if and only if the site x appears in �, then the
value of the two sites is the same;

3. any site z in ⌃pAqztx, yu that appears in � it appears also in �1 with
the same value.

The expression E2 is called the result of the application of the transposition
t on the pattern E.

Whenever there is no agent A with identifier l in the pattern E then the
pattern E remains unchanged.

Given a transposition t, we denote by subspt, Eq the result of the ap-
plication of the transposition t on the pattern E. We notice that if E is a
pattern, then subspt, Eq is a pattern too. Moreover, if E is a proper pattern
(resp. a mixture, resp. a species), then subspt, Eq is a proper pattern (resp. a
mixture, resp. a species) as well.

Example 4.2.3. We consider the following signature:

• A “ tA,Bu,
• S “ tx, y, zu,
• I “ H,

• ⌃◆pAq “ ⌃◆pBq “ H,

• and ⌃�pAq “ ⌃�pBq “ tx, y, zu.
We consider the pattern:

E :“ A1pxA2@yq, A2pyA1@x, zB@xq.

4.2. PERMUTATIONS OF SITES IN KAPPA 67

Applying the transposition of binding types t1 :“ pA, 2, z, B, x, yq to E
replaces the binding type B@x with the binding type B@y in the agent A
with identifier 2:

subspt1, Eq “ A1pxA2@yq, A2pyA1@x, zB@yq.
Moreover, applying the transposition of states t2 :“ pA, 1, x, yq to E is

computed in two steps. Firstly we replace the site address A1@x with the site
address A1@y , secondly we replace the site name x with the site name y in
the agent A with identifier 1. Thus, we get:

subspt2, Eq “ A1pyA2@yq, A2pyA1@y, zB@xq.
Lastly, applying the transposition of states t3 :“ pA, 2, y, zq is computed

in two steps. Firstly we replace the site address A2@y with the site address
A2@z, secondly we swap the states of the site y and of the site z in the agent
A with identifier 2. Thus, we get:

subspt3, Eq “ A1pxA2@zq, A2pzA1@x, yB@xq.

4.2.3 Action of a transposition on a rule

Given a set of rules R, let us consider a rule r :“ E`
kÑ Er and a transposition

t. The rule:

r1 :“ subspt, E`q k1Ñ subspt, Erq,

where k1 “ k ¨ cardprsubspt,E`q,subspt,E`qsq
cardprE`,E`sq

, is well-defined.

In such a case, the rule r1 is called the action of the transposition t on
the rule r, and it is denoted by subsRpt, rq. Special care has to be taken
about the kinetic rates of rules to account for the potential gain/loss of
automorphisms in their lhs.

4.2.4 Action of a transposition on a rule application

In this section, we show that the action of a transposition is compatible
with the notion of matching between patterns and with the notion of agent
replacement. As a consequence we can apply transpositions directly on rule
applications.

Proposition 4.2.4 (Transposition of states on agent matching). Let A`p�`q
and Bip�iq be two agents such that Bip�iq |ù A`p�`q and let t “ pB, i, x, yq be a
transposition that operates on Bip�iq. Then the transposition t1 “ pA, `, x, yq
is such that subspt, Bip�iqq |ù subspt1, A`p�`qq.

68 CHAPTER 4. SYMMETRIES

Proof. Since Bip�iq |ù A`p�`q we know that the type of the two agents is the
same. So ⌃◆pAq “ ⌃◆pBq and ⌃�pAq “ ⌃�pBq The only sites that can be
a↵ected by the transposition are x and y. We face several cases.

1. x and y do not appear in �`. We consider �i “ �i1 , �i2 , where �i2 is
equal to �i without the sites x, y and �i2 is equal to the site x, y in �i.
Since x and y do not appear in �` we know that �i1 |ù ✏ and �i2 |ù �`.
So subspt, Bip�i1 , �i2qq “ Bip�1

i1
, �i2q and subspt, A`q “ A`p�`q. Since

�1
i1

|ù ✏ and �i2 |ù �`, we have subspt, Bip�iqq |ù subspt, A`p�`qq.
2. x appears in �` and y does not. If x appears in �` then it appears

also in �i. We can write �` “ x`, �
1̀ and �i “ �1

i, xi, �
2
i where �1

i “ ✏
or �1

i “ yi. We have �1
i |ù ✏, xi |ù x` and �2

i |ù � 1̀ . We take t1 “
pA, `, x, yq. subspt, Bip�iqq “ subspt, Bip�1

i, xi, �
2
i qq. subspt1, A`p�`qq “

subspt, A`px`, � 1̀qq “ A`py`, � 1̀q.
Since the transposition t on Bi assigns the former value of the site x to
the site y, we have yi |ù y`, subspt, Bip�1

iqq |ù ✏ and subspt, Bip�2
i qq “

Bip�2
i q |ù A`p� 1̀q “ subspt1, A`p� 1̀qq.

So subspt, Bip�iqq |ù subspt1, A`p�`qq.
3. y appears in �` and x does not. This case is symmetrical to the previous

one.

4. x and y appear in �`. Since x and y appear in �` they appear also in �i.
Let us write �` “ x`, y`, �

1̀ and �i “ xi, yi, �
1̀ . We have that xi |ù x`,

yi |ù y` and �1
i |ù � 1̀ . We take t1 “ pA, `, x, yq. Since the transposi-

tions just swaps the value of x and y we have that subspt, Bip�iqq |ù
subspt, A`p�`qq.

Proposition 4.2.5 (Transposition of binding types on agent matching).
Let A`p�`q and Bip�iq be two agents such that Bip�iq |ù A`p�`q and let
t “ pB, i, z, C, x, yq be a transposition on binding types that operates on
Bip�iq. Then subspt, Bip�iqq |ù subspt1, A`p�`qq, where t1 is the transposi-
tion pA, `, z, C, x, yq.
Proof. We have the following cases.

1. The site z does not appear in �`. We have subspt1, A`p�`qq “ A`p�`q.
Since the transposition t does not modify any other site in Bip�iq,
subspt, Bip�iqq |ù A`p�`q.

4.2. PERMUTATIONS OF SITES IN KAPPA 69

2. The site z appears in �` and �i can be written as zC@x, �1
i. We can have

�` “ zC@x, � 1̀ or �` “ z?, � 1̀ . Since Bip�iq |ù A`p�`q, we know that �1
i |ù

� 1̀ and z in �` is matched by zC@x. So the state of z in �` can be zC@x or
?. In the former case we have subspt, BipzC@x, �1

iqq “ BipzC@y, �1
iq |ù

A`pzC@y, � 1̀q “ subspt1, A`p�`qq; in the latter subspt, BipzC@x, �1
iqq “

BipzC@y, �1
iq |ù A`pz?, � 1̀q “ subspt1, A`p�`qq.

Proposition 4.2.6 (Transposition of states on patterns embedding). Let
E`, E be two patterns and t “ pA, i, x, yq be a transposition on states that
operates on E. Let � be an injective substitution. Then, if � induces an
embedding from E` to E, then there exists a transposition t1 such that �
induces an embedding from subspt1, E`q to subspt, Eq.
Proof. Since � induces an embedding we know that for every agent pA, lq
such that A P A and l P agentspE`, Aq, there exists an agent a1 such that
a ” a1 and a1 |ù �̄pa`q, where a` is the unique agent in E` of type with
identifier l and a is the unique agent in E of type A with identifier �pA, lq.
So if we apply the transposition t “ pA, i, x, yq to E, we face several cases.

1. There is j P agentspE`, Aq such that i “ �pA, jq. Let a1 be such
that ai ” a1 and a1 |ù aj. Then, by Proposition 4.2.4, it exists t1
such that subspt, aiq |ù subspt1, ajq. So � induces an embedding from
subspt1, E`q to subspt, Eq.

2. There is no j P agentspE`, Aq such that i “ �pA, jq. So, we face two
possibilities:

(a) The site x of the agent Ai denotes an address Ck@z and there is
an agent Cl in E` such that pC, kq “ �pC, lq and the site z of Cl

denotes the binding type A@x. Then we take t1 “ pC, l, A, x, yq.
We can write E` as Clp�lq, E 1̀ “ ClpzA@x�1

lq, E 1̀. subspt1, E`q “
ClpzA@y�1

lq.
We have E “ Aip�iq, E 1 “ AipxCk@z�iq, E 1 and subspt, Eq “
ClpzA@x�2

l q. So � induces an embedding from subspt1, E`q to
subspt, Eq.

(b) Otherwise we take t1 “ pC, k,A, x, yq, where k is an index that
does not appear in E 1̀, and we have that � induces an embedding
from subspt1, E`q “ E` to subspt, Eq.

70 CHAPTER 4. SYMMETRIES

Proposition 4.2.7 (Transposition of binding types on patterns embedding).
Let E`, E be two patterns and t “ pA, i, z, B, x, yq be a transposition on bind-
ing types that operates on E. Let � be an injective substitution. Then if �
induces an embedding from E` to E, then there exists a transposition t1 such
that � induces an embedding from subspt1, E`q to subspt, Eq.
Proof. Since � is an embedding we know that for any agent pA, lq such that
A P A and l P agentspE`, Aq, there exists an agent a1 such that a ” a1 and
a1 |ù �̄pa`q, where a` is the unique agent in E` of type with identifier l and a
is the unique agent in E of type A with identifier �pA, lq. So if we apply the
transposition t “ pA, i, z, B, x, yq to E, we face two cases.

1. There is j P agentspE`, Aq such that i “ �pA, jq. Let a1 be such
that ai ” a1 and a1 |ù aj. Then, by Proposition 4.2.5, it exists t1
such that subspt1, aiq |ù subspt, ajq. So � induces an embedding from
subspt1, E`q to subspt, Eq.

2. There is no j P agentspE`, Aq such that i�pA, jq. In this case we take
t1 “ pC, k,A, x, yq, where k is an index that does not appear in E 1̀, and
we have that � induces an embedding from subspt1, E`q to subspt, Eq.

Proposition 4.2.8 (Agent replacement). Let Aip�rq and Aip�iq be two agents
and t “ pA, i, x, yq be a transposition of states that applies to Aip�iqrAip�rqs.
Then it exists a transposition t1 such that:

subspt, Aip�iqrAip�rqsq “ subspt, Aip�iqqrsubspt1, Aip�rqqs.
Proof. We face the following cases.

1. The sites x and y do not appear in �r. There we can take t1 “ t,
then rsubspt1, Aip�rqqs “ Aip�rq and we have subspt, Aip�iqrAip�rqsq “
subspt, Aip�iqqrsubspt1, Aip�rqqs.

2. The site x appears in �i and the site y does not.

We can write �i “ xi, �
1
i and �r “ xr, �

1
r. We have:

subspt, Aipxi, �
1
iqrAipxr, �

1
rqsq “ subspt, Aipxi, �

1
iqrpxr, �

1
rqsq

“ subspt, Aipxirxrs, r�1
i, �

1
rsq

xirxrs “ xr so:

subspt, Aipxirxrs, r�1
i, �

1
rsqq “ subspt, Aipxr, r�1

i, �
1
rsqq

“ Aipy, r�1
i, �

1
rsq

4.2. PERMUTATIONS OF SITES IN KAPPA 71

where y has the old value of xr.

On the other side we have:

subspt, Aip�iqqrsubspt, Aip�rqqs “ subspt, Aipxi, �
1
iqqrsubspt, Aipxr�

1
rqqs

“ Aipyi, �1
iqrAipyr, �1

rqs
“ Aipyi, �1

iqryr, �1
rsq

“ Aipyiryrs, �1
iqr�1

rsq
“ Aipyr, �1

iqr�1
rsq

yiryrs “ yr, where yr has the old value of xr.

3. The site y appears in �i and the site x does not.

This case is symmetric to the previous one.

4. The sites x and y appear both in �i and in �n. So we can write �i as
xi, yi, �

1
i and �r as xr, yr, �

1
r.

subspt, Aipxi, yi�
1
iqrAipxr, yr�

1
rqsq “ subspt, Aipxi, yi�

1
iqrpxr, yr�

1
rqsq

“ subspt, Aipxirxrs, yiryrsr�1
i, �

1
rsqq

“ Aipyi, xi, �
1
iqrAipyr, xr, �

1
rqs

“ subspt, Aip�iqqrsubspt, Aip�yqqs
As we wanted to show.

Proposition 4.2.9. Let � :“ pr, E,�q be a transition label and t :“ pA, i, x, yq
be a transposition on states that operates on E. Then:

1. if there is no integer j such as �pA, jq “ i we have that � is an embed-
ding between the lhs of r and subspt, Eq;

2. otherwise it exists a transposition t1 such that if we consider r1 :“
subsRpt1, rq, � is also an embedding between the lhs of r1 and subspt, Eq.

Proof. Let us consider the first case. Since a transposition does not change
the index of agents, if there is no j such that �pA, jq “ i, � is still an
embedding between the lhs of r and subspt, Eq.

Otherwise, let j be such that �pA, jq “ pA, iq. By definition of embed-
ding Ai |ù Aj. By Proposition 4.2.4, it exists t1 such that subspt, Aiq |ù
subspt1, Ajq. So if we take r1 :“ subsRpt1, rq, we have that � is still an
embedding between the lhs of r1 and subspt, Eq.

72 CHAPTER 4. SYMMETRIES

Definition 4.2.10 (Transposition of states on a transition label). Let � :“
pr, E,�q be a transition label and t “ pA, i, x, yq be a transposition on states
that operates on E. Let r1 be the rule that is defined as r whenever there
is no integer j such as �pA, jq “ i or r1 :“ subsRpt1, rq (where t1 is given
by Definition 4.2.9). Let E 1 be the mixture subspt, Eq. We call the triple
pr1, E 1,�q the action of the transposition pA, i, x, yq on the transition label �
and we denote it by subsLpt,�q.
Proposition 4.2.11. Let � :“ pr, E,�q be a transition label and t :“ pA, i, z, C, x, yq
be a transposition on binding types that operates on E. Then:

1. if there is no integer j such as �pA, jq “ i we have that � is an embed-
ding between the lhs of r and subspt, Eq;

2. otherwise it exists a transposition t1 such that if we consider r1 :“
subsRpt1, rq, � is also an embedding between the lhs of r1 and subspt, Eq.

Proof. The proof is analogous to the one for Proposition 4.2.9.

Definition 4.2.12 (Transposition of binding types on a transition label). Let
� :“ pr, E,�q be a transition label and t “ pA, i, z, C, x, yq be a transposition
on binding states that operates on E. Let r1 be the rule that is defined as
r whenever there is no integer j such as �pA, jq “ i or r1 :“ subsRpt1, rq
(where t1 is given by Proposition 4.2.11). Let E 1 be the mixture subspt, Eq.
We call the triple pr1, E 1,�q the action of the transposition t on the transition
label � and we denote it by subsLpt,�q.

We recall that if r “ E` Ñ Er@k (Er “ b1, ..., bn) is a rule, if E “
a1, ..., am is a pattern and if � is an injective substitution that induces an
embedding from E` to E, then the result of the application of r on E along
�, which is denoted by ErErs� is defined as the mixture a1

1, ..., a
1
m, where for

any integer i such that 1 § i § m, a1
i is defined as airbjs whenever there

exists an integer j such that �pA, jq “ i, and as ai otherwise.

Proposition 4.2.13. Let r be a rule E` Ñ Er@k, E “ a1, ..., am be a pattern
and � be an injective substitution that induces an embedding from E` to E.
We have subspt, Eqrsubspt, Erqs� “ subspt, ErErs�q, where t denotes the
transposition pA, l, x, yq.
Proof. subspt, ErErs�q is equal to subspt, pa1

1, ..., a
1
mqq where for any inte-

ger i such that 1 § i § m, a1
i is defined as airbjs whenever there ex-

ists an integer j such that �pA, jq “ i, and as ai otherwise. We consider
psubspt, a1

1q, ..., subspt, a1
mqq. Then the only a1

i that is a↵ected by the trans-
position t “ pA, l, x, yq is the one such that i “ l.

There we face two cases:

4.2. PERMUTATIONS OF SITES IN KAPPA 73

1. a1
i is equal to airbjs (where j is such that �pA, jq “ i),

2. or a1
i is equal to ai.

In the latter case, a1
i “ ai, we have subspt, aiq “ subspt, aiq. Otherwise we

can apply Proposition 4.2.8, so subspt, aiqrsubspbjqs “ subspt, airbjsq.

Proposition 4.2.14. Let E be a species, � :“ pr, E,�q be a transition label
and t “ pA, i, x, yq be a transposition that operates on E.

We have:

E
�›Ñ E 1 ñ subspt, Eq subsLpt,�q›Ñ subspt, E 1q

Proof. By Proposition 4.2.6 we know that if t “ pA, i, x, yq is a transposition
that operates on E, if � is an injective substitution that induces an embedding
from E` to E, then there exists t` such that � induces an embedding from
subspt`, E`q to subspt, Eq.

subsLpt,�q is equal to pr1, subspt, Eq,�q, where r1 is equal to subspt1, E`q Ñ
subspt1, Erq.

If we take t1 “ t` we have that subspt1, E`q C� subspt, Eq, so the rule r1
applies to subspt, Eq.

If we apply r1 to subspt, Eq we obtain subspt, Eqrsubspt, Erqs�.
subspt, Eqrsubspt, Erqs� “ subspt, ErErs�q that is equal to subspt, E 1q.
The converse application comes from the fact that t is an involution.

4.2.5 Symmetric sites

Transpositions will be used in order to identify sites having the same capa-
bilities of interaction.

In the following, we assume that no syntactic rule occurs twice in a model.
This does not restrict our framework, since multiple instances of a syntactic
rule can be merged, by summing up their rate constants.

By syntactic rules, we mean that we consider rules up to structural con-
gruence ”, but not up to rule isomorphism.

Definition 4.2.15 (Strong (syntactical) symmetry). The sites x and y are
symmetric in A, for the set of rules R, if for every rule r and every transpo-
sition t that operates on r, the rule subsRpt, rq belong to the set of rules R as
well and the ratio between its rate constant and the number of automorphisms
in its lhs is the same.

74 CHAPTER 4. SYMMETRIES

This is a very strong requirement based on a syntactical equivalence.
Later we will see a less demanding notion, when rules can be considered up
to isomorphisms (e.g. see Definition 4.2.16).

What is interesting for us it is to understand if a given system and the
same one, after a transposition on its sites, perform in the same way (i.e.
the two systems are equivalent). In order to show that two rules sets are
equivalent it can be necessary to reorder interfaces and reindex agents in
rules (by applying a same into substitution to both sides of a given rule) and
gather some rules having the same lhs and the same rhs (summing up the
rates).

Given a rule r and a non negative real number k P R`, we define
scalepr, kq as the rule that is obtained by multiplying the rate constant of r
by k. Moreover, we define the orbit of the rule r, which is written orbitprq,
as the set of rules which can be obtained by applying zero, one, or several
transpositions of states to the rule r. Since the lhs and the rhs of a rule are
finite expressions, the orbit of a rule is always a finite set.

Our model transformation is formalised by the binary relation ñ over
sets of rules, which is defined as follows:

R ñ tscalepr1,
1

cardporbitprqq
q|r P R, r1 P orbitprqu.

for any set of rules R.
Agents and sites in rules can be reordered using the congruence relation

over both hand sides. Moreover, agents can be reindexed using substitutions.
A generalised substitution is a mapping � from A ˆNY N̄ to NY N̄ such

that:

1. for any proper identifier l P N we have �plq P N;

2. for any temporary identifier l̄ P N̄ we have �pl̄q P N̄.

A generalised substitution is into if, and only if, for any identifier l, l1 P NYN̄,
�plq “ �pl1q implies l “ l1. The extension �̄ of a generalised substitution � to
agents is defined as in the case of substitution (see Section 3.3).

Definition 4.2.16 («-equivalence over rules). Given two rules r :“ E`
kÑ Er

and r1 :“ E 1̀ k1Ñ E 1
r, we say that r and r1 are isomorphic, and we write r « r1,

if and only if:

1. k “ k1,

2. and there exists a generalised substitution � such that �̄pE`q ” E 1̀ and
�̄pErq ” E 1

r.

4.2. PERMUTATIONS OF SITES IN KAPPA 75

To understand if two sets of rules are equivalent we need to check if they
can be made equal by replacing their rules with «-equivalent ones and by
gathering the rules having the same lhs and the same rhs (in such a case,
their rates are summed up).

The idea is the following: let us fix an agent type A and two sites x and y
in ⌃pAq such that x P ⌃�pAq ô y P ⌃�pAq and x P ⌃◆pAq ô y P ⌃◆pAq. So,
in order to detect whether x and y have the same capabilities of interaction,
we will replace each rule with the combination of rules which can be obtained
by substituting zero, one or several occurrences of x with y, and zero, one or
several occurrences of y with x.

If the obtained system of rules is equivalent to the initial one, then the
sites x and y have the same capabilities of interaction.

Example 4.2.17. Let us have a look to some example. We start by consid-
ering the following set of rules:

A

1

px
u

q k

1Ñ A

1

px
p

q
A

1

py
u

q k

2Ñ A

1

py
p

q
A

1

px
p

, y
p

q k

3Ñ "

The signature is: A “ A, S “ tx, yu, I “ tu, pu, ⌃◆ “ tx, yu and ⌃� “ H.
We can notice that whenever the rates k1 and k2 are equal, the sites x

and y are symmetric in A. So, the system is equivalent to the following one:

A

1

px
u

q k

1Ñ A

1

px
p

q

A

1

py
u

q k

1Ñ A

1

py
p

q
A

1

px
p

, y
p

q k

3Ñ "

where k1 “ k1`k2

2
.

Let us detail the transformation. The first two rules are replaced with two
rules each, with a half rate, one applying on the site x,and the other applying
on the site y. The four obtained rules are pairwise equal, so we gather them
pairwise. When transforming the third rule, we obtain two equivalent rules
(with half rate), that we can gather to recover the initial rule.

Example 4.2.18. Let us have a look to a more subtle example and let us
consider the following set of rules:

A

1

pxq, A
2

pxq k

1Ñ A

1

pxA2@xq, A
2

pxA1@xq

76 CHAPTER 4. SYMMETRIES

A

1

pxq, A
2

pyq k

2Ñ A

1

pxA2@yq, A
2

pyA1@xq

A

1

pyq, A
2

pyq k

3Ñ A

1

pyA2@yq, A
2

pyA1@yq

The signature is: A “ A, S “ tx, yu, I “ H, ⌃◆ “ H and ⌃� “ tx, yu.
Here the sites x and y are symmetric whenever k1 “ k2 “ k3. This case

is more subtle than the previous one, because some rules gain or loose some
symmetries during the transformation. For instance, the transformation of
the first rule gives four rules. One of them binds the sites x of two agents
A, another binds the sites y of two agents A. The lhss of these two rules
have the same number of symmetries as the one of the initial rule. Thus,
their rate constant are divided by 4 (since the rule is rewritten into 4 rules).
Another rule binds the site x of the agent A with identifier 1 and the site y of
the agent A with identifier 2, and the last one binds the site y of the agent A
with identifier 1 and the site y of the agent A with identifier 2. The number
of symmetries in these rules is twice less as the number of symmetries in
the initial rule. Thus the rate constant are divided by 8 (4 since the rule
is rewritten into 4 rules, and 2 due to the loss of symmetries). But the
two obtained rules are equivalent up to reordering and reindexing, thus, we
obtain a single rule, the rate constant of which had been divided by 4. The
transformation of the remaining rules works the same way, except that the
rule which binds the sites x of two agents A and the rule which binds the
sites y of two agents A both gain symmetries (the rate constant is divided
by 4 and multiplied by 2), and the rule which binds the site x and the site y
of two agents A keeps the same number of symmetries (the rate constant is
divided by 4).

So as to avoid testing for all triples pA, x, yq such that A P A and
x, y P ⌃pAq, whether the condition in 4.2.15 is satisfied or not, we use a
weaker property to preselect the potential triples. Two symmetric sites have
necessarily the same set of potential partners, and there internal states range
among the same set of values. This can be detected by the static analyses
that are proposed in [27, 31].

4.3 Symmetries and rule applications

In this section we want to show that a pair of symmetric sites induces a
bisimulation and how this fact can be exploited to define a model reduction.
First of all, we recall the definition of bismulation given in Chapter 2.

4.3. SYMMETRIES AND RULE APPLICATIONS 77

Definition 4.3.1. Given an autonomous system pV ,Fq and a relation r, we
say that that r induces a bisimulation over pV ,Fq if and only if for any pair
p⇢, ⇢1q of states over V, if Prp⇢q “ Prp⇢1q, then PrpFp⇢qq “ PrpFp⇢1qq.

Indeed, a relation r induces a bisimulation over an autonomous system
pV ,Fq if, and only if, Pr ˝ F “ Pr ˝ F ˝ Pr.

Definition 4.3.2 (Stoichiometric vector). Given a reaction

React : R1, . . . , Rn Ñ P1, . . . , Pm,

we define the stoichiometric vector V pReactq as:

V pReactqpvq “
mÿ

i“1

#
1 if Pi “ v

0 otherwise
´

nÿ

i“1

#
1 if Ri “ v

0 otherwise,

for every species v.

For any species v, we denote as tSv,1, . . . , Sv,vRu its orbit. The orbit of
a species is obtained by applying every sequence on transpositions on the
species v.

We consider a reaction React induced by a rule rule. We denote as
tReact1, . . . , Reactku its orbit. The orbit of a reaction is obtained by applying
every sequence on transpositions on the lhs of the reaction React.

For each natural number j among 1 and k, we write:

Reactj : Rj,1, . . . , Rj,n Ñ Pj,1, . . . , Pj,m

and we define �j as the quotient between the rate constant of the underlying
rule and the number of automorphisms in the lhs of this rule.

We notice that for every two natural numbers j, j1 among 1 and k, we
have:

PrpV pReactjqq “ PrpV pReactj1qq,
and:

�j “ �j1 .

Given a state ⇢, the overall contribution of the orbit rReacts« to the
function F can be expressed as:

kÿ

j“1

˜
�j ˆ

nπ

i“1

⇢pRj,iq ˆ V pReactjq
¸
.

78 CHAPTER 4. SYMMETRIES

Then, we have:

Pr

´∞k
j“1 p�j ˆ ±n

i“1 ⇢pRj,iq ˆ V pReactjqq
¯

“
´∞k

j“1 p�j ˆ ±n
i“1 ⇢pRj,iq ˆ PrpV pReactjqqq

¯

“
´∞k

j“1 p�1 ˆ ±n
i“1 ⇢pRj,iq ˆ PrpV pReact1qqq

¯

“ �1 ˆ ∞k
j“1

±n
i“1 ⇢pRj,iq ˆ PrpV pReact1qq

“ �1 ˆ ±n
i“1

∞kRj,1

j“1 ⇢pSR,jq ˆ PrpV pReact1qq.
But, for any i between 1 and n, we have, by definition of Pr:

kRj,1ÿ

j“1

⇢pSR,jq “
kRj,1ÿ

j“1

Prp⇢pSR,jqq.

It follows that:

Pr

´∞k
j“1 p�j ˆ ±n

i“1 ⇢pRj,iq ˆ V pReactjqq
¯

“ Pr

´∞k
j“1 p�j ˆ ±n

i“1 Prp⇢pRj,iqq ˆ V pReactjqq
¯

Summing up the contribution for every orbit of reactions, we get that the
relation r induces a bisimulation, as stated in the following theorem:

Theorem 4.3.3. We have:

Pr ˝ F “ Pr ˝ F ˝ Pr.

4.4 Conclusion

We have introduced a notion of symmetry among sites for Kappa models.
Intuitively, two sites are symmetric in a model, if they play the same role in
each instance of protein.

Formally, this is not so easy, because several syntactically di↵erent rules
may have the same semantics, and we have to take this into account. We
defined two notions of symmetry. The first one, called strong symmetry,
is purely syntactic (it makes the distinction between two rules having the
same semantics). With this notion, two sites are symmetric, if whenever
we swap every instance of them in every rule, and we collect the rules that
are identical (up to structural congruence), we get back the initial model.
The second notion of symmetry considers rules up to their semantics. With
this notion, two sites are symmetric, whenever the rule set is semantically
equivalent to one that is strongly symmetric.

4.4. CONCLUSION 79

We show, by induction over the definition of the semantics, that each
symmetry between sites induce a bisimulation. Thus symmetries can be
used to reduce the dimension of models.

80 CHAPTER 4. SYMMETRIES

Chapter 5

Production/consumption of a
pattern

In this chapter, we express the derivative of the amount of each pattern in a
model as an expression of the amount of other patterns.

5.1 Consumption/production of a species

As a preliminary, we reformulate the consumption and the production of a
given species in Kappa models.

Let us consider the following set of rules R:

r1 :“ c1,1, . . . , c!p1q,1 Ñ p1,1, . . . , p✓p1q,1 k1
r2 :“ c1,2, . . . , c!p2q,2 Ñ p1,2, . . . , p✓p2q,2 k2
. . . :“ . . .
rh :“ c1,h, . . . , c!phq,h Ñ p1,h, . . . , p✓phq,h kh

where for every rule r◆, !p◆q returns the number of components in the left
hand side and ✓p◆q returns the number of components in the right hand side.

For each rule r◆, we denote as �◆ the quotient between the rate constant
k◆ and the number of automorphisms in the left hand side of the rule r◆.

We consider all the ground refinements of R, where every rule r◆ has ⌫p◆q
refinements (one for each composite embedding between the lhs of the rule

81

82 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

into a tuple of species in V)

reactp1,1q :“ Rp1,1q,1, . . . , Rp1,1q,!p1q Ñ Pp1,1q,1, . . . , Pp1,1q,✓p1,1q
. . . :“ . . .
reactp1,⌫p1qq :“ Rp1,⌫p1qq,1, . . . , Rp1,⌫p1qq,!p1q Ñ Pp1,⌫p1qq,1, . . . , Pp1,⌫p1qq,✓p1,⌫p1qq
. . . :“ . . .
. . . :“ . . .
. . . :“ . . .
reactph,1q :“ Rph,1q,1, . . . , Rph,1q,!phq Ñ Pph,1q,1, . . . , Pph,1q,✓ph,1q
. . . :“ . . .
reactph,⌫phqq :“ Rph,⌫phqq,1, . . . , Rph,⌫phqq,!phq Ñ Pph,⌫phqq,1, . . . , Pph,⌫phqq,✓ph,⌫phqq

For every reaction react◆,⌧ , ✓p◆, ⌧q denotes the number of products of the
reaction react◆,⌧ .

Moreover, for every reaction react◆,⌧ , we denote as �◆,⌧ the corresponding
embedding between the lhs of the rule rule◆ and the lhs of the reaction react◆,⌧
and as �1

◆,⌧ the corresponding embedding between the rhs of the rule rule◆
and the rhs of the reaction react◆,⌧ .

5.1.1 Consumption

Given a species v P V , we denote as �´pvq the quantity of v that is consumed
as a reactant of a reaction.

This quantity is:

�´pvq “
hÿ

◆“1

⌫p◆qÿ

⌧“1

�◆

!p◆qÿ

j“1

f´p◆, ⌧, j, vq
!p◆qπ

l“1

⇢pRp◆,⌧q,lq

where:

f´p◆, ⌧, j, vq “
"

1 if Rp◆,⌧q,j “ v
0 otherwise.

5.1.2 Production

Given a species v P V , we denote as �`pvq the quantity of v that is added as
a product of a reaction.

This quantity is:

�`pvq “
hÿ

◆“1

⌫p◆qÿ

⌧“1

�◆

✓p◆,⌧qÿ

j“1

f`p◆, ⌧, j, vq
!p◆qπ

l“1

⇢pRp◆,⌧q,lq

where:

f`p◆, ⌧, j, vq “
"

1 if Pp◆,⌧q,j “ R
0 otherwise.

5.2. CONSUMPTION/PRODUCTION OF A PATTERN 83

5.1.3 Balance

We have expressed the consumption and the production of each chemical
species directly at the level of rules.

Proposition 5.1.1. Let R be a chemical species.
We have:

Fp⇢qpvq “ �`pvq ´ �´pvq.

5.2 Consumption/production of a pattern

Now we express, for every pattern component P , the di↵erence between its
production and its consumption.

Given a pattern component P and a state ⇢ over V , we define the con-
centration rP s⇢ of the pattern P in the state ⇢, as:

rP s⇢ “
ÿ

vPV

cardprP, vsq
cardprP, P sq⇢pvq.

We usually write rP s instead of rP s⇢. We notice that ⇢pP q “ rP s whenever
the pattern component is a species in the set V . We remind the reader that
rP, P 1s denotes the set of the embeddings from the pattern P into the pattern
P 1. This way, rP, P s denotes the set of automorphisms of the pattern P .

We also define the corrected concentration prP sq⇢ of a pattern P as follows:

prP sq⇢ “ rP s⇢ ˆ cardprP, P sq.
We di↵erentiate the expression rP s⇢ and we obtain that:

rP s1
⇢ “

ÿ

vPV

cardprP, vsq
cardprP, P sqFp⇢qpvq.

By linearity, we get that:

rP s1
⇢ “

∞
vPV cardprP, vsqFp⇢qpvq

cardprP, P sq .

Moreover we know, by Proposition 5.1.1, that for every species v P V :

Fp⇢qpvq “ ∞h
◆“1

∞⌫p◆q
⌧“1 �◆

∞✓p◆,⌧q
j“1 f`p◆, ⌧, j, vq ±!p◆q

l“1 ⇢pRp◆,⌧q,lq
´ ∞h

◆“1

∞⌫p◆q
⌧“1 �◆

∞!p◆q
j“1 f

´p◆, ⌧, j, vq ±!p◆q
l“1 ⇢pRp◆,⌧q,lq

The pattern component P is consumed for each occurrence of the pattern
P in a reactant R of a reaction react◆,⌧ . It is worth noting that, whenever

84 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

the pattern P has n automorphisms, each occurrence of the pattern P cor-
responds to n embeddings from the pattern component P to the reactant
R.

We recall that each ground refinement RL Ñ RR is defined by a rule
L Ñ R and a straight-epi from the lhs L of the rule and the lhs RL of the
ground refinement. For each ground refinement, we consider every embed-
ding between the pattern component P and the lhs RL of the this ground
refinement.

P

L

RL RR

R//

//

⌘
1

BB

'

� ?

OO

�◆,⌧

Conversely, the pattern component P is produced for each occurrence of
the pattern P in a reactant R of a reaction react◆,⌧ . Here again, whenever
the pattern P has n automorphisms, each occurrence of the pattern P cor-
responds to n embeddings from the pattern component P to the reactant
R.

P

L

RL RR

R//

//

* J

WW

'

� ?

OO

�◆,⌧

It may happen that, given a ground refinement RL Ñ RR and an injective
substitution ', the injective substitution ' induces an embedding both from
the pattern component P to the mixture RL and from the pattern component
P to the mixture RR. In such as case, the corresponding consumption and
production terms cancel pair-wisely.

Definition 5.2.1 (proper consumption). We define the proper consumption
of the pattern component P as follows.

�´
‹ pP q “

∞
vPV

∞
'PrP,vs

∞h
◆“1

∞⌫p◆q
⌧“1 �◆

∞!p◆q
j“1 f‹́ p◆, ⌧, j, v,'q ±!p◆q

l“1 ⇢pRp◆,⌧q,lq
cardprP, P sq

5.3. PROPER CONSUMPTION OF A PATTERN 85

where for every rule index ◆, for every reaction index ⌧ , every position j,
every species v, and every embedding ' between the pattern component P
and the species v, the expression f‹́ p◆, ⌧, j, v,'q is defined as 1 if the following
conditions are satisfied:

• the embedding �◆,⌧ maps the connected pattern cj,◆ to the species v,

• the instance of P that is defined by the embedding ' is modified by the
reaction react◆,⌧ ,

and as 0 otherwise.

Definition 5.2.2 (proper production). We define the proper production of
the pattern component P as follows:

�`
‹ pP q “

∞
vPV

∞
'PrP,vs

∞h
◆“1

∞⌫p◆q
⌧“1 �◆

∞✓p◆,⌧q
j“1 f‹̀ p◆, ⌧, j, v,'q ±!p◆q

l“1 ⇢pRp◆,⌧q,lq
cardprP, P sq

where for every rule index ◆, every reaction index ⌧ , every position j, ev-
ery species v, and every embedding ' between the pattern component P and
the species v, the expression f‹̀ p◆, ⌧, j, v,'q is defined as 1 if the following
conditions are satisfied:

• the embedding �◆,⌧ maps the connected pattern pj,◆ to the species v,

• the instance of P that is defined by the embedding ' has been modified
by the ground refinement react◆,⌧ ,

and as 0 otherwise.

Proposition 5.2.3. Let P be a pattern component.
We have: ÿ

vPV

ÿ

�PrP,vs
Fpvq “ rP, P sp�`

‹ pP q ´ �´
‹ pP qq.

5.3 Proper consumption of a pattern

Now we express the proper consumption of a pattern as the concentration of
other patterns.

86 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

5.3.1 Condition

Let us fix a pattern P , a rule index ◆, a reaction index ⌧ , a position j, a
species v, and an embedding ' between the pattern component P and the
species v. We denote the rule rule◆ as L Ñ R and the reaction react◆,⌧ as
RL Ñ RR.

P

L

RL RR

R//

//

⌘
1

BB

'

� ?

OO

�◆,⌧

We define the notions of agent instance and site instance as follows:

Definition 5.3.1 (agent instance). Let us consider a pattern P .
We call an agent instance in the pattern P a pair pA, iq P A ˆ L such

that there exists an agent A with identifier i in the pattern P .

Definition 5.3.2 (site instance). Let us consider a pattern P .
We call a site instance in the pattern P a triple pA, i, xq P A ˆ L ˆ S

such that there exists an agent A with identifier i which documents the state
of the site x P ⌃pAq in the pattern P .

The instance of P that is defined by the embedding ' is modified by the
reaction react◆,⌧ if and only if at least one of both following conditions is
satisfied:

• there exist an agent type A P A, two agent identifiers i, i1 P N, and a
site name x P ⌃pAq, such that:

– pA, i, xq is a site instance in the pattern P ,

– pA, i1, xq is a site instance in the pattern RL,

– pA,'pA, iq, xq “ pA,�◆,⌧ pA, i1q, xq,
– the site instance pA, i1, xq is modified explicitly in the rule rule◆;

• there exist a site instance pA, i, xq in the pattern P and a site instance
pA1, i1, x1q P MAYprule◆q Y MUST prule◆q, such that:

– the site instances pA,'pA, iq, xq and pA1,�◆,⌧ pA1, i1q, x1q are bound
in RL of the reaction react◆,⌧ ,

– pA,'pA, iq, xq is a site instance in RR,

5.3. PROPER CONSUMPTION OF A PATTERN 87

– the site instance pA,'pA, iq, x1q is free in RR.

We gather the proper negative contributions for the concentration of the
pattern P according to how the pattern P is glued with a pattern component
in the lhs of the rule rule◆.

5.3.2 Gluing

Let us explain how we can glue two patterns.
To glue two patterns, we need to define a pairing relation among the

agents of each other (these pairs of agents will be considered equal). Moreover
it is possible to add links between some site instances, so as to take into
account about potential side e↵ects. We do this in two steps. Firstly, we
introduce a primitive to gather two patterns while fusing some of their agents.
Secondly, we introduce a primitive to add links in patterns.

We start by defining the gluing operation.

Definition 5.3.3 (pairing). Let Z1 and Z2 be two patterns. Let AZ1 and
AZ2 be respectively the set of agents of Z1 and the set of agents of Z2. A P
PpAZ1 ˆ AZ2q is a pairing between Z1 and Z2 if @i, i1 P AZ1 and @j, j1 P AZ2

we have:

1. if pi, jq P A and pi, j1q P A then j “ j1;

2. if pi, jq P A and pi1, jq P A then i “ i1.

Now we define the common region between two patterns, according to
a pairing. Intuitively, the agents of this common region belongs to both
patterns, and thus they have two agent identifiers. In order to properly
rename these labels, we assume that we are given a bijection � from the set
pN Y Nq2 to the set N Y N.

Definition 5.3.4 (common part). Let Z1 and Z2 be two patterns, and A be
a pairing between them.

We define X :“ Z1 XA Z2 as the pattern that is defined by the following
constraints:

1. A�pi,jq is an agent in X if and only if the pair ppA, iq, pA, jqq belongs to
the set A ;

2. the agent A�pi,jq in X documents the site x if and only if the site in-
stance pA, i, xq is documented in Z1 and the site instance pA, j, xq is
documented in Z2;

88 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

3. the site x of the agent A�pi,jq is in the state w in X if and only if:

(a) either pA, i, xq is in the state w in Z1 and pA, j, xq is in the state
w in Z2,

(b) or w “ ✏ and pA, i, xq in Z1 and pA, j, xq in Z2 have a di↵erent
internal state.

4. For every binding state � in t✏,´, ?u Y tN@l | N P A, n P ⌃�pAqu, the
site x of the agent A�pi,jq has the binding state � in X if and only if:

(a) pA, i, xq has the binding state � in Z1 and pA, j, xq has the binding
state � in Z2,

(b) or pA, i, xq in Z1 and pA, j, xq in Z2 have a di↵erent binding state
and � “?;

5. two sites x and y of the agents A�pi,jq and A�pi1,j1q are bounded in X
if and only if the sites x and y are bounded in the agents Ai, Ai1 of Z1

and in the agents Aj, Aj1 of Z2.

Not every pairing defines a gluing, because two contradicting states could
be attached in both patterns to a same site. When it is defined, the gluing
between two patterns Z1 and Z2 according to a pairing relation A is defined
up to isomorphism, as the site graph that refines the site-graph Z1 XA Z2,
by adding any information that is avaible either in Z1 and Z2. Special care
has to be taken for dealing with the state of bound sites, because they can
be defined at di↵erent levels of resolution.

The following definition formalises the notion of gluing.

Definition 5.3.5 (gluing). Let Z1 and Z2 be two patterns, A be a pairing
between them and X be Z1 XA Z2.

The gluing of the patterns Z1 and Z2 according to the pairing A is well
defined if and only if there exists a pattern Y and three embeddings:

1. �1 : Z1 Ñ Y

2. �2 : Z2 Ñ Y

3. �X : X Ñ Y

such that:

1. for every agent Ai in Y , at least one of both following assertions is
satisfied:

(a) there exists an agent Aj belonging to Z1 such that i “ �1pA, jq;

5.3. PROPER CONSUMPTION OF A PATTERN 89

(b) there exists an agent Aj belonging to Z2 such that i “ �2pA, jq;
2. for every agent Ak in X (we write pi, jq :“ �´1pkq), both following

assertions are satisfied:

(a) �XpA, kq “ �1pA, iq;
(b) �XpA, kq “ �2pA, jq;

3. for every agent Ai in Y and any site x P ⌃pAq, the site instance pA, i, xq
is documented in Y if and only if at least one of both following asser-
tions is satisfied:

(a) there exists an agent Aj belonging to Z1 such that i “ �1pA, jq and
the site instance pj, xq is documented in the pattern Z1;

(b) there exists an agent Aj belonging to Z2 such that i “ �2pA, jq and
the site instance pA, j, xq is documented in the pattern Z2;

4. for every site instance pA, i, xq in Y , the site instance pA, i, xq has a
non-empty internal state in Y if and only if at least one of both following
assertions is satisfied:

(a) there exists an agent Aj belonging to Z1 such that i “ �1pA, jq
and the site instance pA, j, xq has a non-empty internal state in
the pattern Z1;

(b) there exists an agent Aj belonging to Z2 such that i “ �2pA, jq
and the site instance pA, j, xq has a non-empty internal state in
the pattern Z2;

5. for every site instance pA, i, xq in Y :

(a) the binding state of the site instance pA, i, xq belongs to the set:

t✏u ˆ tAi@x | A P A, i P N Y N, x P ⌃�pAqu
whenever at least one of both following assertions is satisfied:

i. there exists an agent Aj belonging to Z1 such that i “ �1pA, jq
and the site instance pA, j, xq has has a binding state in the
set:

t✏u ˆ tAi@x | A P A, i P N Y N, x P ⌃�pAqu
in the pattern Z1;

90 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

ii. there exists an agent Aj belonging to Z2 such that i “ �2pA, jq
and the site instance pA, j, xq has has a binding state in the
set:

t✏u ˆ tAi@x | A P A, i P N Y N, x P ⌃�pAqu
in the pattern Z2;

(b) else the binding state of the site instance pA, i, xq is a binding type
whenever at least one of both following assertions is satisfied:

i. there exists an agent Aj belonging to Z1 such that i “ �1pA, jq
and the binding state of the site instance pA, j, xq in the pat-
tern Z1 is a binding type;

ii. there exists an agent Aj belonging to Z2 such that i “ �2pA, jq
and the binding state of the site instance pA, j, xq in the pat-
tern Z2 is a binding type;

(c) else the binding state of the site instance pA, i, xq is equal to ‘´’
whenever at least one of both following assertions is satisfied:

i. there exists an agent Aj belonging to Z1 such that i “ �1pA, jq
and the site instance pA, j, xq has equal to ‘´’ in the pattern
Z1;

ii. there exists an agent Aj belonging to Z2 such that i “ �2pA, jq
and the site instance pA, j, xq has equal to ‘´’ in the pattern
Z2;

(d) otherwise it is equal to ‘?’.

Whenever it is defined (up to isomorphism), the pattern Y is called the
gluing between the patterns Z1 and Z2 according to the pairing A , and is
denoted as Z1 YA Z2.

Example 5.3.6. In Figure 5.1 we can see an example of gluing.
There we have:

Z1 “ A3pxB4@x, yC5@yq, B4pxA3@xq, C5pyA3@yq
Z2 “ A6pxB7@xq, B7pxA2@x, zD8@zq, D8pzB7@zq.

We may chose, for the pairing A , any non empty subset of the following
set:

tppA, 3q, pA, 6qq, ppB, 4q, pB, 7qqu.
The pattern X identifying the common part between Z1 and Z2 is:

A1pxB2@xq, B2pxA1@xq.

5.3. PROPER CONSUMPTION OF A PATTERN 91

A3 B4

C5

A6 B7

D8

A1 B2

A9 B10

C11 D12

�1
�2

�1 �2

Figure 5.1: A common region and a gluing.

The corresponding gluing is defined as follows:

A3,6pxB4,7@x, yC5@yq, B4,7pxA3,6@x, zD8@zq, C5pyA3,6@yq, D8pzB4,7@zq.

We observe that in Definition 5.3.5, the fact that the sites that are both
defined in Z1 and in Z2 have compatible states is ensured by the existence of
the three embeddings.

Then, we define the operation to add a link in a pattern.

Definition 5.3.7 (bonds insertion). Let P be a pattern and B be a set of
pairs of site instances, such that:

1. for every pair ps, s1q P B, s ‰ s1;

2. for every two distinct pairs ps, s1q, ps2, s3q P B, we have:

ts, s1u X ts2, s3u “ H;

92 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

3. for every pair ps, s1q P B, if the site s (resp. s1) is a site instance in the
pattern P , then the binding state of the site instance s (resp. s1) is not
a site address (that is to say that its binding state belongs to the set:
t✏,´, ?u Y tA@x | A P A, x P ⌃�pAqu).

We define the pattern PÒB as the pattern that is obtained by performing
the following transformation on the pattern P :

1. for every pair ppA, i, xq, pA1, i1, x1qq P B, if the pattern P contains the
site instance pA, i, xq (resp. pA1, i1, x1q), then the binding state of the
site instance pA, i, xq (resp. pA1, i1, x1q) is removed;

2. for every pair ppA, i, xq, pA1, i1, x1qq P B, if the pattern P has no agent
Ai (resp. Ai1), then we add the agent Ai (resp. pAi1q) in the pattern P
with an empty interface;

3. for every pair ppA, i, xq, pA1, i1, x1qq P B, if the pattern P has no site
instance pA, i, xq (resp. pA1, i1, x2) then this site instance is added;

4. for every pair ppA, i, xq, pA1, i1, x1qq P B, a bond is created between the
site instance pA, i, xq and the site instance pA1, i1, x1q.

Now we have all the ingredients to define the di↵erent positions for a
pattern to be consumed.

Definition 5.3.8. Let ◆ be the index of a rule. Let j be the index of a
connected pattern in the lhs of the rule rule◆. Let P be a pattern.

We define the set ›ÑMp◆, j, P q as the set of the pairs pA , Bq where:

- A is a pairing between c◆,j and P ,

we denote as �` and �P the corresponding embeddings respectively from
c◆,j to c◆,j YA P and from P to c◆,j YA P ;

- B is a set of pairs of sites instances.

such that the following properties are satisfied:

1. if A ‰ H, then B “ H;

2. if A “ H, then B is a singleton;

3. for every pair ppA, i, xq, s1q P B, there exists a site instance pA1, i1, x1q
in MAYprule◆q Y MUST prule◆q, such that:

• A “ A1 and x “ x1;

5.3. PROPER CONSUMPTION OF A PATTERN 93

• the agent pA1, i1q belongs to the pattern component c◆,j;

• pA, i, xq “ pA, �`pA1, i1q, x1q;
4. for every pair ps, pA, i, xqq P B, there exists no site instance pA1, i1, x1q

in the pattern component c◆,j such that pA, i, xq “ pA1, �`pA1, i1q, xq;
5. for every pair ppA, i, xq, pA1, i1, x1qq P B, there exists a site instance

pA2, i2, x2q in the pattern P such that:

• A2 “ A1 and x2 “ x1;

• x2 P ⌃�pA2q;
• the binding state of the site instance pA2, i2, x2q in the pattern P
is either equal to ’-’, to ’?’, or to the binding type A@x;

6. A is equal to the set of the pairs ppA, iq, pA1, i1qq such that pA, iq is an
agent instance in c◆,j, pA1, i1q is an agent instance in P , A “ A1 and
�`pA, iq “ �P pA1, i1q.

Then for every pair pA , Bq P ›ÑMp◆, j, P q, we define the extended gluing
pc◆,j YpA ,Bq P q as the pattern pc◆,j YA P qÒB.

Note that in Definition 5.3.8 we have used the assumption that species
have no cycle. This way, it is not possible to add a link to a pattern com-
ponent (this justifies the following constraint: if A ‰ H, then B “ H), and
if the pattern component P is disjoint from the pattern c◆,j we can create
only one bond (this justifies the following constraint: if A “ H, then B
is a singleton). The other constraints stipulate that a bond may have been
removed between a site that has been made free by side e↵ects and a site
that were not in the lhs of the rule. Lastly, we assume that the pairing is
maximal, so as to identify uniquely each way of gluing two patterns.

Example 5.3.9. Let us have a look to the example depicted in Figure 5.2.
As we can observe, there is no common part between the lhs of the rule in
5.2(a) and the pattern in 5.2(b). So, if we consider the gluing between them
(figure 5.2(c)), this returns just the disjoint union of the two. Indeed, by
computing the extendend gluing (figure 5.2(d)) we notice that the pattern is
modified by the rule (figure 5.2(e)).

5.3.3 Contribution

Now we partition the proper consumption of the pattern P , according to the
extended gluing that it forms with a pattern component of a rule.

94 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

A ∅

(a) A rule.

Bx

(b) A pattern.

∅

Bx

Bx

A

A

(c) Gluing between the lhs of the rule
and the pattern.

A Bxx

BxA

(d) Extended gluing.

A Bxx B x

(e) Refinement of the rule.

Figure 5.2: Consumption of a pattern.

5.4. PROPER PRODUCTION OF A PATTERN 95

We get that �‹́ pP q is equal to:

∞h
◆“1 �◆

∞!p◆q
j“1

∞
vPV

∞
'PrP,vs

∞
MP›ÑMp◆,j,P q g

´p◆, ⌧, j, v,',Mq ±!p◆q
l“1 ⇢pRp◆,⌧q,lq

cardprP, P sq

where for every rule index ◆, every reaction index ⌧ , every position j, every
species v P V , every embedding ' from P to v, and any extended gluing
pA , Bq, the expression g´p◆, ⌧, j, v,',Mq is defined as 1 if the following con-
ditions are satisfied:

• the embedding �◆,⌧ maps the connected pattern cj,◆ to the species v,

• the instance of P that is defined by the embedding ' is modified by
the reaction react◆,⌧ ,

• A “ tppA, iq, pA1, i1qq | A “ A1 and 'pA, iq “ �◆,⌧ pA, i1qu,

• if A “ H, then B is a singleton that describes a link that is removed
by side e↵ect;

and as 0 otherwise.
That is to say that �‹́ pP q is equal to:

∞h
◆“1 �◆

∞!p◆q
j“1

∞
MP›ÑMp◆,j,P q

∞
vPV

∞
'PrP,vs g

´p◆, ⌧, j, v,',Mq ±!p◆q
l“1 ⇢pRp◆,⌧q,lq

cardprP, P sq .

This expression can be factorised (e.g. see [25]) as follows.

Proposition 5.3.10.

�´
‹ pP q “

∞h
◆“1 �◆

∞!p◆q
j“1

∞
MP›ÑMp◆,j,P qprcj,◆ YM P sq⇢ ±!p◆q

�“1
�‰j

prc�,◆sq⇢
cardprP, P sq .

5.4 Proper production of a pattern

Now we express the proper production of a pattern as the concentration of
other patterns.

96 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

5.4.1 Condition

Let us fix a pattern P , a rule index ◆, a reaction index ⌧ , a position j, a
species v, and an embedding ' between the pattern component P and the
species v. We denote the rule rule◆ as L Ñ R, and the reaction react◆,⌧ as
RL Ñ RR.

P

L

RL RR

R//

//

* J

WW

'

� ?

OO

�◆,⌧

The instance of P , that is defined by the embedding ', has been modified
by the reaction react◆,⌧ if and only if at least one of both following conditions
is satisfied:

• the whole pattern P has been created by the application of the rule
rule◆;

• there exist an agent type A P A, two agent identifiers i, i1 P N, and a
site name x P ⌃pAq, such that:

– pA, i, xq is a site instance in the pattern P ,

– pA, i1, xq is a site instance in RR,

– pA,'pA, iq, xq “ pA,�◆,⌧ pA, i1q, xq,
– the site instance pA, i1, xq is modified explicitly in the rule rule◆;

• there exist a site instance pA, i, xq in the pattern P and a site instance
pA1, i1, x1q P MAYprule◆q Y MUST prule◆q, such that:

– the site instances pA,'pA, iq, xq and pA1,�◆,⌧ pA1, i1q, x1q are bound
in RL and the site,

– pA,'pA, iq, xq is a site instance in RR,

– the site instance pA,'pA, iq, x1q is free in RR.

We gather the proper positive contributions for the concentration of the
pattern P according to how the pattern P is glued with the rhs of the rule
rule◆ (the pattern P might overlap with zero, one, or several pattern com-
ponents in the rhs of the rule rule◆). For each gluing, we have to invert the

5.4. PROPER PRODUCTION OF A PATTERN 97

r✏; ✏sE “ E
ra`, E`; ar, Erspa, Eq “ ra`; arsa, rE`;ErsE

ra`;HsH “ a`
rH; arsa “ H

rAp�`q;Ap�rqsAp�q “ Apr�`; �rs�q
r✏; ✏s� “ �

rs`, �`; sr, �rss, � “ rs`; srss, r�`; �rs�
rx�` ; x�rsx� “ x�` if �` “ ✏, i P N

rxA@x; xA@xsx� “ x�

rx´; x´sx� “ x�

rx´; x�rsx� “ x´ if �r ‰ ´

Figure 5.3: Inverse substitution.

e↵ect of applying the rule rule◆, so as to characterise the most general con-
text that ensures that the rule e↵ectively creates an instance of the pattern
P . Because of the potential side e↵ects, applying a rule is not an invertible
process. Some links between sites may have been released by side e↵ects.
This way, having fixed an embedding from the rhs of a rule and a pattern,
there may be zero, one, or several refinements of rule◆ that may correspond
with this embedding. Yet there are at most a finite number of them and
they can be enumerated easily. This provides a partitioning of the potential
context for producing a given pattern thanks to a given rule.

5.4.2 Inverse substitution

Let us explain how we can invert the application of a rule.
Firstly we define this operation in the case of application of a rule that is

free of side e↵ects.

Definition 5.4.1 (side e↵ects free right refinement of a rule). Let r : E` Ñ
Er be a rule and let E be a pattern such that E |ù Er. We define the
right refinement of the rule r by the pattern E, written truE, as the rule
rE`;ErsE Ñ E defined by inverse substitution (see Figure 5.3).

The side e↵ects free right refinement of a rule is not the only way to
specialise the rule r to produce the pattern E. Some bonds may have been
released by side e↵ects. These bonds can be added in the lhs of the refinement
thanks to the primitive Ò.

Now we have all the ingredients to define the di↵erent ways of producing
a given pattern.

98 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

Definition 5.4.2 (extended precondition). Let ◆ be the index of a rule. We
denote the rule rule◆ as L◆ Ñ R◆. Let P be a pattern.

We define the set –›Mp◆, P q as the set of the pairs pA , Bq where:

• A is a pairing between R◆ and P ;

we denote as �r and �P the corresponding embeddings respectively from
R◆ to R◆ YA P and from P to R◆ YA P ,

since the gluing R◆YA P is defined up to isomorphism, we may assume
without any loss of generality that R◆ YA P |ù R◆ (that is to say that
�r maps pA, iq to i, for any agent instance pA, iq in R◆);

• B is a set of pairs of sites instances.

such that the following properties are satisfied:

1. if A ‰ H, then B “ H;

2. if A “ H, then B is a singleton;

3. for every pair ppA, i, xq, s1q P B, there exists a site instance pA1, i1, x1q
in MAYprule◆q Y MUST prule◆q, such that:

(a) A “ A1 and x “ x1;

(b) the agent pA1, i1q belongs to L◆;

(c) pA, i, xq “ pA, �rpA1, i1q, x1q;
4. for every pair ps, pA, i, xqq P B, there exists no site instance pA1, i1, x1q

in R◆ such that pA, i, xq “ pA1, �rpA1, i1q, xq;
5. for every pair ppA, i, xq, pA1, i1, x1qq P B, there exists a site instance

pA2, i2, x2q in the pattern P such that:

(a) A2 “ A1 and x2 “ x1;

(b) x2 P ⌃�pA2q;
(c) the binding state of the site instance pA2, i2, x2q in the pattern P

is either equal to ‘✏’ or ‘?’;

6. A is equal to the set of the pairs ppA, iq, pA1, i1qq such that pA, iq is an
agent instance in R◆, pA1, i1q is an agent instance in P , A “ A1 and
�rpA, iq “ �P pA1, i1q;

7. the pattern prL◆, R◆spR◆ YA P qqÒB has exactly !p◆q pattern components.

5.4. PROPER PRODUCTION OF A PATTERN 99

Then for every pair pA , Bq P –›Mp◆, P q, we define the extended precondition
predp◆, P, pA , Bqq as the pattern prL◆, R◆spR◆ YA P qqÒB. Moreover, we define
as c1,◆,P,pA ,Bq,. . . , c!p◆q,◆,P,pA ,Bq the list of its pattern components.

Note that the inverse substitution may not preserve the connectedness of
the pattern P . Let us call the antecedent of P , the pattern in rL◆, R◆spR◆ YA

P q that contains exactly the agent instances pA, �P pA, iqq and the site in-
stances pA, �P pA, iq, xq for every agent instance pA, iq and every site instance
pA, i, xq of P that has not been created by the rule. Whenever the antecedent
of P is not connected, then necessarily each of its pattern component con-
tains a site instance that was free before the application of the rule and
bound after. As a consequence, any pattern component of the antecedent, if
it is disconnected, contains a site instance that has been modified explicitly
by the rule. Then, if the antecedent of P overlaps with L◆, then necessarily,
each of its pattern component overlaps with L◆, and then it is not possible to
add a bond without creating a cycle (this justifies the following constraint:
if A ‰ H, then B “ H). If the antecedent of the pattern P is disjoint from
L◆, then we can create only one bond (this justifies the following constraint:
if A “ H, then B is a singleton). Lastly, we assume that the pairing is
maximal, so as to identify uniquely each way of gluing two patterns.

Example 5.4.3. Let us have a look to the example depicted Figure 5.4. As
we can observe, there is no common part between the rhs of the rule Figure
5.4(a) and the pattern Figure 5.4(b). So, if we consider the gluing between
the rhs of this rule and pattern (Figure 5.4(c)), this returns just the pattern
itself. If we consider the right refinement of the gluing by inverse substitution
Figure 5.4(d), there is no way to see that the pattern is produced by the rule.
Yet, the site of pattern might have been freed by side e↵ect. This is captured
by extending the right refinement, as depicted in Figure 5.4(e).

5.4.3 Contribution

We now partition the proper production of the pattern P , according to the
gluing it forms with the rhs of a rule.

We get that �‹̀ pP q is equal to:

∞h
◆“1 �◆

∞!p◆q
j“1

∞
vPV

∞
'PrP,vs

∞
MP–›Mp◆,P q g

`p◆, ⌧, j, v,',Mq ±!p◆q
l“1 ⇢pRp◆,⌧q,lq

cardprP, P sq
where for every rule index ◆, every reaction index ⌧ , every position j, every
species v P V , every embedding ' from P to v, and any extended precondition

100 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

A ∅

(a) A rule.

Bx

(b) A pattern.

Bx

Bx∅

∅

(c) Gluing between the rhs of the rule
and the pattern.

A Bxx B x

A ∅

(d) Right refinement.

A Bxx B x

(e) Extended right refinement.

Figure 5.4: Production of a pattern.

5.5. CONCLUSION 101

pA , Bq, the expression g´p◆, ⌧, j, v,',Mq is defined, as 1 if the following
conditions are satisfied:

• the embedding �1
◆,⌧ maps the connected pattern pj,◆ to the species v,

• the instance of P that is defined by the embedding ' is modified by
the reaction react◆,⌧ ,

• A “ tppA, iq, pA1, i1qq | A “ A1 and 'pA, iq “ �1
◆,⌧ pA, i1qu,

• if A “ H, then B is a singleton that denotes a link that is removed by
side e↵ect;

and as 0 otherwise.
That is to say that �‹̀ pP q is equal to:

∞h
◆“1 �◆

∞
MP›ÑMp◆,P q

∞
vPV

∞
'PrP,vs

∞!p◆q
j“1 g

`p◆, ⌧, j, v,',Mq ±!p◆q
l“1 ⇢pRp◆,⌧q,lq

cardprP, P sq .

This expression can be factorised (e.g. see [25]) as follows:

Proposition 5.4.4.

�`pP q “
∞h
◆“1

∞
MP–›Mp◆,P q

±!p◆q
�“1prc�,◆,P,M sq⇢

cardprP, P sq .

5.5 Conclusion

We have reformulated the consumption and the production term of every
pattern, as an expression of the quantity of the other patterns.

There are two kinds of consumption terms. The first kind is obtained by
gluing the pattern of interest to a connected pattern in the lhs of a rule on
a site that is modified by the rule, the second one is obtained by taking the
disjoint union between the pattern of interest and a connected pattern in the
lhs of a rule while adding a bond to connect them (in such a case this bond
has to be released by side e↵ect).

There are also two kinds of production terms. The first kind consists in
gluing the pattern of interest to the rhs of a rule on a site that is modified
by the rule and then to apply the rule backward. The production term is
then obtained as a product of the quantity of the connected pattern in the
result of this operation. The second kind consists in taking the disjoint union
between the pattern of interest and the lhs of the rule and then to connect
them by a bond that will be released by side e↵ect.

102 CHAPTER 5. PRODUCTION/CONSUMPTION OF A PATTERN

We have made this computation under the assumption that there are no
cycles in species. This computation can be extended to the general case but,
in such a case, the consumption and the production of the pattern of interest
have to be expressed with respect to the quantity of more complex patterns.

Chapter 6

Information flow

In this chapter, we show how to construct an abstract/reduced semantics
thanks to an over-approximation of the information flow between the di↵erent
regions of chemical species. The main idea is to detect and prove that some
correlations between the states of some sites are useless. Then, we can safely
abstract away these correlations by cutting chemical species into some smaller
pattern components, that we call fragments.

The initial semantics and the reduced one are formally related by Abstract
Interpretation.

6.1 Motivating example

Before introducing formally the framework, we focus on the case study that
we have seen in Section 1.2.2. Let us recall it.

We consider a protein having three activation sites r, c, l, each of which
can be activated ‘p’, or deactivated ‘u’. Thus a chemical species is denoted
as a triple of symbols among ‘u’ and ‘p’, the first component denotes the
state of the site l, the second one the state of the site c, and the third one
the state of the site r. Initially, all the sites are deactivated. The evolution
of the state of the proteins is described thanks to some chemical reactions.
There is some hierarchical control between the states of the sites. The site
c has to be activated first, at rate k1, thanks to the reaction in the Figure
6.1(a). Once the site c has been activated, the l site can get activated at rate
k2, no matter the state of the site r is (see the Figure 6.1(b)); and the site
r can get activated at rate k3, no matter the state of the site l is (see the
Figure 6.1(c)). We describe the flow of information among the states of the
sites of a protein in the Figure 6.1(d). Intuitively, the flow of information
summarises the fact that the state of the site c may control the behaviour of

103

104 CHAPTER 6. INFORMATION FLOW

pu, u, uq Ñ pu, p, uq k1

(a) 2nd site activation.

pu, p, uq Ñ pp, p, uq k2
pu, p, pq Ñ pp, p, pq k2
(b) 1st site activation.

pu, p, uq Ñ pu, p, pq k3
pp, p, uq Ñ pp, p, pq k3
(c) 3rd site activation.

l

c

r

(d) Flow of information.

$
’’’’’’&

’’’’’’%

ru, u, us1 “ ´k1ru, u, us
ru, p, us1 “ ´k2ru, p, us ` k1ru, u, us ´ k3ru, p, us
ru, p, ps1 “ ´k2ru, p, ps ` k3ru, p, us
rp, p, us1 “ k2ru, p, us ´ k3rp, p, us
rp, p, ps1 “ k2ru, p, ps ` k3rp, p, us

(e) Initial di↵erential system.

$
’’’’’’&

’’’’’’%

ru, u, us1 “ ´k1ru, u, us
pru, p, us ` ru, p, psq1 “ k1ru, u, us ´ k2pru, p, us ` ru, p, psq
prp, p, us ` rp, p, psq1 “ k2pru, p, us ` ru, p, psq
pru, p, us ` rp, p, usq1 “ k1ru, u, us ´ k3pru, p, us ` rp, p, usq
pru, p, ps ` rp, p, psq1 “ k3pru, p, us ` rp, p, usq

(f) Reduced di↵erential system.

Figure 6.1: Chemical reactions, flow of information, and ODEs for the protein
with hierarchical flow of information.

the states of the sites l and r, but that the states of the sites l and r do not
control the behaviour of the states of the other sites.

The di↵erential semantics of this model is the solution of the system
of ODEs which is given in the Figure 6.1(e), where the concentration of the
protein in the state pxl, xc, xrq is denoted by rxl, xc, xrs. Since the state of the
site l does not control the evolution of the state of the site r, and conversely,
we can abstract away the correlation between the states of the sites l and
r. To do this, we cut the chemical species into fragments, each fragment
documenting either the sites l and c, or the sites c and r.

Such a fragmentation defines a linear change of variables. Indeed we
can define the concentration of a fragment, as the linear combination of the
concentration of the chemical species in which this fragment occurs. For in-
stance, the concentration of the fragment which documents the sites l and c,
and where both these sites are activated is equal to the sum of the concen-
trations of the chemical species pp, p, uq and pp, p, pq. Applying this change of
variables, we get the reduced system which is given in the Figure 6.1(f). We
notice that the number of variables in the two systems is the same, because
of the simplicity of the example. In practice, abstracting away a correlation

6.1. MOTIVATING EXAMPLE 105

l

c

r

u

u u

=

l

c

r

u

u u

l

c

u

u

=

l

c

r

u

u u

+

l

c

r

u

u p

l

c

u

p

=

l

c

r

u

p u

+

l

c

r

u

p p

c

r

u

u

=

l

c

r

u

u u

+

l

c

r

u

p u

c

r

u

p

=

l

c

r

u

u p

+

l

c

r

u

p p

Figure 6.2: Change of variables.

106 CHAPTER 6. INFORMATION FLOW

R

a

d

c b

p

p

p

R

a

d

c b

u

p

p

R

a

d

c b

u

p

p

R

a

d

c b

p

p

u

R

a

d

c b

u

u

p

R

a

d

c b

u

p

u

R

a

d

c b

p

u

u

R

a

d

c b

p

p

u

R

a

b R

a

b

d

up

p

d

p

c
p

c
p

R

a

b R

a

b

d

up

p

d

u

c
p

c
u

Figure 6.3: A set of species.

reduces a lot the number of variables.
We have seen in this example, that an over-approximation of the flow of

information between the sites of chemical species, can be used to identify
useless correlations, which can be used to discover appropriate change of
variables.

6.2 Contact map and annotated contact map

Given a set of species V , the contact map (CM) associated to the set V is a
summary of all the bindings found in any species in V . We can look at it as
a symbolic representation of the set of all the species.

6.2. CONTACT MAP AND ANNOTATED CONTACT MAP 107

R

a

d

c b

Figure 6.4: Contact map for the set of species in 6.3.

A contact map is formally defined in the following way.

Definition 6.2.1 (Contact map). Given a signature ⌃, an initial set of
species V and a set of rules R, a contact map CM is a non-oriented graph
where:

1. the nodes are the pairs pA, xq P A ˆ S such that x P ⌃pAq;
2. there is an edge between two nodes pA, xq and pB, yq if and only if there

is a link between two sites pA, i, xq and pB, j, yq in at least one species
in the original set V or in the right hand side of at least one rule in R,
for two agent identifiers i, j P N Y N.

Figure 6.4 shows the contact map associated to the set of species Figure
6.3.

We propose to annotate a contact map with an over-approximation of the
flow of information between the di↵erent regions of chemical species. The
main idea is to identify correlations between the states of the sites, which can
be safely abstracted away, because they have no influence on the behaviour
of the state of the other sites. This way, the so-obtained annotated contact
map (aCM) will be used as a symbolic representation of the set of fragments
of chemical species, the concentration of which will be the variables of our
reduced system.

Definition 6.2.2 (Annotated contact map). An annotated contact map (aCM)
is given by a contact map and a binary (oriented) relation over its nodes. The
relation may relate two pairs pA, xq and pB, yq if:

1. A “ B and x ‰ y,

2. or there is an edge between pA, xq and pB, yq in the contact map.

In such case, we say that there is an arc in the aCM from the site x of A to
the site y of B.

108 CHAPTER 6. INFORMATION FLOW

a

d

c b

R

Figure 6.5: An annotated contact map.

6.3 Fragments

Fragments are well chosen pattern components, which can be derived from
an annotated contact map.

Definition 6.3.1 (Path in a pattern). A path in a pattern E is a finite
sequence of site instances p :“ pAk, ik, xkq1§k§n such that:

1. for any k between 1 and n ´ 2, pAk, ik, xkq ‰ pAk`2, ik`2, xk`2q;
2. for any k between 1 and n ´ 1, either pAk, ikq “ pAk`1, ik`1q and xk ‰

xk`1, or the instances of the site pAk, ik, xkq and pAk`1, ik`1, xk`1q are
bound together in the pattern E.

In such a case, n is called the length of the path p, and for any k between 1
and n ´ 1, ppAk, ik, xkq, pAk`1, ik`1, xk`1qq is called an arc in p.

Definition 6.3.2 (Compatible path). A path p in a pattern E is compatible
with the aCM, if and only if, for any arc ppA, i, xq, pA1, i1, x1qq in p, there is
an arc from the node pA, xq and the pA1, x1q in the aCM.

As stated by the two following lemmas, compatible paths can be composed
and the image of a compatible path by an embedding is a compatible path.

Lemma 6.3.3 (Path composition). If there exists two paths p1 and p2 in E,
both compatible with the aCM and, respectively from a site instance pA, i, xq
to a site instance pA1, i1, x1q, and from the site instance pA1, i1, x1q and a site
instance pA”, i”, x”q, then there exists a path in E, compatible with the aCM,
from the site instance pA, i, xq to the site instance pA”, i”, x”q.

6.3. FRAGMENTS 109

Proof. We prove the Lemma 6.3.3 by induction over the length of p1. Let
us write p1 “ pAk, ik, xkq1§k§n and p2 “ pA1

k, i
1
k, x

1
kq1§k§n1 . If n “ 0 or

n1 “ 0, then p1 or p2 is a path in E compatible with the aCM from the site
instance pA, i, xq to the site instance pA”, i”, x”q; else if pAn´1, in´1, xn´1q ‰
pA1

2, i
1
2, x

1
2q, then pA1, i1, x1q, . . . , pAn, in, xnq, pA1

2, i
1
2, x

1
2q, . . . , pA1

n1 , i1
n1 , x1

n1q is
a path in E, compatible with the aCM; otherwise we apply the induction
hypothesis with the paths pAk, ik, xkq1§k†n and pA1

k, i
1
k, x

1
kq1†k§n1 .

Lemma 6.3.4 (Path image). Let � be an embedding between two patterns E
and E 1 and pAk, ik, xkq1§k§n be a path in E, compatible with the aCM. Then
pAk,�pAk, ikq, xkq1§k§n is a path in E 1 which is compatible with the aCM.

Proof. Let pAk, ik, xkq1§k§n be a path in E that is compatible with the aCM
and let us consider pAk,�pAk, ikq, xkq1§k§n. We need to show that for every
k between 1 and n ´ 1, there is an arc from the site xk of the agent Ak to
the site xk`1 of the agent Ak`1.

Since pAk, ik, xkq1§k§n is a path in E that is compatible with the aCM.
For every k between 1 and n´1, there is an arc in the aCM between the site
pAk, xkq and the site pAk`1, xk`1q.

Now we are ready to define the pattern components we were looking for:
the fragments. We do it in two steps. Firstly, we define prefragments, as
the patterns such that the arcs that are compatible with the aCM form a
directed relation over their site instances. Then, we define fragments as the
prefragments which are maximal with respect to the embedding ordering.

Definition 6.3.5 (Prefragment). A prefragment is a pattern component E
such that there is a site instance pA, i, xq in E, such that, for any site instance
pA1, i1, x1q there is a path in E, compatible with the aCM, from pA1, i1, x1q to
pA, i, xq. In such a case, the site instance pA, i, xq is called a target of the
prefragment E.

Definition 6.3.6 (Fragment). A fragment is a prefragment which is maximal
for the embedding ordering. So a prefragment F is a fragment whenever for
any prefragment F 1 such that there exists an embedding between F and F 1,
we have F “ F 1.

As we did for the set of species, we assume that there are no cycle in
prefragments.

Example 6.3.7. We consider the aCM in Figure 6.5 and the pattern com-
ponents that are given in Figure 6.6. We have annotated each pattern com-
ponent with every path that is compatible with the aCM. Among these pattern

110 CHAPTER 6. INFORMATION FLOW

a

b

p

u

(a) F1.

a

d

b

u

p

(b) F2.

a

d

c b

p

p

p

(c) F3.

a

d

b

R@b

p

u

(d) F4.

a

b

a

b

u u

u u

(e) F5.

a

b b

d

p

p

(f) F6.

a

b

a

b

d

up

p

(g) F7.

a

b

a

b

d

up

p

d

p

(h) F8.

Figure 6.6: Some annotated pattern components.

6.3. FRAGMENTS 111

components, only F1, F2, F4, F5, F6 and F7 are prefragments. Yet, we can
notice that:

• F1 can be embedded into F2;

• F4 can be embedded into F7;

• F6 can be embedded into F7.

So, F1, F4 and F6 are not fragments.
On the other site, the only way to refine F2 is by adding the site c but

what we would obtain would be F3, which is not a fragment (because it has
not a unique target), thus F2 is a fragment. The same way, the only manner
to refine F7 is by adding the site d, but also in this case the result, F8, is not
a fragment (it does not have a target). So we can conclude that both F2 and
F7 are fragments.

Remark 6.3.8. The previous example illustrates precisely the main di↵er-
ence between the framework that is proposed in [25, 28], and the one that
is presented in this chapter. In this chapter, each annotated contact map
generates an heterogenous set of fragments, in the sense that the agents of
a fragment do not have to be cut in the same way. With the present frame-
work, exactly one agent in the fragments that embed into a dimer, documents
the state of one of the site among c and d, whereas in the framework pro-
posed in [25, 28], both agents document the state of one of the site among c
and d. As a consequence, the reduced model that we obtain with the present
framework is always smaller than the one that we obtain with the framework
described in [25,28].

Given a pattern component E and a state ⇢ over V , we recall that the
concentration rEs⇢ of the pattern E in the state ⇢, is defined as:

rEs⇢ “
ÿ

vPV

cardprE, vsq
cardprE,Esq⇢pvq.

and that the corrected concentration prEsq⇢ of a pattern E is defined as rEs⇢ˆ
cardprE,Esq.

We define the set of abstract variables as the set of fragments of chemical
species modulo isomorphisms. Formally, V 7 is a set of fragments, such that:

1. for each fragments F in V 7, there exists v P V such that F embeds in
v, and

2. for any pair pF1, F2q of fragments in V 7, if F1 embeds into F2 then
F1 “ F2.

112 CHAPTER 6. INFORMATION FLOW

The set of concrete states V Ñ R over V and the set of (abstract) states
V 7 Ñ R over V 7 are related via the abstraction function which is defined
as:

 p⇢qpv7q “ rv7s⇢.
The (pre)fragments and the abstraction function enjoy the following prop-
erties.

Proposition 6.3.9 (Orthogonal decomposition.). Let F be a prefragment.
The concentration of a prefragment F can be expressed as a linear combina-
tion with positive coe�cients of the concentration of some fragments.

Proof. Let us prove the following equivalent property: prEsq⇢ can be expressed
as a linear combination with positive coe�cients of the corrected concentra-
tion of prFisq⇢ of some fragments.

The proof works iteratively. At each step, a prefragment E 1 will be re-
placed with a multi-set of more refined prefragments, while preserving the
overall corrected concentration, until we obtain a multi-set of fragments. If
E 1 does not embed into a species in V , we remove it. Otherwise E 1 has to be
refined.

A pattern can be refined into a multi-set of patterns while preserving the
overall correcting concentration, by using the following rewrite steps. We can
refine the internal state of a site which misses one with any internal state in
I, or refine a binding state ‘´’ with each potential binding type (according
to the CM). Moreover, a fresh site can be added in the interface of an agent
Ai with the binding state ’?’ if it belongs to ⌃�pAq, and with no binding state
otherwise. Lastly, if E 1 constains a site instance annotated with a binding
type, one could replace it with a bond to an existing site (if its binding state
allows it), to fresh site in existing agents, or to a site in a fresh agent.

We are left to show that, whenever a prefragment E 1 is not a fragment,
then there always exists a rewrite step which replaces E 1 into a multi-set of
prefragments. Only the steps which add a fresh site instance raise an issue.
Thus, let us assume that no other rewrite step can apply. We consider an
embedding � between E 1 and a fragment F . We assume that there exists a
target pA, i, xq in F , which has no antecedent by �. Let us consider pA1, i1, x1q
a target in E 1. Then we can consider a path in F compatible with the aCM
from the site instance pA1,�pA1, i1q, x1q to the site instance pA, i, xq. The
first site in this path which has no antecedent by � can be aded to E 1 and,
by construction, it is a target of the result. Otherwise, there exists a site
instance pA, i, xq in E 1 such that pA, i, xq is a target in E 1 and pA,�pA, iq, xq
a target in F and there exists a path in F compatible with the aCM from
the site pA,�pA, iq, xq and a site having no antecedent by �. The first site

6.4. FLOW ANALYSIS 113

having no antecedent can be added to E 1, and pA, i, xq is still a target of the
result.

Thus we have a rewriting strategies, where all intermediar steps are multi-
set of prefragments. The set of prefragments which can be embedded into
chemical species in V is finite (since V is finite), which ensures the termination
of our iteration.

Proposition 6.3.10 (Divergence preservation). We have:

pV Ñ Rq
(pV 7 Ñ Rq.

Proof. By construction, is a linear function which maps any state over V
to a state over V 7. Let us prove that � preserves the divergence of sequences.
Let us consider a sequence p⇢nqnPN of states over V such that the sequence
p||⇢n||qnPN diverges. Since V is a finite set, there exists a variable v P V such
that the sequence p⇢npvqqnPN diverges toward `8 (by definition, in a state
⇢, ⇢pvq • 0). Let us take an instance pA, i, xq of a site in v, we define ◆ as
its internal state and � as ‘✏’ if the site is free, or as its binding type B@y
otherwise. The pattern E :“ A1px�◆ q is a prefragment. In given a mixture,
the number of embeddings of E is greater than the number of embeddings of
v. Moreover, by the Proposition 6.3.9, the number of embeddings of E in a
mixture E 1 can be expressed as a linear combination with positive coe�cients
of the number of embeddings of some fragments F1, . . . , Fk in E 1. As a
consequence, for at least one of the fragments, let us say Fj, the sequence
p⇢npFjqqnPN diverges as well. Thus the sequence p|| p⇢nq||7qnPN diverges as
well.

6.4 Flow analysis

In this section we define some criteria to ensure that the aCM is a sound
over-approximation of the information flow.

6.4.1 Trivial rules

Some specific rules induce no flow of information. We say that a rule is
trivial, if it has the following form:

A

1

paB2@bq, B
2

pbA1@aq kÑ A

1

paq, B
2

pbq.
Thus a trivial rule releases a bond without testing any other information.
We could extend the class of trivial rules, but we do not do it for the sake of
simplicity.

114 CHAPTER 6. INFORMATION FLOW

6.4.2 Side e↵ects

We remind that a system of rules has side e↵ects if it is possible to modify
the state of the sites that are not documented in the left hand side of the
rules. More precisely, in the two following cases:

1. when we remove an agent without checking that all its sites are free;

2. when we remove a bound denoted by a binding type or the symbol ‘´’.

In the first case a side e↵ect is possible (may semantics), in the latter one a
side e↵ect is sure (must semantics).

So, given a rule r, MAYprq denotes the set of sites that may raise side
e↵ects when the rule r is applied whereas MUST prq denotes the set of sites
that raise side e↵ects whenever the rule r is applied.

Definition 6.4.1 (Partner of a site). Let pA, i, xq be a site instance. We
say that pA1, x1q is a partner of pA, i, xq if there is an edge between the nodes
pA, xq and pA1, x1q in the contact map.

6.4.3 Valid annotation

In the following, we say that a rule r modifies a site instance s, if s is a site
instance in the lhs of the rule r, and if either s does not belong to the rhs of
the rule r (that is to say that its agents have been removed by the rule r),
or if it occurs in the rhs of the rule r but with a di↵erent state.

Definition 6.4.2 (aCM). The annotated contact map (aCM) is valid with
respect to a rule set R if it satisfies the following constraints.

1. Direct flow:

(a) every path in the lhs of a (non trivial) rule r that ends in a site
instance which is modified by the rule r is compatible with the
aCM;

(b) for every rule r and every site pA, i, xq P MAYprq, there is an arc
in the aCM from the node pA, x1q to the node pA, xq, for any site
x1 P S such that the site instance pA, i, x1q occurs in the lhs of the
rule r;

(c) for every rule r, every site pA, i, xq P MAYprq Y MUST prq, and
any potential partner pA1, x1q of the site pA, xq in the CM, there is
an arc from the site pA, xq to the site pA1, x1q in the aCM.

6.5. REDUCED MODEL 115

2. Indirect flow: for any pattern component c in the lhs of a non trivial rule
r, there exists a site instance pA, i, xq such that for any site instance
pA1, i1, x1q in c, there is a path from x to pA, i, xq that is compatible with
the aCM.

Intuitively, direct flows describe the flow of information between the sites
that are tested (because they occur in the lhs of a rule) and the sites that
are modified. Indirect flows handle with the pattern components which are
not modified: the concentration of these patterns regulates the speed of rule
application.

6.5 Reduced model

We recall the notations of Chapter 5.
We assume that the model is made of the following set of rules R:

r1 :“ c1,1, . . . , c!p1q,1 Ñ p1,1, . . . , p✓p1q,1 k1
r2 :“ c1,2, . . . , c!p2q,2 Ñ p1,2, . . . , p✓p2q,2 k2
. . . :“ . . .
rh :“ c1,h, . . . , c!phq,h Ñ p1,h, . . . , p✓phq,h kh

where for every rule r◆, !p◆q returns the number of components in the left
hand side and ✓p◆q returns the number of component in the right hand side.

We denote by F the semantics function, which maps each state ⇢ : V Ñ R
to the function of the concentration derivatives V Ñ R

cardprP, P sq ˆ Fp⇢qpP q “
hÿ

◆“1

ÿ

MP–›Mp◆,P q

!p◆qπ

�“1

prc�,◆,F,M sq⇢

´
hÿ

◆“1

�◆

!p◆qÿ

j“1

ÿ

MP›ÑMp◆,j,P q
prcj,◆ YM P sq⇢

!p◆qπ

�“1
�‰j

prc�,◆sq⇢

where for every rule index ◆, every position j,

- ›ÑMp◆, j, P q denotes the set of the potential extended gluings (e.g. see
Definition 5.3.8) between the pattern component cj,◆ and the pattern
P ;

- –›Mp◆, P q is the set of the extended preconditions of the refinements of
the rule rule◆ according to the overlap between the rhs of the rule rule◆
and the pattern P ;

- and for every M P –›Mp◆, P q, pc�,◆,F,Mq1§�§!p◆q is the list of the pattern
components in the extended precondition predp◆, P,Mq.

116 CHAPTER 6. INFORMATION FLOW

6.5.1 Contribution of proper consumption

We already know, that the pattern components that occur in the lhs of a
rule are all prefragments, thus we can express their concentration (and their
corrected concentration) as a linear combination of the concentration of the
fragments. Let us prove that if F is a fragment, ◆ a rule index, and j a
position, and any way M P ›ÑMp◆, j, F q to glue the fragment F on the j-
th pattern component of the rule rule◆, then the (corrected) concentration
prcj,◆ YM F sq of pattern component pcj,◆ YM F q can also be expressed as the
linear combination of the concentration of the other fragments.

Trivial rules

We assume that ◆ is the index of a trivial rule. By definition, the rule rule◆
has the following form:

A

1

pxB2@yq, B
2

pyA1@xq Ñ A

1

pxq, B
2

pyq.
Hence, the number !p◆q of connected components in the lhs of the rule rule◆
is equal to 1, and j is equal to 1 as well.

We consider pA , Bq P ›ÑMp◆, j, F q an extended gluing between the pattern
component c1,◆ and the fragment F .

The rule rule◆ has no side e↵ect.
As a consequence, we have B “ H.
By Definition 5.3.8, it follows that A ‰ H.
We consider two cases according to whether or not the set A is a single-

ton.

1. Let us assume that the set A is a singleton.

It follows that the (extended) gluing between c1 and F is obtained (up
to isomorphism) by replacing a binding type carried by a site instance
s, by a link to a site in a fresh agent.

We wonder what are the di↵erent possibilities to refine the binding
type of the site instance s in the fragment F . The site s might be
bound to a site instance in F , but the so-refined pattern would contain
a cycle, that is to say, since we have assumed that no species contains
cycles, that its (corrected) concentration would be equal to 0. The only
remaining case is the one where the site s is bound to a site in a fresh
agent. In this case, the refined pattern is isomorphic to the pattern
c1,◆ YA F .

We conclude that:
prc1,◆ YpA ,Bq F sq “ prF sq.

6.5. REDUCED MODEL 117

2. Let us assume that the set A contains two elements.

Let us write A “ tp1, i1q, p2, i2qu.
In that case, either there is a link between the site instances pA, i1, xq
and pB, i2, yq in the fragment F , or not.

(a) If there is a link between the site instances pA, i1, xq and pB, i2, yq
in the fragment F , then c1,◆ YpA ,Bq F is isomorphic to the pattern
component F .

(b) Otherwise, the pattern component c1,◆ YpA ,Bq F contains a cycle,
that is to say, since we have assumed that no species contains
cycles, that its (corrected) concentration is equal to 0.

In all case, we have been able to express the corrected concentration
prc1,◆ YpA ,Bq F sq as a linear combination of the corrected concentration of
some fragments.

Non-trivial rules

We assume that ◆ is the index of a non trivial rule. We consider an ex-
tended gluing pA , Bq P ›ÑMp◆, j, F q, between the pattern component cj,◆ and
a prefragment F .

Thanks to Constraint 2 of Definition 6.4.2, the pattern component c�,◆ is
a prefragment, for every position � such that j ‰ �. We are left to express
the (corrected) concentration of the pattern component cj,◆ YpA ,Bq F .

We consider the embedding 'F from the fragment F to the pattern com-
ponent cj,◆ YpA ,Bq F and �j,◆ the embedding from the pattern component cj,◆
and the pattern component cj,◆ YpA ,Bq F , that have been used to define the
extended gluing cj,◆ YpA ,Bq F .

cj,◆ YpA ,Bq F

F cj,◆
⌘
1

CC

'F

- M

[[

�j,◆

The pattern component F is a fragment, thus there exists a site instance
pAt, it, xtq in F that is a target. We consider two cases according to whether
the set A is empty, or not.

118 CHAPTER 6. INFORMATION FLOW

1. We assume that the set A is not empty.

By Definition 5.3.8, the set B is empty.

That is to say that: cj,◆ YpA ,Bq F “ cj,◆ YA F .

By Definition 5.3.5, for every site instance pA, i, xq in cj,◆YA F , we know
that either there exists an agent identifier i1 such that pA, i1, xq is a site
instance in F and i “ 'F pA, i1q, or that there exists an agent identifier
i1 satisfying pA, i1, xq is a site instance in cj,◆ and i “ �j,◆pA, i1q.
We propose to show that the site instance pAt,'F pAt, itq, xtq is a target
in the pattern component cj,◆ YA F .

Let pAs, is, xsq be a site instance in the pattern component cj,◆ YA F .

(a) We assume that there exists an agent identifier i1 such that the
triple pAs, i

1, xsq is a site instance in F and is “ 'F pA, i1q.
Since pAt, it, xtq is a target in F , there is a path in the pattern
component F from the site instance pAs, i

1
s, xsq to the site instance

pAt, it, xtq that is compatible with the aCM.

By Lemma 6.3.4, there exists a path in the pattern component
cj,◆ YA F from the site instance pAs, is, xsq to the site instance
pAt,'F pAt, itq, xtq that is compatible with the aCM.

(b) We assume that there exists an agent identifier i1 such that the
triple pAs, i

1, xsq is a site instance in cj,◆ and is “ �j,◆pA, i1q.
By Definition 5.3.8, there exists a site instance pAm, im, xmq in cj,◆
and an agent identifier i1

m such that:

- pAm, i
1
m, xmq is a site instance in F ;

- 'F pAm, i
1
mq “ �j,◆pAm, imq;

- the site instance pAm, im, xmq is modified by the rule rule◆.

By Constraint 1a of Definition 6.4.2, there is a path in the pattern
component cj,◆ from the site instance pAs, i

1, xsq to the site instance
pAm, im, xmq that is compatible with the aCM.

By Lemma 6.3.4, there exists a path in the pattern component
cj,◆ YA F from the site instance pAs, is, xsq to the site instance
pAm,�j,◆pAm, imq, xmq that is compatible with the aCM.

By the previous case, we know that there is a path in the pattern
component cj,◆ YA F from the site instance pAm,'F pAm, i

1
mq, xmq

to the site instance pAt,'F pAt, itq, xtq that is compatible with the
aCM.

6.5. REDUCED MODEL 119

Since 'F pAm, i
1
mq “ �j,◆pAm, imq, by Lemma 6.3.3, there exists a

path in the pattern component cj,◆ YA F from the site instance
pAs, is, xsq to the site instance pAt,'F pAt, itq, xtq that is compati-
ble with the aCM.

2. We assume that the set A is empty.

The set B is a singleton that we write: ppAB1 , iB1 , xB1q, pAB2 , iB2 , xB2qq.
By Definition 5.3.5, we know that for any site instance pA, i, xq in
cj,◆ YpA ,Bq F , at least one of the following condition is satisfied:

- either there exists an agent identifier i1 such that pA, i1, xq is a site
instance in F and i “ 'F pA, i1q,

- or there exists an agent identifier i1 such that pA, i1, xq is a site
instance in cj,◆ and i “ �j,◆pA, i1q,

- or pA, i, xq “ pAB1 ,�j,◆pAB1 , iB1q, xB1q.
Let us show that the site instance pAt,'F pAt, itq, xtq is a target in the
pattern component cj,◆ YpA ,Bq F .

Let pAs, is, xsq be a site instance in the pattern component cj,◆YpA ,BqF .

(a) We assume that there exists an agent identifier i1 such that the
triple pAs, i

1, xsq is a site instance in F and is “ 'F pA, i1q.
Since pAt, it, xtq is a target in F , there is a path in the pattern
component F from the site instance pAs, i

1
s, xsq to the site instance

pAt, it, xtq that is compatible with the aCM.

By Lemma 6.3.4, there exists a path in the pattern component
cj,◆ YpA ,Bq F from the site instance pAs, is, xsq to the site instance
pAt,'F pAt, itq, xtq that is compatible with the aCM.

(b) We assume that pAs, is, xsq “ pAB1 ,�j,◆pAB1 , iB1q, xB1q.
By Constraint 1c of Definition 6.4.2, there is an arc in the aCM
between the site pAs, xsq and the site pAB2 , xB2q.
As a consequence, there exists a path in the pattern component
cj,◆ YpA ,Bq F from the site instance pAs, is, xsq to the site instance
pAB2 ,'F pAB2 , iB2q, xB2q that is compatible with the aCM.

By the previous case, we already know that there exists a path
in the pattern component cj,◆ YpA ,Bq F from the site instance
pAB2 ,'F pAB2 , i

1
B2

q, xB2q to the site instance pAt,'F pAt, itq, xtq
that is compatible with the aCM.

120 CHAPTER 6. INFORMATION FLOW

By Lemma 6.3.3, we can conclude that there exists a path in the
pattern component cj,◆ YpA ,Bq F from the site instance pAs, is, xsq
to the site instance pAt,'F pAt, itq, xtq that is compatible with the
aCM.

(c) We assume that there exists an agent identifier i1 such that the
triple pAs, i

1, xsq is a site instance in cj,◆ and is “ �j,◆pA, i1q.
• If pAB1 , iB1 , xB1q P MAYprule◆q.
The agent instance pAB1 , iB1q has at least one site instance
(otherwise, the pattern component cj,◆ would have been made
of a single agent with no site instance, which would be absurd
since pAs, i

1, xsq is a site instance in cj,◆).
Let xw be a site name, such that the triple pAB1 , iB1 , xwq is a
site instance in the pattern cj,◆.
We have pAB1 , iB1 , xB1q P MAYprule◆q, so the agent instance
pAB1 , iB1q is removed by the rule rule◆. As a consequence, the
site pAB1 , iB1 , xwq is modified by the rule rule◆.
By Constraint 1a of Definition 6.4.2, there is a path in the
pattern component cj,◆ from the site instance pAs, i

1, xsq to
the site instance pAB1 , iB1 , xwq that is compatible with the
aCM.
By Lemma 6.3.4, there is a path in the pattern component
cj,◆ YpA ,Bq F from the site instance pAs, is, xsq to the site
instance pAB1 ,�j,◆pAB1 , iB1q, xwq that is compatible with the
aCM.
By Constraint 1b of Definition 6.4.2, there is an arc between
the site pAB1 , xwq and the site pAB1 , xB1q in the aCM.
As a consequence, there is a path in the pattern component
cj,◆ YpA ,Bq F from the site instance pAB1 ,�j,◆pAB1 , iB1q, xwq to
the site instance pAB1 ,�j,◆pAB1 , iB1q, xB1q that is compatible
with the aCM.
By the previous case, we know that there exists a path in
the pattern component cj,◆ YpA ,Bq F from the site instance
pAB1 ,�j,◆pAB1 , iB1q, xB1q to the site instance pAt,'F pAt, itq, xtq
that is compatible with the aCM.
By Lemma 6.3.3, there exists a path in the pattern compo-
nent cj,◆ YpA ,Bq F from the site instance pAs, is, xsq to the site
instance pAt,'F pAt, itq, xtq that is compatible with the aCM.

• If the site instance pAB1 , iB1 , xB1q P MUST prule◆q.
The site instance pAB1 , iB1 , xB1q is modified by the rule rule◆.
By Constraint 1a of Definition 6.4.2, there is a path in the

6.5. REDUCED MODEL 121

pattern component cj,◆ from the site instance pAs, i
1, xsq to

the site instance pAB1 , iB1 , xB1q that is compatible with the
aCM.
By Lemma 6.3.4, we can conclude there is a path in the pat-
tern component cj,◆YpA ,BqF from the site instance pAs, is, xsq
to the site instance pAB1 ,�j,◆pAB1 , iB1q, xB1q that is compati-
ble with the aCM.
By the previous case, we know that there exists a path in
the pattern component cj,◆ YpA ,Bq F from the site instance
pAB1 ,�j,◆pAB1 , iB1q, xB1q to the site instance pAt,'F pAt, itq, xtq
that is compatible with the aCM.
By Lemma 6.3.3, there exists a path in the pattern compo-
nent cj,◆ YpA ,Bq F from the site instance pAs, is, xsq to the site
instance pAt,'F pAt, itq, xtq that is compatible with the aCM.

As a consequence, the site instance pAt,'F pAt, itq, xtq is a target for
the pattern component cj,◆ YA F . That is to say that the pattern
component cj,◆ YA F is a prefragment.

In all cases, we have expressed the corrected concentration of the pattern
component cj,◆YA F as a linear combination of the (corrected) concentration
of some fragments.

6.5.2 Contribution of proper production

Let us prove that for every rule index ◆, every fragment F , every way M P–›Mp◆, F q of producing the fragment F with the rule rule◆, we can express,
for every position �, the (corrected) concentration prc�,◆,F,M sq of the �-th
pattern component of the corresponding refinement of the rule rule◆ as a
linear combination of the corrected concentration of some fragments.

Trivial rules

Let ◆ be the index of a trivial rule and F be a fragment. By definition, the
rule rule◆ has the following form:

A

1

pxB2@yq, B
2

pyA1@xq Ñ A

1

pxq, B
2

pyq.
Hence, the number !p◆q of pattern components in the lhs of the rule rule◆ is
equal to 1.

We consider a pair pA , Bq in the set –›Mp◆, F q.
The rule rule◆ has no side e↵ect.

122 CHAPTER 6. INFORMATION FLOW

As a consequence, we have B “ H.
By Definition 5.4.2, it follows that A ‰ H.
We consider two cases according to whether or not the set A is a single-

ton.

1. Let us assume that the set A is a singleton.

It follows that the fragment F contains a site instance s that is free.
Then the pattern component c1,◆,F,M is obtained (up to isomorphism)
by binding in F the site instance s to a link to a site in a fresh agent.

We denote as F 1 the pattern that is obtained by replacing, in the frag-
ment F the binding state of the site instance s with the binding type
that matches the link that is created by the rule.

Let us prove that the pattern F 1 is a prefragment.

- Indeed F and F 1 only di↵er by the binding state of s that is free
in F and equipped with a binding type in F 1. Thus, F and F 1
have the same set of agents, the same set of site instances, and
the same set of links. it follows that any path in F is also a path
in F 1.
Let t be a target in F .

Let us show that t is also a target of F 1.
Let s1 be a site instance in F 1. Since t is a target in F , there is a
path p “ pAik , ik, xkq1§k§n in F from the site s1 to the the site t,
that is compatible with the aCM.

Thus, for any k between 1 and n´1, there is an arc from the node
pAik , xkq and the node pAik`1

, xk`1q in the aCM.

Since the path p is also a path in F 1, we can conclude that the
path p in F 1 is compatible with the aCM.

We have proved that the site instance t is a target in F 1.
Thus F 1 is prefragment.

We wonder what are the di↵erent possibilities to refine the binding
type of the site instance s in the prefragment F 1. The site s might be
bound to a site instance in F 1, but the so-refined pattern would contain
a cycle, that is to say, since we have assumed that no species contains
cycles, that its (corrected) concentration would be equal to 0. The only
remaining case is the one where the site s is bound to a site in a fresh
agent. In this case, the refined pattern is isomorphic to the pattern
c1,◆,F,M .

6.5. REDUCED MODEL 123

We conclude that
prc1,◆,F,M sq “ prF 1sq.

2. Let us assume that the set A contains two elements.

Then the pattern component c1,◆,F,M is obtained (up to isomorphism)
by binding in F two site instances. As a consequence the pattern
component c1,◆,F,M has a cycle.

Since we have assumed that species has no cycle, we can conclude that
the concentration of the pattern component c1,◆,F,M is equal to 0.

In all case, we have been able to express the corrected concentration
prc1,◆,F,M sq as a linear combination of the corrected concentration of some
fragments.

Non-trivial rules

We assume that ◆ is the index of a non trivial rule. We denote by L Ñ R
the rule rule◆ We consider pA , Bq an element of the set P –›Mp◆, F q.

We consider 'F the embedding from the fragment F to the pattern com-
ponent R YA F and �◆ be the embedding from the pattern R to the pattern
component R YA F , that we have used to define the gluing between the
fragment F and the rhs R of the rule rule◆.

R YA F

F R
⌘
1

CC

'F

- M

[[

�◆

Without any loss of generality, we assume that the pattern R YA F
matches the pattern R, that is to say that the injective substitution �◆ maps
pairs pA, iq to the agent identifiers i.

The pattern component F is a fragment, thus there exists a site instance
pAt, it, xtq in F that is a target.

Let � be a natural number 1 and !p◆q.
We want to prove that the pattern component c�,◆,F,pA ,Bq is a prefragment.

1. We assume that the set A is not empty.

We denote as F´1 the antecedent of F .

124 CHAPTER 6. INFORMATION FLOW

Formally, F´1 is defined as the pattern that contains every agent in-
stance pA,'F pA, iqq such that pA, iq is an agent instance in F and the
agent instance pA,'F pAiqq has not been created by the application of
the rule rule◆, every site instance pA,'F pA, iq, xq such that pA, i, xq is a
site instance in F and the agent instance pA,'F pAiqq has not been cre-
ated by the application of the rule rule◆, and every bond between the
two site instances pA,'F pA, iq, xq and pA1,'F pA1, i1q, x1q such that there
is a bond between the site instance pA, i, xq and pA1, i1, x1q in F and the
bond between the site instance pA,'F pA, iq, xq and pA1,'F pA1, i1q, x1q
has not been created by the rule rule◆.

We denote as F´1
� the pattern that is made of every pattern component

of F´1 that contains at least one agent instance pA,�◆pA, iqq for a given
site instance pA, iq in c�,◆.

Let us prove that any connected component F´1
pc of F´1

� contains a site
that has been modified by the rule rule◆.

- This is the case if F´1 is connected (by assumption, since B “ H,
F and P overlaps on a site that is modified by the rule rule◆).

- If F´1
pc is disconnected, each connected component of it contains

a site the binding site of which has changed.

Then, we propose to prove both following intermediary results:

(a) Whenever a pattern component of F´1
� contains the site instance

pAt,'F pAt, itq, xtq, there exists a path in this pattern component
from every site instance of this pattern component to the site
instance pAt,'F pAt, itq, xtq, that is compatible with the aCM.

(b) Whenever a pattern component F´1
pc of F´1

� does not contain the
site instance pAt,'F pAt, itq, xtq, then it contains a site instance
pA‚, i‚, x‚q such that the following properties are all satisfied:

• there exists an agent identifier i such that pA‚, i, x‚q is a site
instance in F and i‚ “ 'F pA‚, iq;

• there exists an agent identifier i such that pA‚, i, x‚q is a site
instance in c�,◆ and i‚ “ �◆pA‚, iq;

• for every site instance pAs, is, xsq of F´1
pc , there exists a path in

the pattern component F´1
pc from the site instance pAs, is, xsq

to the site instance pA‚, i‚, x‚q that is compatible with the
aCM.

Let us prove these properties:

6.5. REDUCED MODEL 125

(a) Let F´1
o be the pattern component of F´1

� that contains the site
instance pAt,'F pAt, itq, xtq.
Let pAs, is, xsq be a site instance in F´1

o .

Let i1 be an agent identifier such that pAs, i
1, xsq is a site instance

in F and 'F pAs, i
1q “ is.

Since the site instance pAt, it, xtq is a target in F , there exists a
path in the pattern component F from the site instance pAs, i

1, xsq
to the site instance pAt, it, xtq that is compatible with the aCM.

By Lemma 6.3.4, there exists a path p in the pattern P YA F from
the site instance pAs, is, xsq, to the site instance pAt,'F pAt, itq, xtq,
that is compatible with the aCM.

Since the pattern F is acyclic, and both site instances pAs, is, xsq
and pAt,'F pAt, itq, xtq belong to the fragment F , it follows that
the path p remains in the pattern F´1

pc .

Thus there exists a path in the pattern component F´1
o from the

site instance pAs, is, xsq to the site instance pAt,'F pAt, itq, xtq that
is compatible with the aCM.

(b) Let F´1
pc be a pattern component of F´1

� that does not contain the
site instance pAt,'F pAt, itq, xtq.
Necessarily, the pattern component F´1

pc has been disconnected
from the rest of F .

That is to say that it contains a site the binding state of which
has changed.

Let pA‚, i‚, x‚q be a site instance in F´1
pc that has lost a bond.

Since pA‚, i‚, x‚q is a site instance in F´1
pc there exists an agent

identifier i such that pA‚, i, x‚q is a site instance in F and i‚ “
'F pA‚, iq.
It is not possible to create a bond in a rule, without having the
two corresponding site instances in the lhs of this rule.

As a consequence, there exists an agent identifier i1 such that
pA‚, i1, x‚q is a site instance in c�,◆ and i‚ “ �◆pA‚, i1q.
Since F is acyclic, and by definition of F´1, there is a path in
the pattern component F´1

o from every site instance to the site
instance pA‚, i‚, x‚q, that is compatible with the aCM.

Let pAs, is, xsq be a site instance in the pattern component c�,◆,F,pA ,Bq,
one of the following property is satisfied:

(a) pAs, is, xsq is a site instance in F´1
� ;

126 CHAPTER 6. INFORMATION FLOW

(b) there exists an agent identifier i1
s such that pAs, i

1
s, xsq is c�,◆ and

is “ �◆pAs, i
1
sq.

We consider several cases according to whether the pattern component
c�,◆,F,pA ,Bq contains the site instance pAt,'F pAt, itq, xtq, or not, and
according to whether or not it has been modified by the rule rule◆.

(a) We assume that the pattern component c�,◆,F,pA ,Bq contains the
site instance pAt,'F pAt, itq, xtq.
We will prove that there is a path in the pattern component
c�,◆,F,pA ,Bq from the site instance pAs, is, xsq to the site instance
pAt,'F pAt, itq, xtq that is compatible with the aCM.

i. If the site instance pAs, is, xsq belongs to a pattern component
of F´1

� that contains the site instance pAt,'F pAt, itq, xtq, there
is a path in the pattern component c�,◆,F,pA ,Bq from the site
instance pAs, is, xsq to the site instance pAt,'F pAt, itq, xtq that
is compatible with the aCM.

ii. If there exists an agent identifier i such that pAs, i, xsq is a
site instance of c�,◆ and is “ �◆pAs, iq.
There exists a site instance pAm, im, xmq in c�,◆,F,pA ,Bq satisfy-
ing the following constraints:

A. there exists an agent identifier im1 such that the site in-
stance pAm, im1 , xmq belongs to the pattern component c�,◆
and im “ '◆pAm, im1q;

B. the pattern component of F´1
� that contains the site in-

stance pAt,'F pAt, itq, xtq also contains the the site in-
stance pAm, im, xmq;

C. the site pAm, im1 , xmq is modified by the rule rule◆.

Then, by Constraint 1a of Definition 6.4.2, there exists a path
in the pattern component c�,◆ from the site instance pAs, i, xsq
to the site instance pAm, im1 , xmq that is compatible with the
aCM.
By Lemma 6.3.4, there exists a path in the pattern component
c�,◆,F,pA ,Bq from the site instance pAs, is, xsq to the site instance
pAm, im, xmq that is compatible with the aCM.
By Lemma 6.3.3, and the precedent case, there is a path
in the pattern component c�,◆,F,pA ,Bq from the site instance
pAs, is, xsq to the site instance pAt,'F pAt, itq, xtq, xtq that is
compatible with the aCM.

6.5. REDUCED MODEL 127

iii. If pAs, is, xsq belongs to a pattern component of F´1
� that does

not contain the site instance pAt,'F pAt, itq, xtq.
Then, there exists a site pAm, im, xmq in c�,◆ such that there
exists a path in the pattern component c�,◆,F,pA ,Bq from the site
instance pAs, is, xsq to the site instance pAm,�◆pAm, imq, xmq
that is compatible with the aCM.
By Lemma 6.3.3, and the precedent case, there is a path
in the pattern component c�,◆,F,pA ,Bq from the site instance
pAs, is, xsq to the site instance pAt,'F pAt, itq, xtq, xtq that is
compatible with the aCM.

Thus, the pattern component c�,◆,F,pA ,Bq is a prefragment.

(b) We assume that: c�,◆,F,pA ,Bq “ c�,◆.

Then, by Constraint 2 of Definition 6.4.2, c�,◆,F,pA ,Bq is a prefrag-
ment.

(c) We assume that c�,◆,F,pA ,Bq ‰ c�,◆ and that the pattern component
c�,◆,F,pA ,Bq does not contain the site instance pAt,'F pAt, itq, xtq.
Let pAm, im, xmq be a site instance in c�,◆ that has been modified
by the rule rule◆.

We will prove that there is a path in the pattern component
c�,◆,F,pA ,Bq from the site instance pAs, is, xsq to the site instance
pAm,�◆pAm, imq, xmq that is compatible with the aCM.

i. If there exists an agent identifier i such that pAs, i, xsq is a
site instance of c�,◆ and is “ �◆pAs, iq.
By Constraint 1a of Definition 6.4.2, there exists a path in
the pattern component c�,◆ from the site instance pAs, i, xsq
to the site instance pAm, im1 , xmq that is compatible with the
aCM.
By Lemma 6.3.4, there exists a path in the pattern component
c�,◆,F,pA ,Bq from the site instance pAs, is, xsq to the site instance
pAm,�◆pAm, imq, xmq that is compatible with the aCM.

ii. If pAs, is, xsq belongs to a pattern component of F´1
� .

There exists a site pA‚, i‚, x‚q in c�,◆ such that there exists a
path in the pattern component c�,◆,F,pA ,Bq from the site in-
stance pAs, is, xsq to the site instance pA‚,�◆pA‚, i‚q, x‚q that
is compatible with the aCM.
By Lemma 6.3.3, and the precedent case, we conclude that
there is a path in the pattern component c�,◆,F,pA ,Bq from the
site instance pAs, is, xsq to the site instance pAm,�◆pAm, imq, xmq
that is compatible with the aCM.

128 CHAPTER 6. INFORMATION FLOW

Thus, the pattern component c�,◆,F,pA ,Bq is a prefragment.

2. We assume that the set A is empty.

The set B is a singleton that we write ppAB1 , iB1 , xB1q, pAB2 , iB2 , xB2qq.
Let � be a natural number between 1 and !p◆q.
(a) If the pattern component c�,◆ does not contain the agent instance

pAB1 , iB1q.
Then we have c�,◆,F,pA ,Bq “ c�,◆.

By Constraint 2 of Definition 6.4.2, the pattern component c�,◆ is
a prefragment.

Thus, c�,◆,F,pA ,Bq “ c�,◆.

We can conclude that prc�,◆,F,pA ,Bqsq “ prc�,◆sq.
(b) If the pattern component c�,◆ contains the agent instance pAB1 , iB1q.

The pattern component c�,◆,F,pA ,Bq is equal up to isomorphism
to the pattern component pc�,◆ YH F qÒtpAB1 ,iB1 q,pAB2 ,iB2 qu (that is
to say, the disjoint union between c�,◆ and F , to which we have
added a bond between the site instance pAB1 , iB1 , xB1q and the
site instance pAB2 , iB2 , xB2q.
We want to prove that the site pAt,'F pAt, itq, xtq is a target in
the pattern component c�,◆,F,pA ,Bq.
Let pAs, is, xsq be a site instance in c�,◆,F,pA ,Bq.

i. We assume that there exists an agent identifier i1 such that
the triple pAs, i

1, xsq is a site instance in F and is “ 'F pA, i1q.
We denote as F 1 the pattern component that is obtained by
replacing the binding state of the site instance pAB2 , iB2 , xB2q
with ‘?’.
Since pAt, it, xtq is a target in F , there is a path in the pattern
component F from the site instance pAs, i

1
s, xsq to the site

instance pAt, it, xtq that is compatible with the aCM.
Since F and F 1 only di↵er by the state of a site, there is
a path in the pattern component F 1 from the site instance
pAs, i

1
s, xsq to the site instance pAt, it, xtq that is compatible

with the aCM.
We notice that the injective substitution 'F induces an em-
bedding between F 1 and c�,◆,F,pA ,Bq.
By Lemma 6.3.4, there exists a path in the pattern component
c�,◆,F,pA ,Bq from the site instance pAs, is, xsq to the site instance
pAt,'F pAt, itq, xtq that is compatible with the aCM.

6.5. REDUCED MODEL 129

ii. We assume that pAs, is, xsq “ pAB1 ,�◆pAB1 , iB1q, xB1q.
By Constraint 1c of Definition 6.4.2, there is an arc in the
aCM between the site pAs, xsq and the site pAB2 , xB2q.
As a consequence, there exists a path in the pattern compo-
nent c�,◆,F,pA ,Bq from the site instance pAs, is, xsq to the site
instance pAB2 ,'F pAB2 , iB2q, xB2q that is compatible with the
aCM.
By the previous case, we already know that there exists a path
in the pattern component c�,◆,F,pA ,Bq from the site instance
pAB2 ,'F pAB2 , i

1
B2

q, xB2q to the site instance pAt,'F pAt, itq, xtq
that is compatible with the aCM.
By Lemma 6.3.3, we can conclude that there exists a path
in the pattern component c�,◆,F,pA ,Bq from the site instance
pAs, is, xsq to the site instance pAt,'F pAt, itq, xtq that is com-
patible with the aCM.

iii. We assume that there exists an agent identifier i1 such that
the triple pAs, i

1, xsq is a site instance in cj,◆ such that is “
�◆pA, i1q.

• If pAB1 , iB1 , xB1q P MAYprule◆q.
The agent instance pAB1 , iB1q has at least one site instance
(otherwise, the pattern component cj,◆ would have been
made of a single agent with no site instance, which would
be absurd since pAs, i

1, xsq is a site instance in cj,◆).
Let xw be a site name, such that the triple pAB1 , iB1 , xwq
is a site instance in the pattern cj,◆.
We have pAB1 , iB1 , xB1q P MAYprule◆q, so the agent in-
stance pAB1 , iB1q is removed by the rule rule◆. As a conse-
quence, the site pAB1,iB1 ,xwq is modified by the rule rule◆.
By Constraint 1a of Definition 6.4.2, there is a path in the
pattern component cj,◆ from the site instance pAs, i

1, xsq
to the site instance pAB1 , iB1 , xwq that is compatible with
the aCM.
By Lemma 6.3.4, there is a path in the pattern component
c�,◆,F,pA ,Bq from the site instance pAs, is, xsq to the site in-
stance pAB1 ,�◆pAB1 , iB1q, xwq that is compatible with the
aCM.
By Constraint 1b of Definition 6.4.2, there is an arc be-
tween the site pAB1 , xwq and the site pAB1 , xB1q in the
aCM.
Thus, there is a path in the pattern component c�,◆,F,pA ,Bq

130 CHAPTER 6. INFORMATION FLOW

from the site instance pAB1 ,�◆pAB1 , iB1q, xwq to the site
instance pAB1 ,�◆pAB1 , iB1q, xB1q that is compatible with
the aCM.
By the previous case, we already know that there ex-
ists a path in the pattern component c�,◆,F,pA ,Bq from the
site instance pAB1 ,�◆pAB1 , iB1q, xB1q to the site instance
pAt,'F pAt, itq, xtq that is compatible with the aCM.
By Lemma 6.3.3, there exists a path in the pattern com-
ponent c�,◆,F,pA ,Bq from the site instance pAs, is, xsq to the
site instance pAt,'F pAt, itq, xtq that is compatible with
the aCM.

• If the site instance pAB1 , iB1 , xB1q P MUST prule◆q.
The site instance pAB1 , iB1 , xB1q is modified by the rule
rule◆.
By Constraint 1a of Definition 6.4.2, there is a path in the
pattern component cj,◆ from the site instance pAs, i

1, xsq
to the site instance pAB1 , iB1 , xB1q that is compatible with
the aCM.
By Lemma 6.3.4, we can conclude there is a path in
the pattern component c�,◆,F,pA ,Bq from the site instance
pAs, is, xsq to the site instance pAB1 ,�◆pAB1 , iB1q, xB1q that
is compatible with the aCM.
By the previous case, we already know that there ex-
ists a path in the pattern component c�,◆,F,pA ,Bq from the
site instance pAB1 ,�◆pAB1 , iB1q, xB1q to the site instance
pAt,'F pAt, itq, xtq that is compatible with the aCM.
By Lemma 6.3.3, there exists a path in the pattern com-
ponent c�,◆,F,pA ,Bq from the site instance pAs, is, xsq to the
site instance pAt,'F pAt, itq, xtq that is compatible with
the aCM.

As a consequence, the site instance pAt,'F pAt, itq, xtq is a target
for the pattern component c�,◆,F,pA ,Bq. That is to say that the
pattern component c�,◆,F,pA ,Bq is a prefragment

In all cases, we have expressed the (corrected) concentration of the pattern
component c�,◆,F,pA ,Bq as a linear combination of the (corrected) concentration
of some fragments.

6.6. CONCLUSION 131

6.5.3 Balance

We have provided, for any fragment F , an explicit definition of the proper
production �‹̀ pF q of the fragment F and of the proper consumption �‹́ pF q
of the fragment F , as a polynomial expression of the concentration of the
other fragments F 1.

We consider the function F7 that maps each abstract state ⇢7 from V 7 to
R, to the function mapping each fragment F to the value of the expression
�‹̀ pF q ´ �‹́ pF q. The function F7 is well-defined.

Proposition 6.5.1. We have ˝ F “ F7 ˝ .

Proof. By construction of F7.

We can conclude with the soundness of our model reduction.

Theorem 6.5.2. The tuple pV ,F,V 7, ,F7q is an abstraction.

6.6 Conclusion

In this chapter, we have designed a static analysis of the flow of information
among the sites of species. This abstraction is summarised in a contact map.
This contact map is indeed a compact description of the set of all species,
that is obtained by fusing every instance of a same agent type. We annotate
this contact map, by inspecting the rule set, and detecting when the state
of a site may have an influence on the behaviour of other sites. The result
of our analysis can be used to define a set of self-consistent fragments, from
which we can derive an exact model reduction of the initial system. This
result is proved formally, with respect to the initial semantics of the model.

It is worth noting that we have never worked explicitly on the underlying
reaction networks. Moreover, our flow analysis takes into account remote
controls, when the sites of an agent control the behaviour of some other
agents. This is mandatory to get a sound abstraction [5]. We also manage
side e↵ects.

We also notice that our framework is a strict improvement of the model
reduction that was proposed in [28], in the sense that each fragment in the
framework of [28] is necessarily a prefragment in the present analysis, but
not the converse. That is to say, that we get smaller fragments with the
analysis that we have described in this chapter. In [28] is studied a set of
71 rules expanding into 18 051 984 143 555 729 567 species, reduced into
175 988 fragments.

132 CHAPTER 6. INFORMATION FLOW

In the following chapters, we show that we can tune arbitrarily the accu-
racy of our analysis, by distinguishing the flow of information according to
some contextual information.

Chapter 7

Context-sensitive abstractions

In the previous chapter, we have used contact maps to abstract the flow of
information between sites of species. This abstraction is context-insensitive:
we can either say that the state of a site may influence another site, or
that the state of a site will never influence another site. In this chapter, we
wonder whether it is possible or not to enhance the context-sensitivity of this
approach.

For this purpose we introduce the notion of ⌃-graph [21]. ⌃-graph can
be used to denote mixtures, patterns, contact maps. They can be un-
folded/folded to describe/abstract away some particular contexts. This is
a convenient tool to describe types and properties about species.

7.1 Category of ⌃-graphs

7.1.1 ⌃-graphs

Let us give the definition of a ⌃-graph.
Firstly, we introduce the set Ext as:

Ext :“ t✏,´u Y tpA, sq|A P A, s P ⌃�pAqu
to describe some linking states.

Starting from a signature ⌃ we can define the concept of ⌃-graph.

Definition 7.1.1 (⌃-graph). A ⌃-graph is a tuple

G “ pAG, typeG,SG,LG, pkGq
where:

1. AG is a set of agents;

133

134 CHAPTER 7. CONTEXT-SENSITIVE ABSTRACTIONS

R r

l

E

R

E

r

l

rr

R r

l

E

r

R r

l

Rr

l

R r

l

E
r

R r

l

E

Rr

l

r

Figure 7.1: A ⌃-graph.

2. typeG : AG Ñ A is an agent type assignement function;

3. SG is a set of sites, such that SG Ñ tpi, xq | i P AG and x P ⌃ptypeGpiqqu;
4. LG is a symmetric link relation, such that LG Ñ ptpi, xq P SG | x P

⌃�ptypeGpiqqu Y Extq2zExt2;
5. and pkG maps each site pi, xq P SG such that x P ⌃◆ to a set of internal

states pkGpi, xq P }pIq.
Given a ⌃-graph G, we write AG for the set of its agents, typeG for its

typing function, SG for the set of its sites, LG for the set of its links and pkG
for its internal states map. An example of ⌃-graph is given in Figure 7.1.

7.1.2 Homomorphisms between ⌃-graphs

Two ⌃-graphs, G and G1, can be put in relation by structure-preserving
functions from the agents of G to the agents of G1. Those functions are
called homomorphisms. By structure-preserving we mean that:

1. agents of a specific type are mapped to agents of the same type;

2. if an agent exhibits a site, the site is present also in the image of that
agent;

3. the state of sites is preserved;

7.1. CATEGORY OF SIGMA-GRAPHS 135

4. the image of a site corresponding to a link holds a higher (or equal)
linking information.

The link information order is given by a subtyping relation §
type

, that is the
least reflexive relation §

type

such that for all A P A and x P ⌃ and i such
that typeGpiq “ A, we have:

´ §
type

pA, iq §
type

pn, iq.
Homomorphisms are formally defined as follows.

Definition 7.1.2. A homomorphism of ⌃-graphs h : G Ñ H is a (total)
function on agents h : AG Ñ AH such that:

1. typeGpiq “ typeHphpiqq for all i P AG;

2. if pi, xq P SG then phpiq, xq P SH ;

3. pkGpi, xq Ñ pkHphpiq, xq for every pi, xq P SG such that x P ⌃◆ptypeGpiqq;
4. pphpiq, xq, phpi1q, x1qq P LH for all ppi, xq, pi1, x1qq P LG X S2

G;

5. there exists s1 P SH Y Ext such that pphpiq, xq, s1q P LH and s §H s1 for
all ppi, xq, sq P LG such that s P Ext.

In Figure 7.2, it is possible to observe some examples of ⌃-graphs homo-
morphisms. There we have:

- a homomorphism from G1 to G2: the agents Apx
u

, y
u

q and Apx
u

, y
p

q
are mapped to the agent Apx

u

, y
u|pq, whereas the agents Apx

p

, y
u

q and
Apx

p

, y
p

q are mapped to the agent Apx
p

, y
u|pq;

- a homomorphism from G1 to G3: the agents Apx
u

, y
u

q and Apx
p

, y
u

q
are mapped to the agent Apx

u|p, yuq, whereas the agents Apx
u

, y
p

q and
Apx

p

, y
p

q are mapped to the agent Apx
u|p, ypq;

- a homomorphism from G1 to G4: all the agents are mapped to the agent
Apx

u|p, yu|pq;
- a homomorphism from G2 to G4: all the agents are mapped to the agent
Apx

u|p, yu|pq;
- a homomorphism from G3 to G4: all the agents are mapped to the agent
Apx

u|p, yu|pq.

136 CHAPTER 7. CONTEXT-SENSITIVE ABSTRACTIONS

A
x

y

u

u

A
x

y
p

A
x

y

p

u

A
x

y

p

p

A
x

y
u

A
x

y
p

A
x

y

u

A
x

y

p

A
x

y

u/p u/p

u/p u/p

u/p

u/p

G2

G3

G4

u

G1

Figure 7.2: ⌃-graphs morphisms.

We write u|p when the state of a site can be u or p but we ignore the exact
value.

Given a homomorphism h we say that h is an embedding every time
that h is injective. Generally, given two ⌃-graphs G and H, it is possible
to have more than one homomorphism between them. So the number of
homomorphisms between G and H is denoted by rG,Hs. We say that h is
an automorphism, whenever G “ H and h is a bijection. As we can notice,
the identity function is always an automorphism. Homomorphisms compose
in the usual way. Moreover, whenever two homomorphisms f : G Ñ H and
g : H Ñ G are such that their composition is the identity homomorphism
over H, then f and g are called isomorphisms and G and H are said to be
isomorphic. This is denoted by G « H.

In the following, all the constructions are defined up to isomorphisms.
Isomorphisms (and automorphisms) are all embeddings.

7.2 Basic elements of Abstract Interpretation

Here we recall the main concepts of Abstract Interpretation. The interested
reader can find more details in [20].

7.2. BASIC ELEMENTS OF ABSTRACT INTERPRETATION 137

7.2.1 Ordered sets

Let us start by reminding some general definitions.

Definition 7.2.1 (Partially ordered set). A partially ordered set (or poset)
xP,Ñy is a non empty set P with a partial order Ñ, that is a reflexive, anti-
symmetric, and transitive binary relation.

If it exists, the greatest lower bound (or glb) of a set P is denoted by
d
P .

In a similar way, if the least upper bound (or lub) of P exists, it is denoted
by

ó
P . If they exist, we denote by K the least element and J the greatest

element.

Definition 7.2.2 (Lattice). A lattice xP,Ñ,\,[y is a poset where each pair
of elements a, b P P has a least upper bound, denoted by a \ b, and a lower
upper bound, denoted by a [b.

Definition 7.2.3 (Complete lattice). A lattice xP,Ñ,\,[y is said to be
complete if any set P 1 Ñ P has a greatest lower bound and a least upper
bound.

In this case, it is denoted by xP,Ñ,\,[,K,Jy.
A classical example of complete lattice is the power-set of any set S,

xPpSq,Ñ,X,Y,H, Sy.
Definition 7.2.4 (Sublattice). Let xP,Ñ,\,[y be a lattice. Let S be a
subset of P and let ÑS, \S and [S be the restriction to S of Ñ, \ and [,
respectively.

Then xS,ÑS,\S,[Sy is a sublattice of xP,Ñ,\,[y if and only if for all
x, y P S we have x \ y P S and x [y P S.

7.2.2 Galois connections

Definition 7.2.5 (Galois connection). A Galois connection between two
complete lattices xP,Ñ,\,[,K,Jy and xP 7,Ñ7,\7,[7,K7,J7y is a pair of
maps:

↵ P P Ñ P 7, � P P 7 Ñ P

such that:
@p P P : @p7 P P 7 : ↵ppq Ñ7 p7 ô p Ñ �pp7q.

In which case we write:

xP,Ñ,\,[,K,Jy ´́ Ñ́–́´́
↵

� xP 7,Ñ7,\7,[7,K7,J7y.

138 CHAPTER 7. CONTEXT-SENSITIVE ABSTRACTIONS

Galois connections enjoy several properties (the interested reader can find
a good summary with all references to mathematical literature in [19]). For
example, � ˝ ↵ is extensive:

@p P P : p Ñ � ˝ ↵ppq (7.1)

since ↵ppq Ñ7 ↵ppq by reflexivity, hence p Ñ � ˝ ↵ppq by 7.2.5 with p7 “ ↵ppq.
If we abstract and than concretize we obtain something that is bigger than
what we started from. This means that the loss of information in our process
of abstraction is sound.

The same way ↵ ˝ � is reductive:

@p7 P P 7 : ↵ ˝ �pp7q Ñ7 p7 (7.2)

since �pp7q Ñ �pp7q by reflexivity, hence ↵˝�pp7q Ñ7 p7 by 7.2.5 with p “ �pp7q.
If we have an abstract element, we concretize and after we abstract it again,
we obtain something that is equal, or smaller, than our starting point. That
means that our abstraction is as precise as possible and we do not loose any
information by the concretization process.

It follows that:

1. ↵ is monotone: since p1 Ñ p2 implies p1 Ñ � ˝ ↵pp2q by 7.1 and transi-
tivity whence ↵pp1q Ñ7 ↵pp2q by 7.2.5;

2. � is monotone: since p7
1 Ñ7 p7

2 implies ↵ ˝ �pp7
1q Ñ7 p7

2 by 7.2 and
transitivity whence �pp7

1q Ñ �pp7
2q by 7.2.5.

↵ P xP,Ñ,\,[,K,Jy mÑ xP 7,Ñ7,\7,[7,K7,J7y (7.3)

� P xP 7,Ñ7,\7,[7,K7,J7y mÑ xP,Ñ,\,[,K,Jy (7.4)

The meaning of monotonicity is that the soundness of the approximation is
preserved by ↵ and �.

Equations 7.1, 7.2, 7.3 and 7.4 imply 7.2.5, so an alternative definition of
Galois connection can be given as:

xP,Ñ,\,[,K,Jy ´́ Ñ́–́´́
↵

� xP 7,Ñ7,\7,[7,K7,J7y

ñ

$
’’’&

’’’%

r↵ P xP,Ñ,\,[,K,Jy mÑ xP 7,Ñ7,\7,[7,K7,J7ys and
r� P xP 7,Ñ7,\7,[7,K7,J7yq mÑ xP,Ñ,\,[,K,Jy and

r@p P P : p Ñ � ˝ ↵ppqs and
r@p7 P P 7 : ↵ ˝ �pp7q Ñ7 p7s

(7.5)

We can observe that:

7.2. BASIC ELEMENTS OF ABSTRACT INTERPRETATION 139

P pÑq ´́ Ñ́–́´́
↵

�
P 7pÑ7q if and only if P 7pÑ7´1q ´́ Ñ́–́´́

�

↵
P pÑ´1q

where the inverse Ñ´1 of the partial order Ñ is Ö. Thus, any result can be
interpreted dually by reversing the order.

For all p P P and p7 P P 7, we have ↵ ˝ �pp7q Ñ7 p7 by 7.2, whence by
monotony � ˝↵˝�pp7q Ñ7 �pp7q. Moreover, �pp7q Ñ7 � ˝↵˝�pp7q, by 7.1 when
p is �pp7q. By antisymmetry, we conclude that:

@p7 P P 7 : � ˝ ↵ ˝ �pp7q “ �pp7q. (7.6)

The same way, we have ↵ ˝ � ˝ ↵ppq Ñ7 ↵ppq for all p P P . Moreover 7.1
implies that for all p P P we have p Ñ � ˝ ↵ppq, and, by monotony we have
↵ppq Ñ7 ↵ ˝ � ˝ ↵ppq. By antisymmetry, we conclude that:

@p P P : ↵ ˝ � ˝ ↵ppq “ ↵ppq. (7.7)

By recalling the definitions of closure operators (upper and lower), we can
observe that a Galois connection defines a couple of closure operators. ↵ ˝ �
is the lower closure operator and � ˝ ↵ is the upper one.

Definition 7.2.6 (Upper closure operator). Let xP,Ñ,\,[,K,Jy be a com-
plete lattice. An operator ⇢ of P is said to be an upper closure operator if
and only if:

1. ⇢ is monotone, i.e. @x, y P P, x Ñ y ñ ⇢pxq Ñ ⇢pyq;
2. ⇢ is extensive, i.e. @x P P, x Ñ ⇢pxq;
3. ⇢ is idempotent, i.e. @x P P, ⇢pxq “ ⇢p⇢pxqq.

Definition 7.2.7 (Lower closure operator). Let xP,Ñ,\,[,K,Jy be a com-
plete lattice. An operator ⇢ of P is said to be an lower closure operator if
and only if:

1. ⇢ is monotone;

2. ⇢ is reductive, i.e. @x P P, ⇢pxq Ñ x;

3. ⇢ is idempotent.

So, an immediate consequence is

P pÑq ´́ Ñ́–́´́
↵

�
P 7pÑ7q ùñ � ˝ ↵ is a upper closure operator (7.8)

and

P pÑq ´́ Ñ́–́´́
↵

�
P 7pÑ7q ùñ ↵ ˝ � is an lower closure operator. (7.9)

140 CHAPTER 7. CONTEXT-SENSITIVE ABSTRACTIONS

Idempotence can be interpreted as the fact that all the information is lost
once for all during the abstraction process, so the result of two abstractions
performed one after the other will be the same as if apply the abstraction
just once.

Another consequence is that we do not need to consider an abstract and
a concrete domain, but we can use the concrete domain as the abstract one
after applying to it the upper closure operator � ˝ ↵.
Definition 7.2.8 (Moore family). Let pP,Ñq be a poset with a top element
J. A Moore family is a subset M Ñ P such that:

- J P M

- if X P PpMqztHu then [X exists in P and [X P M

or equivalently

- if X P PpMq then [X exists in P and [X P M

that is to say M is closed under meet.

In particular, the use of Moore families is justified by the following:

Proposition 7.2.9. Let xP,Ñ,\,[,K,Jy and xP 7,Ñ7,\7,[7,K7,J7y be two
complete lattices. If xP,Ñ,\,[,K,Jy ´́ Ñ́–́´́

↵

� xP 7,Ñ7,\7,[7,K7,J7y then �˚pP 7q
is a Moore family (where �‹pP 7q “ t�ppq | p P P u).
Proof. See [20].

The reader interested in this equivalent approach can have a look to [19].
In a Galois connection one function uniquely and absolutely determines

the other:

Proposition 7.2.10. If xP,Ñ,\,[,K,Jy ´́ Ñ́–́ ´́
↵1

�1 xP 7,Ñ7,\7,[7,K7,J7y and

xP,Ñ,\,[,K,Jy ´́ Ñ́–́ ´́
↵2

�2 xP 7,Ñ7,\7,[7,K7,J7y then p↵1 “ ↵2q if and only if

p�1 “ �2q.
Proof. See [20].

So providing that we are in a complete lattice, we can perform an Abstract
Interpretation by defining the abstraction or, indi↵erently, the concretization
function. The following method gives us the way to uniquely determine the
adjoined function.

7.3. ABSTRACTION OF RELATIONS AMONG SITES 141

Proposition 7.2.11. If xP,Ñ,\,[,K,Jy ´́ Ñ́–́´́
↵

� xP 7,Ñ7,\7,[7,K7,J7y then,

for all p P P , ↵ppq is equal to the greatest lower bound
ó7tp7|p Ñ �pp7qu of

the inverse image by � of the set of upper bounds of p.
For all p7 P P 7 we have �pp7q “ ótp|↵ppq Ñ7 p7u.

Proof. See [20].

As a consequence, Galois connections between complete lattices preserve
bounds.

Proposition 7.2.12. If xP,Ñ,\,[,K,Jy ´́ Ñ́–́´́
↵

� xP 7,Ñ7,\7,[7,K7,J7y, then
↵ P P p_q aÑ P 7p_7q preserves the least upper bounds and � P P 7p^7q aÑ P p^q
preserves the greatest upper bounds.

Proof. See [20].

7.3 Abstraction of relations among sites

Now, given a ⌃-graph G, we want to consider a binary relation over its sites.
This relation can be used, for instance, to abstract the flow of information
among sites, as we will see in the following chapter.

7.3.1 Relations among sites

A way to represent a relation between sites of a ⌃-graph is given by the
so-called annotated ⌃-graph.

Definition 7.3.1 (Annotated ⌃-graphs). An annotated ⌃-graph Ga is a pair
pG, Gaq where G is a ⌃-graph and Ga is a subset of tpi, xq, pi1, x1q | i P
AG, pi, xq, pi1, x1q P SGu Z pLG X S2

Gq.
Ordered pairs of sites in tpn, iq, pn, i1q | n P AG, pn, iq, pn, i1q P SGu are

called internal edges and are denoted as pn, iq _ Ga pn, i1q, whereas ordered
pairs in LG X SG

2 are called external edges and are denoted as pn, iq ̂Ga

pn1, i1q. An ordered pair of sites can be connected by both an internal edge
and an external edge. We omit the symbols _ and ^ when they are not
important.

Example 7.3.2. If we consider the ⌃-graph G in Figure 7.1 and the following
relation:

 Ga :“ tpn, iq, pn, i1q | n P AG, pn, iq, pn, i1q P SGu Z pLG X S2
Gq,

the corresponding annotated ⌃-graph Ga “ pG, Gaq is given in Figure 7.4.

142 CHAPTER 7. CONTEXT-SENSITIVE ABSTRACTIONS

A
x

y
A

y

x

(a)

A
x

y

(b)

Figure 7.3: Example of annotated ⌃-graphs.

R r

l

E

R

E

r

l

rr

R r

l

E

r

R r

l

Rr

l

R r

l

E
r

R r

l

E

Rr

l

r

Figure 7.4: Annotated relation on sites of the ⌃-graph in Figure 7.1.

For every ⌃-graph G, we denote as RG the relation over the sites of G,
that is defined as follows:

RG :“ tpn, iq, pn, i1q | n P AG, pn, iq, pn, i1q P SGu Z pLG X S2
Gq.

RG is the most complete relation over the sites of G. Moreover, the set
}pRGq is the set of all the potential relations over the sites of G. It forms a
complete lattice, for inclusion. The bottom element of }pRGq is the empty
annotation, whereas the top element is the relation RG.

Let also consider another ⌃-graph Ḡ. The set }pRḠq is a complete lattice
as well.

Now we want to build a correspondence between the relation RG on the
sites of G and the relation RḠ on the sites of Ḡ. In particular we want to

7.3. ABSTRACTION OF RELATIONS AMONG SITES 143

have a method to switch the level of resolution from the one of G to the one
of Ḡ.

7.3.2 Approximation of relations among sites

Let G, Ḡ be two ⌃-graphs. We define a function ↵G,G1 : PpRGq Ñ PpRḠq
that takes an annotation on the graph G and returns an annotation on the
graph Ḡ.

Definition 7.3.3 (Abstraction). Let G, Ḡ be two ⌃-graphs and let r be a
relation in PpRGq.

↵G,Ḡ “
#

RG Ñ RḠ

r fiÑ tpp�piq, xq, p�pi1q, x1qq |� P MpG, Ḡq, ppi, xq, pi1, x1qq P ru.
The function ↵G,Ḡ maps each relation in PpRGq of G to its best (smallest)

abstract approximation in PpRḠq. Intuitively, every edge in an annotation
of G is interpreted as a positive information: we want to keep this edge.
Ḡ is another ⌃-graph, hence it allows for distinguishing among the states
of sites according to a di↵erent set of contexts. The abstraction reports
every edge of the annotation G, in the annotation of Ḡ, in every compatible
context. Compatibility between contexts is formalised by the means of a
homomorphism.

Definition 7.3.4 (Concretization). Let G and Ḡ be two ⌃-graph and let r̄
be a relation in PpRḠq.

�G,Ḡ “
#

RḠ Ñ RG

r̄ fiÑ tppi, xq, pi1, x1qq | @� P MpG, Ḡq, p�piq, xqr̄p�pi1q, x1qu
The function �G,Ḡ maps each relation in PpRḠq to the biggest concrete

relation in PpRGq corresponding to it. Intuitively, the annotation of Ḡ has
to be understood negatively. In there is no edge between two sites of Ḡ,
then we know that in this specific context there is no relation. Thus, the
concretization collects everything that is known about the absence of relation.

Theorem 7.3.5. Let G,Ḡ be two ⌃-graphs and let RG be the relation defined
in 7.3.1. So

xPpRGq,Ñ,H,RG,Y,Xy ´́ ´́ Ñ́–́ ´́ ´́
↵G,Ḡ

�G,Ḡ xPpRḠq,Ñ,H,RḠ,Y,Xy .
Proof. As we have seen in Definition 7.2.5, the pair p↵G,Ḡ, �G,Ḡq forms a
Galois connection if, and only if, for all r P RG and r̄ P RḠ we have:

↵G,Ḡprq Ñ r̄ ô r Ñ �G,Ḡpr̄q.

144 CHAPTER 7. CONTEXT-SENSITIVE ABSTRACTIONS

R r

l

E

R

E

r

l

rr

Figure 7.5: A dimer.

1. Let us prove that if ↵G,Ḡprq Ñ r̄ then r Ñ �G,Ḡpr̄q.
We consider ppi, xq, pi1, x1qq P r and a morphism � in MpG, Ḡq.
We know that �pi, xqr↵G,Ḡprqs�pi1, x1q.
So, since ↵G,Ḡprq Ñ r̄, we have that �pi, xqr̄�pi1, x1q.
So, by definition of �G,Ḡ, ppi, xq, pi1, x1qq P �G,Ḡprq. So r Ñ �G,Ḡpr̄q.

2. Let us prove that if r Ñ �G,Ḡpr̄q then ↵G,Ḡprq Ñ r̄.

Let us consider a morphism � in MpG, Ḡq and a couple of sites ppi, xq, pi1, x1qq
such that �piq “ ī and �pi1q “ ī1 and pi, xqrpi1, x1q.
Since r Ñ �G,Ḡpr̄q, we have that pi, xq�G,Ḡpr̄qpi1, x1q.
By definition of �G,Ḡ, we have: p�piq, xqr̄p�pi1q, x1q.
So we get that: pp̄i, x̄q, p̄i1, x̄1qq P r.

Example 7.3.6. To see how both functions work, let us consider the example
given by the dimer in Figure 7.5. We will not consider all the possible rela-
tionships between sites, but we will restrict our example to the ones showed
in the sublattice C of Figure 7.6.

The sublattice C will be used both as the concrete and as the abstract
domain, so ↵ : C Ñ C and � : C Ñ C. The abstraction is showned in Figure
7.7 and the concretization in Figure 7.8.

Since the two functions, ↵G,Ḡ and �G,Ḡ, form a Galois connection they
enjoy several properties. In particular, their compositions are both closure
operators: �G,Ḡ ˝↵G,Ḡ is the upper one (Definition 7.2.6), whereas ↵G,Ḡ ˝�G,Ḡ

is the lower (Definition 7.2.7).

7.3. ABSTRACTION OF RELATIONS AMONG SITES 145

R r

l

E

R

E

r

l

rr

R r

l

E

R

E

r

l

rr

R r

l

E

R

E

r

l

rr

R r

l

E

R

E

r

l

rr

(r1) (r2)

(r0)

(r3)

Figure 7.6: Lattice C.

Example 7.3.7 (continued). Figure 7.9 shows the result of their application
to the lattice in Figure 7.6. The red arrows correspond to ↵G,Ḡ ˝ �G,Ḡ; the
blue ones correspond to �G,Ḡ ˝ ↵G,Ḡ.

The upper closure �G,Ḡ ˝ ↵G,Ḡ characterises the granularity of our ab-
straction. It consists in reporting every edge in the annotation of G in every
other context that cannot be discriminated from the initial one in Ḡ. Two
annotations of G having the same image by �G,Ḡ ˝ ↵G,Ḡ describe the same
information. In the case when G and Ḡ are equal, this amounts to propagate
edges along every automorphism.

The lower closure ↵G,Ḡ ˝ �G,Ḡ allows to simplify the annotation of Ḡ. It
propagates the information we have about the absence of edges that can be
described at the level of resolution of G, in Ḡ. In the case when G and Ḡ are
equal, this amounts to remove every edge between two sites, if such an edge
is missing between the image of these sites by an automorphism.

146 CHAPTER 7. CONTEXT-SENSITIVE ABSTRACTIONS

R

E

R

E

R

E

R

E

R

E

R

E

R

E

R

E

(r1) (r2)

(r0)

(r3)

R

E

R

E

R

E

R

E

R

E

R

E

R

E

R

E

(r1)
(r2)

(r0)

(r3)

Figure 7.7: Abstraction. The dotted arrows represent the function ↵.

7.3. ABSTRACTION OF RELATIONS AMONG SITES 147

R

E

R

E

R

E

R

E

R

E

R

E

R

E

R

E

(r1) (r2)

(r0)

(r3)

R

E

R

E

R

E

R

E

R

E

R

E

R

E

R

E

(r1)
(r2)

(r0)

(r3)

Figure 7.8: Concretization. The dotted arrows represent the function �.

148 CHAPTER 7. CONTEXT-SENSITIVE ABSTRACTIONS

R r

l

E

R

E

r

l

rr

R r

l

E

R

E

r

l

rr

R r

l

E

R

E

r

l

rr

R r

l

E

R

E

r

l

rr

(r1) (r2)

(r0)

(r3)

Figure 7.9: Closure operators.

Chapter 8

Partitioned flow

In this chapter, we show how to use an arbitrary ⌃-graph to summarise the
potential flow of information between the sites of species in a context-sensitive
way. Then we use this summary to derive a set of self-consistent fragments.
This way, we can tune the resolution of our model reduction according to
the contexts which can be distinguished in the ⌃-graph (which is left as a
parameter of our abstraction).

8.1 Case study

Before describing the framework formally, we introduce a case study. We
consider one kind of protein P with three phosphorylation sites, called a, b,
and c. Each site can be phosphorylated, or not, thus each instance of P can
take 8 (as 23) configurations. We consider that any site can get phospho-
rylated or lose its phosphorylation, thus there are 24 chemical reactions (3
per configurations). Configurations are listed in Figure 8.1(a), reactions are
drawed in Figure 8.1(b). The protein in the state P pawa , bwb

, cwcq is denoted
as a triple pwa, wb, wcq of symbols among u and p. In general, the rate con-
stant of phosphorylation (resp. dephosphorylation) can depend on the state
of the other sites. Here we make the assumption that only the phosphory-
lation rate constant of the third site depends on the state of the two other
sites, but we assume that the phosphorylation rate constant of the third site
is the same in the configurations (u,u,u) and (u,p,u). Thus, our system is
parameterised by 12 kinetic rates (e.g.. see Fig.8.1(b)).

The behaviour of the system is formalised by the means of the follow-
ing system of di↵erential equations, which describes the derivatives of the
concentrations of each configuration of P :

149

150 CHAPTER 8. PARTITIONED FLOW

A

a

c b
up

u

A

a

c b
pp

u

A

a

c b
up

p

A

a

c b
pp

p

A

a

c b
uu

u

A

a

c b
pu

u

A

a

c b
uu

p

A

a

c b
pu

p

(a) Catalogue of species.

pu, p, pq

k8

✏✏

k4��

k1 // pp, p, pq
k2

oo

k8

✏✏

k4��pu, u, pq

k8

✏✏

k1 //

k3
??

pp, u, pq
k8

✏✏

k2
oo

k3
??

pu, p, uq
k5

OO

k4��

k1 // pp, p, uq
k4��

k7

OO

k2
oo

pu, u, uq k1 //

k5

OO

k3
??

pp, u, uq
k2

oo

k3
??

k6

OO

(b) Reactions.

A

a

c b

u/pu/p

u/p

(c) Contact map.

a

c b
u/pu/p

u/p

A
(d) Context-insensitive abstraction
of the flow of information.

a

c b
u/pu/p

u

A

a

c b
u/pu/p

p

A
(e) Context-sensitive abstraction of the flow
of information. The dotted arrow represents
a dependency that can be dropped if the rate
constant k1 is zero.

Figure 8.1: Case study

8.1. CASE STUDY 151

rpu, u, uqs1 “ k2rpp, u, uqs ` k4rpu, p, uqs ` k8rpu, u, pqs ´ pk1 ` k3 ` k5qrpu, u, uqs
rpu, u, pqs1 “ k2rpp, u, pqs ` k4rpu, p, pqs ` k5rpu, u, uqs ´ pk1 ` k3 ` k8qrpu, u, pqs
rpu, p, pqs1 “ k2rpp, p, pqs ` k3rpu, u, pqs ` k5rpu, p, uqs ´ pk1 ` k4 ` k8qrpu, p, pqs
rpu, p, uqs1 “ k2rpp, p, uqs ` k3rpu, u, uqs ` k8rpu, p, pqs ´ pk1 ` k4 ` k5qrpu, p, uqs
rpp, p, uqs1 “ k1rpu, p, uqs ` k3rpp, u, uqs ` k8rpp, p, pqs ´ pk2 ` k4 ` k7qrpp, p, uqs
rpp, p, pqs1 “ k1rpu, p, pqs ` k3rpp, u, pqs ` k7rpp, p, uqs ´ pk2 ` k4 ` k8qrpp, p, pqs
rpp, u, pqs1 “ k1rpu, u, pqs ` k4rpp, p, pqs ` k6rpp, u, uqs ´ pk2 ` k3 ` k8qrpp, u, pqs
rpp, u, uqs1 “ k1rpu, u, uqs ` k4rpp, p, uqs ` k8rpp, u, pqs ´ pk2 ` k3 ` k6qrpp, u, uqs.
Now, we wonder whether or not our model can be coarse-grained: we are

looking for a set macro-variables which are defined as a linear combination
of the variables of the initial systems (so called micro-variables) that are self-
consistent. That is to say that the derivatives of the macro-variables must
be expressed as functions of only the macro-variables. In Chapter 6, we have
introduced a framework for detecting self-consistent coarse-graining thanks
to an over-approximation of the flow of information between the states of
the sites of proteins. Indeed the flow of information can be summarised by
annotating a contact map (which describes the di↵erent kinds of proteins,
their sites, their potential phosphorylation states and their potential binding)
with an oriented relation over the sites, which summarises how each site may
influence the other ones: an arrow from a site s1 to a site s2 means that the
capability of modifying the state of the site s2 may change according to the
state of the site s1.

The annotated contact map for our case study is given in Figure 8.1(d).
This is a context-insensitive approximation since all the information about
the sites of P is summarised in a single node, regardless the states of its sites,
which prevents from providing distinct annotations for a given site depending
on the state of the other sites. The arrow from the site a (resp. b) site to the
site c comes from the fact that the phosphorilation rate constant of the site
c may depend on the state of the site a (resp. b) (since k6 may not be equal
to the rate constant k5 (resp. k7)). No other arrows are required, since the
phosphorylation/dephosphorylation rates of both the sites a and b do not
depend on the states of other sites (indeed, we can check on Figure 8.1(b)
that the rates of the corresponding reactions are the same four by four). As
a result, since the behaviour of the site c site depends on the state of all the
other sites, no coarse-graining can be found in this way.

Indeed, without further assumptions, the model cannot be coarse-grained
by any means. But interestingly, if we set the rate constant k1 equal to 0,
we can abstract away the relation between the state of the sites b and c in
the case when the site a is activated. This is formalised by the following
di↵erential equations:

152 CHAPTER 8. PARTITIONED FLOW

a

c b
up

u
a

c b
pp

u
a

c b
up

p
a

c b
pp

p

a

c b
uu

u
a

c b
pu

u
a

c b
uu

p
a

c b
pu

p

a

c b

u/pu/p

u/p

a

c b
up

a

c b
pp

a

c b
uu

u/p
a

c b
pu

u/p

u/pu/p
a

c b
p

u
a

c b
p

p

a

c b
u

u
a

c b
u

p

u/p

u/pu/p

u/p

a

c b
u

p
a

c b
p

p

a

c b
u

u
a

c b
p

u

u/p

u/p u/p

u/p

a

c b
p

a

c b
u

u/p

u/p

u/p

u/p

a

c b

p

a

c b

u

u/pu/p

u/p u/p

a

c b
p

a

c b
u

u/p

u/p

u/p

u/p

Figure 8.2: Hierarchy of ⌃-graphs.

8.1. CASE STUDY 153

rp?, u, ?qs1 “ k4rp?, p, ?qs ´ k3rp?, u, ?qs
rp?, p, ?qs1 “ k3rp?, u, ?qs ´ k4rp?, p, ?qs
rpu, ?, pqs1 “ k2prpp, u, pqs ` rpp, p, pqsq ` k5rpu, ?, uqs ´ k8rpu, ?, pqs
rpu, ?, uqs1 “ k2prpp, u, uqs ` rpp, p, uqsq ` k8rpu, ?, pqs ´ k5rpu, ?, uqs
rpp, p, uqs1 “ k3rpp, u, uqs ` k8rpp, p, pqs ´ pk2 ` k4 ` k7qrpp, p, uqs
rpp, p, pqs1 “ k3rpp, u, pqs ` k7rpp, p, uqs ´ pk2 ` k4 ` k8qrpp, p, pqs
rpp, u, pqs1 “ k4rpp, p, pqs ` k6rpp, u, uqs ´ pk2 ` k3 ` k8qrpp, u, pqs
rpp, u, uqs1 “ k4rpp, p, uqs ` k8rpp, u, pqs ´ pk2 ` k3 ` k6qrpp, u, uqs,

where the macro-variables are intentionally defined as fragments of config-
urations (question marks denote sites which have been cut away), and ex-
tensionally as linear combinations of the configurations which contain these
fragments:

rp?, u, ?qs “ rpu, u, uqs ` rpu, u, pqs ` rpp, u, uqs ` rpp, u, pqs
rp?, p, ?qs “ rpu, p, uqs ` rpu, p, pqs ` rpp, p, uqs ` rpp, p, pqs
rpu, ?, uqs “ rpu, u, uqs ` rpu, p, uqs
rpu, ?, pqs “ rpu, u, pqs ` rpu, p, pqs.

This coarse-graining can be discovered by tuning the context-sensitivity
of the information flow analysis. Indeed, the behaviour of the protein P can
be partitioned into two distinct modes. Whenever the site a is phosphory-
lated, the evolution of the state of the site c is controlled by the state of both
sites a and b. But whenever the site a is not phosphorylated, the evolution
of the state of the site c is not controlled by the state of the site b anymore
(this can be checked in Figure 8.1(b) where the phosphorylation (resp. un-
phosphorylation) rate constant of the site c is the same whatever the protein
is in the state pu, u, uq or pu, p, uq (resp. pu, u, pq or pu, p, pq)).

This accurate approximation of the flow of information is out of the reach
of context-insensitive analysis. Thus we propose to use arbitrary ⌃-graphs
where di↵erent annotations can be written according to the state of well
chosen sites, unlike the contact map. An example ⌃-graph is given in Figure
8.1(e). We notice that two nodes are used to describe the protein P , according
to whether or not the site a is phosphorylated. Then, we can annotate our ⌃-
graph with context-sensitive information about the flow of information and
obtain the plain arrows in Figure 8.1(e). Interestingly, in the left pattern
component, there is no flow of information from any site into the site b and
no flow of information from the site b into the site c. As a consequence, the
fragments of proteins that contain the sites a and c, and the ones that only
contain the site b are good candidates as macro-variables. Yet, since in the
right pattern component there is a potential flow of information from the sites
a and b into the site c, any micro-variable where the site a is phosphorylated

154 CHAPTER 8. PARTITIONED FLOW

has to be preserved. Thus, we find again the set of macro-variables

" rp?, u, ?qs, rp?, p, ?qs, rpu, ?, uqs, rpu, ?, pqs,
rpp, p, uqs, rpp, p, pqs, rpp, u, pqs, rpp, u, uqs

*
,

which is self-consistent, as we have shown previously.
Then we may wonder why this coarse-graining is not self-consistent when

the phosphorylation reaction of the site a is not knocked out. This is because
configurations of the form pu, ?, ?q can now be transformed into configura-
tions of the form pp, ?, ?q. Then, so as to express the concentration of the
configurations of the form pp, ?, ?q which are produced this way, we need to
express the configurations of the form pu, ?, ?q with at least the same fine-
grained level of description. This is captured by the right-gluing construction
in [36]. In the present framework, it is necessary to duplicate the arrow from
the site b and the site c, from the right pattern component into the left
one. The resulting arrow, drawn in dotted in Figure 8.1(e), prevents any
coarse-graining.

Between the catalogue of species (Figure 8.1(a)) and the contact map
(Figure 8.1(c)), we have a lot of intermediary representations. We show
some of them in Figure 8.2.

In the following, we see how to abstract the flow of information at an
arbitrary grain of description and we prove that it always provides a sound
set of fragments.

8.2 Context-sensitive model reduction

As we have previously seen for the case of contact maps, an annotated ⌃-
graph can be interpreted as a symbolic representation of a set of patterns,
called prefragments. Unlike in the context-insensitive case, we have no ef-
ficient ways to make the distinction between fragments and prefragments.
Thus we characterize prefragments only, and we define a fragment as a pre-
fragment the concentration of which cannot be expressed as a linear combi-
nation of the concentration of some other prefragments.

8.2.1 Prefragments

As we mentioned before, a special kind of ⌃-graphs can be used to describe
patterns. These are the so called site graphs that are formally defined as
follows:

Definition 8.2.1 (Site graph). A site graph G is a ⌃-graph such that:

8.2. CONTEXT-SENSITIVE MODEL REDUCTION 155

1. the set AG is finite;

2. the link relation LG is irreflexive;

3. for any site s P SG, ps, xq P LG and ps, yq P LG implies x “ y;

4. for any site pi, xq P SG such that x P ⌃◆, the set pkGpsq contains at
most one element.

We can observe that site graphs have no link that immediately loops back
to the same site and have at most one link from any site.

We can specialise the concept of site graphs further, and obtain a char-
acterisation of mixtures.

Definition 8.2.2 (Mixture). A mixture is a site graph that additionally sat-
isfies:

1. L Ñ pSG Y t✏uq2;
2. SG “ tpi, xq | i P AG and x P ⌃ag´stptypepiqqu;
3. for any pi, xq P SG such that x P ⌃�ptypeGpiqq, there exists s1 P Ext

such that ppi, xq, s1q P LG;

4. for any pi, xq P SG such that x P ⌃◆, the set pkGpi, xq is a singleton.

We can notice that, in addition to site graphs, mixtures specify the states
of all their sites and have neither external links, nor binding types.

As an abuse of notation, we make no di↵erence between a pattern and a
site graph, which allows us to use homomorphisms from patterns to ⌃-graphs.

We can now safely define the notion of prefragments, in our context-
sensitive framework: given an annotated ⌃-graph Ga, a site graph P is a
prefragment if we get a directed relation over its sites when we annotate it by
the meet of the inverse image of the annotation of Ga by any homomorphism
between P and Ga.

Definition 8.2.3. Let Ga be an annotated ⌃-graph and let P be site graph.
We define the canonical annotation of P by the annotated ⌃-graph Ga as
follows:

- for any pi, xq, pi1, x1q P SP and any w P t_,^u, pi, xq ˝ P,Ga pi1, x1q if

and only if for all homomorphisms h : P Ñ G, p�piq, xq ˝ Ga phpi1q, x1q.

156 CHAPTER 8. PARTITIONED FLOW

a

c b
uu

u

a

c b

a

c b
u/p

u/pu/p

u/p

u

p

(a) Homomorphism from a site graph to an annotated
⌃-graph.

a

c b
uu

u

a

c b

a

c b
u/p

u/p

u/p

u/p

p

u

(b) Canonical annotation of the site graph.

Figure 8.3: Example of canonical annotation of a site graph by an annotated
⌃-graph.

8.2. CONTEXT-SENSITIVE MODEL REDUCTION 157

We remind (see Definition 8.2.9) that the symbol ^ denotes internal edges,
whereas the symbol _ denotes external edges.

We notice that annotating a site graph P according to an annotated
⌃-graph Ga amounts to apply the concretization �P,G to Ga.

In Figure 8.3 an example of canonical annotation is showed. Specifically,
Figure 8.3(a) shows (by the dotted arrow) all the homomorphisms from a
site graph to an annotated ⌃-graph; Figure 8.3(b) shows how the pattern is
annotated accordingly.

Another example is given in Figure 8.4. There the canonical annotation
is the empty one.

Definition 8.2.4 (Prefragment). Given an annotated ⌃-graph Ga, we say
that a site graph P is a prefragment for Ga if and only if the set of sites SP

and the transitive and reflexive closure of the relation P,Ga form a directed
set (i.e. for any s1, s2 P SP , there exists s P SP such that s1 ‹

P,Ga
s and

s2 ‹
P,Ga

s).

We can observe that prefragments are connected. Moreover, since the set
SP is finite, a site graph P is a prefragment if and only if there exists a site
s‚ P SP such that for every site s P SP , s ‹

P,Ga
s‚.

In such a case, we say that the site s‚ is a target of the prefragment (s‚
may be not unique).

8.2.2 Flow analysis

Now we want to see in which way we should annotate a ⌃-graph in order to
have a self consistent change of variables. For this purpose, we introduce the
concept of summary graph.

Definition 8.2.5 (summary graph). A summary graph G is a ⌃-graph with
this three properties:

1. L Ñ pS Y t%uq2;
2. for every species V P V, there exists a homomorphism h : V Ñ G;

3. for every homomorphism h : P Ñ G from a connected site graph P
to G, there exists a species V P V, an embedding � : P ãÑ V and a
homomorphism h1 : V Ñ G such that h “ h1�.

Roughly speaking, summary graphs are used to abstract information
about the potential overlaps between the left and right hand sides of rules and
connected site graphs, such that the common region contains sites that are

158 CHAPTER 8. PARTITIONED FLOW

a

c
u

u

a

c b

a

c b
u/p

u/p

u

u/p

u/p

p

(a) Homomorphism from a site graph to an annotated
⌃-graph.

a

c
u

u

a

c b

a

c b
u/p

u/p

u/p

u/p

u

p

(b) Canonical annotation of the site graph.

Figure 8.4: Example of canonical annotation by an annotated ⌃-graph.

8.2. CONTEXT-SENSITIVE MODEL REDUCTION 159

modified by the rules. This will allow us to express the proper consumption
and the proper production of these site graphs.

The set of summary graphs is exactly the smallest set of ⌃-graphs that
contains the disjoint union of the family of species and that is stable by
disjoint union and folding of agent nodes (folding of agent nodes can be
formalised as the application of a regular epimorphism). It follows that the
disjoint union of all species is a summary graph (the most concrete one), and
the contact map is also a summary graph (the most abstract one).

Now we study the factors that we need to consider in order to annotate
the summary graph in a way that will allow us to derive a sound and complete
set of fragments.

First of all, let us introduce some notion.

Definition 8.2.6 (Path in a site graph). Let P be a site graph. We call

a path in P a sequence of steps pi1, x1q ˝1 PJ ¨ ¨ ¨ ˝n´1 PJ pin, xnq in SP , such
that ppik, xkq, pik`1, xk`1qq P LP for every k between 1 and n´ 1 that satisfies
˝k “ _.

Definition 8.2.7 (Alternated path). A path pi1, x1q ˝1 PJ ¨ ¨ ¨ ˝n´1 PJ pin, xnq
is said to be alternated if for any integer j between 1 and k ´ 1:

˝j “ _ if and only if ˝j`1 “ ^.

Lemma 8.2.8. Let Ga be an annotated summary graph. Let � : P Ñ P 1 be a
homomorphism between two site graphs P and P 1. Let pi1, x1q, pi1, x2q P SP be
two sites such that pi1, x1q ‹

P,Ga
pi2, x2q then p�pi1q, x1q ‹

P 1,Ga
p�pi2q, x2q.

Proof. Let pi, xq, pi1, x1q P SP be two site instances in P and w P t_,^u such
that pi, xq ˝ P,Ga pi1, x1q.

Let h be a homorphism between P 1 and G. By composition, h� is a
homorphism between P and G.

Since pi, xq ˝ P,Ga pi1, x1q, it follows, by Definition 8.2.3 that:

php�piqq, xq ˝ Ga php�pi1qq, x1q.
Thus, by Definition 8.2.3, p�piq, xq ˝ P,Ga p�pi1q, x1q.
It follows, by induction, that : p�pi1q, x1q ‹

P 1,Ga
p�pi2q, x2q.

Now we have all the elements we need to describe the requirements that
an annotated summary graph should have in order to be able to induce a
self-consistent change of variables.

Definition 8.2.9. Let Ga be an annotated summary graph. We say that
Ga is compatible with a model if, and only if, the following constraints are
satisfied:

160 CHAPTER 8. PARTITIONED FLOW

1. Direct flow:

For every non trivial rule r : L Ñ R, for every homomorphism h from
the lhs L of the rule r, to the ⌃-graph G,

(a) for every arc pi, xq ˝ LJ pi1, x1q that occurs in an alternated path
in L, that ends in a site instance which is modified by the rule r,
we have: phpiq, xq ˝ Ga phpi1q, x1q

(b) for every site instance pA, i, xq P MAYprq, for every site site
name x1 such that the pair pi, x1q denotes a site instance in L, we
have: phpiq, x1q ̂Ga phpiq, xq;

(c) for every site instance pA, i, xq P MAYprq Y MUST prq such that
pA, i, xq P MAYprq, for every site instance pi1, x1q P SG such that
pphpiq, xq, pi1, x1qq P LG, we have: phpiq, xq _ Ga pi1, x1q;

(d) for every site instance pA, i, xq P MUST prq such that the binding
state of the site instance pA, i, xq in L is the symbol ’´’, for every
site instance pi1, x1q P SG such that pphpiq, xq, pi1, x1qq P LG, we
have: phpiq, xq _ Ga pi1, x1q;

(e) for every site instance pA, i, xq P MUST prq such that the binding
state of the site instance pA, i, xq in L is a binding state that we
denote as A1@x1, and for every site instance pi2, x2q P SG such
that typeGpi2q “ A1, x2 “ x1, and pphpiq, xq, pi2, x2qq P LG, we
have: phpiq, x1q _ Ga pi2, x2q;

2. Indirect flow:

For every non trivial rule r : L Ñ R, for every pattern component c in
the lhs L of the rule r, there exists a site instance pi, xq in c such that,
for every site instance pi1, x1q in c, we have: pi1, x1q L,Ga pi, xq.

3. Backward compatibility:

For every rule (trivial or not) r, for every ground refinement RL Ñ RR

of the rule r, for every homomorphism hL from RL to G, for every
homorphism hR from RR to G, for every two paths:

p “ pi1, x1q ˝1 RLJ . . .
˝n´1 RLJ pin, xnq

and:

p1 “ pi1
1, x

1
1q

˝1
1 RLJ . . .

˝1
n1´1 RLJ pi1

n1 , x1
n1q

such that:

8.2. CONTEXT-SENSITIVE MODEL REDUCTION 161

- pin, xnq “ pi1
n1 , xn1q;

- there exists k between 1 and n such that the site instance:

ptypeRLpikq, ik, xkq
is modified by the reaction RL Ñ RR;

- for every arc pi, xq ˝ RLJ pi1, x1q that occur either in the path p or
in the path p1, the three following conditions are satisfied:

i. ptypeRRpiq, i, xq and ptypeRRpi1q, i1, x1q are site instances in RR;

ii. pi, xq ˝ RRJ pi1, x1q;
iii. phRpiq, xq ˝ RR,Ga phRpi1q, x1q;

for every arc pi, xq ˝ RLJ pi1, x1q occuring in p or p1, we have:

phLpiq, xq ˝ Ga phLpi1q, x1q.

Let us give some intuitions about Definition 8.2.9.
Direct flow (constraint 1) is obtained by annotating the image of every

alternating path between a site that is tested and a site that is modified
(constraint 1a), by every homomorphism between the lhs of a rule and the
summary graph G (constraint 1a). These paths are prolongated in order
to take into account potential side e↵ects (constraints 1b, 1c, 1d, and 1e).
Considering paths allows us to deal with distance control, that is to say
agents which test the state of some sites, without modifying the states of
any sites. Moreover, only considering alternating paths avoids spurious flows
within agents.

Indirect flows (constraint 2) ensure that any pattern component in the
lhs of a rule is a prefragment, and this even if it contains no modified site.

Annotating a summary graph so that it copes with direct and indirect
flows, could be seen as an abstraction. Let us consider U the disjoint union
of all the lhs of rules. Let us ignore side e↵ects for the sake of simplicity.
Firstly, we annotate U with every alternated path from a site that is tested to
a site that is modified in the lhs of a rule. Then, we complete the annotation
of U so that each connected component contains a target. The constraints 1
and 2 ensures that Ga contains at least the annotation of ↵U,G.

Lastly, backward compatibility (constraint 3 ensures that prefragments
that overlap with the lhs of rules are always more refined than the ones
that overlap with the rhs. This comes from the fact that a prefragment that
overlaps with a rhs of a rule on a modified site s‚, contains at least one target
t. Then we consider another site instance s in the prefragment. The path

162 CHAPTER 8. PARTITIONED FLOW

p denotes a path between the site s‚ and the target t, whereas the path p1
denotes a path between the site s and the target t. Thus we copy these paths
at any place in the annotated summary graph Ga which matches both with
a potential antecedent of the prefragment and the context of application of
at least one reaction.

It is worth noting that Constraint 3 of Definition 8.2.9 can be over-
approximated, so as to avoid having to refer to ground reactions. Instead,
it is enough to explore only the refinements of the rules, that describes the
paths of interest, and some contextual information which can be tuned by
a parametric strategy (such as refining the agents at distance less than k
from the gluing between the rhs of the rule and the two paths of interest).
We would get more annotations in the ⌃-graph G, but the soundness of our
approach would still hold.

Example 8.2.10. Let us have a look to Figure 8.5. The set of fragments will
depend on our choice for the summary graph. If we perform the fragmentation
from summary graph (1), which corresponds to the catalogue of species, we
obtain the following fragments:

F1 “ P pap, bu, cuq,
F2 “ P pap, bp, cuq,
F3 “ P pau, cuq,
F4 “ P pauq,
F5 “ P papq,
F6 “ P pbuq,
F7 “ P pbpq,
F8 “ P pcpq.

If we start from summary graph (2), we obtain:

F1 “ P pau, bu, cuq,
F2 “ P pau, bp, cuq,
F3 “ P pap, bu, cuq,
F4 “ P pap, bp, cuq,
F5 “ P pauq,
F6 “ P papq,
F7 “ P pbuq,
F8 “ P pbpq,
F9 “ P pcpq.

If we start from summary graph (3) we obtain the same fragmentation then
in the concrete case (1).

8.2. CONTEXT-SENSITIVE MODEL REDUCTION 163

a

c b
up

u
a

c b
pp

u
a

c b
up

p
a

c b
pp

p

a

c b
uu

u
a

c b
pu

u
a

c b
uu

p
a

c b
pu

p

a

c b
u/pu/p

u/p

a

c b
up

a

c b
pp

a

c b
uu

u/p
a

c b
pu

u/p

u/pu/p
a

c b
p

u
a

c b
p

p

a

c b
u

u
a

c b
u

p

u/p

u/pu/p

u/p

a

c b
u

p
a

c b
p

p

a

c b
u

u
a

c b
p

u

u/p

u/p u/p

u/p

a

c b
p

a

c b
u

u/p

u/p

u/p

u/p

a

c b

p

a

c b

u

u/pu/p

u/p u/p

a

c b
p

a

c b
u

u/p

u/p

u/p

u/p

(1)

(2) (3) (4)

(5) (6) (7)

(8)

Figure 8.5:

164 CHAPTER 8. PARTITIONED FLOW

If we start from summary graph (4):

F1 “ P pap, bu, cuq,
F2 “ P pap, bu, cpq,
F3 “ P pap, bp, cuq,
F4 “ P pap, bp, cpq,
F5 “ P pau, cuq,
F6 “ P pau, cpq,
F7 “ P pbuq,
F8 “ P pbpq.

If we start from summary graph (5) we obtain the same fragmentation then
with the summary graph (2).

If we start from summary graph (6):

F1 “ P pau, cuq,
F2 “ P pau, cpq,
F3 “ P pap, bu, cuq,
F4 “ P pap, bp, cuq,
F5 “ P pap, bu, cpq,
F6 “ P pbp, bp, cpq,
F7 “ P pbuq,
F8 “ P pbpq.

If we start from summary graph (7):

F1 “ P pau, bu, cuq,
F2 “ P pau, bu, cpq,
F3 “ P pau, bp, cuq,
F4 “ P pau, bp, cpq,
F5 “ P pap, bu, cuq,
F6 “ P pap, bu, cpq,
F7 “ P pap, bp, cuq,
F8 “ P pap, bp, cpq.

That is exactly our catalogue of species.
Again, if we start the fragmentation from the summary graph (8), that

corresponds to the contact map, we obtain the full set of species.

8.3 Reduced model

We recall the notations of Chapter 5.

8.3. REDUCED MODEL 165

We assume that the model is made of the following set of rules R:

r1 :“ c1,1, . . . , c!p1q,1 Ñ p1,1, . . . , p✓p1q,1 k1
r2 :“ c1,2, . . . , c!p2q,2 Ñ p1,2, . . . , p✓p2q,2 k2
. . . :“ . . .
rh :“ c1,h, . . . , c!phq,h Ñ p1,h, . . . , p✓phq,h kh

where for every rule r◆, !p◆q returns the number of components in the left
hand side and ✓p◆q returns the number of component in the right hand side.

We denote by F the semantics function, which maps each state ⇢ : V Ñ R
to the function of the concentration derivatives V Ñ R

cardprP, P sq ˆ Fp⇢qpP q “
hÿ

◆“1

ÿ

MP–›Mp◆,P q

!p◆qπ

�“1

prc�,◆,F,M sq⇢

´
hÿ

◆“1

�◆

!p◆qÿ

j“1

ÿ

MP›ÑMp◆,j,P q
prcj,◆ YM P sq⇢

!p◆qπ

�“1
�‰j

prc�,◆sq⇢

where for every rule index ◆, every position j,

- ›ÑMp◆, j, P q denotes the set of the potential extended gluings (e.g. see
Definition 5.3.8) between the pattern component cj,◆ and the pattern
P ;

- –›Mp◆, P q is the set of the extended preconditions of the refinements of
the rule rule◆ according to the overlap between the rhs of the rule rule◆
and the pattern P ;

- and for every M P –›Mp◆, P q, pc�,◆,F,Mq1§�§!p◆q is the list of the pattern
components in the extended precondition predp◆, P,Mq.

8.3.1 Contribution of proper consumption

We already know, that the pattern components that occur in the lhs of a rule
are all prefragments. Let us prove that if F is a prefragment, ◆ a rule index,
and j a position, and any way M P ›ÑMp◆, j, F q to glue the prefragment F on
the j-th pattern component of the rule rule◆, then the corrected concentration
prcj,◆ YM F sq of pattern component pcj,◆ YM F q is either equal to 0 or to the
corrected concentration of a prefragment.

166 CHAPTER 8. PARTITIONED FLOW

Trivial rules We assume that ◆ is the index of a trivial rule. By definition,
the rule rule◆ has the following form:

A

1

pxB2@yq, B
2

pyA1@xq Ñ A

1

pxq, B
2

pyq.
Hence, the number !p◆q of pattern components in the lhs of the rule rule◆ is
equal to 1, and j is equal to 1 as well.

We consider pA , Bq P ›ÑMp◆, j, F q an extended gluing between the pattern
component c1,◆ and the prefragment F .

The rule rule◆ has no side e↵ect.
As a consequence, we have B “ H.
By Definition 5.3.8, it follows that A ‰ H.
We consider two cases according to whether or not the set A is a single-

ton.

1. Let us assume that the set A is a singleton.

It follows that the (extended) gluing between c1 and F is obtained (up
to isomorphism) by replacing a binding type carried by a site instance
s, by a link to a fresh agent.

We wonder what are the di↵erent possibilities to refine the binding
type of the site instance s in the prefragment F . The site s might be
bound to a site instance in F , but the so-refined pattern would contain
a cycle, that is to say, since we have assumed that no species contains
cycles, that its (corrected) concentration would be equal to 0. The only
remaining case, is the one where the site s is bound to a site in a fresh
agent. In this case, the refined pattern is isomorphic to the pattern
c1,◆ YA F .

We conclude that:
prc1,◆ YpA ,Bq F sq “ prF sq.

2. Let us assume that the set A contains two elements.

Let us write A “ tp1, i1q, p2, i2qu.
In that case, either there is a link between the site instances pA, i1, xq
and pB, i2, yq in the prefragment F , or not.

(a) If there is a link between the site instances pA, i1, xq and pB, i2, yq
in the prefragment F , then c1,◆ YpA ,Bq F is isomorphic to the pat-
tern component F .

(b) Otherwise, the pattern component c1,◆ YpA ,Bq F contains a cycle,
that is to say, since we have assumed that no species contains
cycles, that its (corrected) concentration is equal to 0.

8.3. REDUCED MODEL 167

In all case, the corrected concentration prc1,◆ YpA ,Bq F sq is either equal to
0, or to the corrected concentration of a prefragment.

Non-trivial rules We assume that ◆ is the index of a non trivial rule.
We consider pA , Bq P ›ÑMp◆, j, F q an extended gluing between the pattern
component cj,◆.

Thanks to Constraint 2 of Definition 8.2.9, for every position � such that
j ‰ �, the pattern component c�,◆ is a prefragment. We are left to express
the (corrected) concentration of the pattern component cj,◆ YpA ,Bq F .

We consider 'F the embedding from the prefragment F to the pattern
component cj,◆ YpA ,Bq F and �j,◆ be the embedding from the pattern com-
ponent cj,◆ and the pattern component cj,◆ YpA ,Bq F , that have been used to
define the extended gluing cj,◆ YpA ,Bq F .

cj,◆ YpA ,Bq F

F cj,◆
⌘
1

CC

'F

- M

[[

�j,◆

The pattern component F is a prefragment, thus there exists a site in-
stance pAt, it, xtq in F that is a target. We consider two cases according to
whether the set A is empty, or not.

1. We assume that the set A is not empty.

By Definition 5.3.8, the set B is empty.

That is to say that: cj,◆ YpA ,Bq F “ cj,◆ YA F .

By Definition 5.3.5, for every site instance pA, i, xq in cj,◆ YA F , we
know that either there exists an agent identifier i1 such that pA, i1, xq
is a site instance in F and i “ 'F pi1q, or that there exists an agent
identifier i1 such that pA, i1, xq is a site instance in cj,◆ and i “ �j,◆pi1q.
We propose to show that the site instance pAt,'F pitq, xtq is a target in
the pattern component cj,◆ YA F .

Let pAs, is, xsq be a site instance in the pattern component cj,◆ YA F .

(a) We assume that there exists an agent identifier i1 such that the
triple pAs, i

1, xsq is a site instance in F and is “ 'F pi1q.

168 CHAPTER 8. PARTITIONED FLOW

Since pAt, it, xtq is a target in F , we have:

pi1
s, xsq ‹

F ,Ga
pit, xtq.

By Lemma 8.2.8, we have:

pis, xsq ‹
cj,◆ YA F ,Ga

p'F pitq, xtq.
(b) We assume that there exists an agent identifier i1 such that the

triple pAs, i
1, xsq is a site instance in cj,◆ and is “ �j,◆pi1q.

By Definition 5.3.8, there exists a site instance pAm, im, xmq in cj,◆
and an agent identifier i1

m such that:

- pAm, i
1
m, xmq is a site instance in F ;

- 'F pi1
mq “ �j,◆pimq;

- the site instance pAm, im, xmq is modified by the rule rule◆.

By Constraint 1 of Definition 8.2.9, we have:

pAs, i
1, xsq ‹

cj,◆,Ga
pAm, im, xmq.

By Lemma 8.2.8, it follows that:

pAs, is, xsq ‹
cj,◆ YA F ,Ga

pAm,�j,◆pimq, xmq.
By the previous case, we know that:

pAm,'F pi1
mq, xmq ‹

cj,◆ YA F ,Ga
pAt,'F pitq, xtq.

Since 'F pi1
mq “ �j,◆pimq, we can conclude that:

pAs, is, xsq ‹
cj,◆ YA F ,Ga

pAt,'F pitq, xtq.
2. We assume that the set A is empty.

The set B is a singleton that we write ppAB1 , iB1 , xB1q, pAB2 , iB2 , xB2qq.
By Definition 5.3.5, we know that for any site instance pA, i, xq in
cj,◆ YpA ,Bq F , at least one of the following condition is satisfied:

- either there exists an agent identifier i1 such that pA, i1, xq is a site
instance in F and i “ 'F pi1q,

- or there exists an agent identifier i1 such that pA, i1, xq is a site
instance in cj,◆ and i “ �j,◆pi1q,

- or pA, i, xq “ pAB1 ,�j,◆piB1q, xB1q.

8.3. REDUCED MODEL 169

Let us show that the site instance pAt,'F pitq, xtq is a target in the
pattern component cj,◆ YpA ,Bq F .

Let pAs, is, xsq be a site instance in the pattern component cj,◆YpA ,BqF .

(a) We assume that there exists an agent identifier i1 such that the
triple pAs, i

1, xsq is a site instance in F and is “ 'F pi1q.
Since pAt, it, xtq is a target in F , we have:

pAs, i
1
s, xsq ‹

F ,Ga
pAt, it, xtq.

By Lemma 8.2.8, it follows that:

pAs, is, xsq ‹
cj,◆ YpA ,Bq F ,Ga

pAt,'F pitq, xtq.

(b) We assume that pAs, is, xsq “ pAB1 ,�j,◆piB1q, xB1q.
By Constraint 1c of Definition 8.2.9 and thanks to Lemma 8.2.8,
we have:

pAs, is, xsq ‹
cj,◆ YpA ,Bq F ,Ga

pAB2 ,'F piB2q, xB2q.

By the previous case, we know that:

pAB2 ,'F pi1
B2

q, xB2q ‹
cj,◆ YpA ,Bq F ,Ga

pAt,'F pitq, xtq.

Thus, we can conclude that:

pAs, is, xsq ‹
cj,◆ YpA ,Bq F ,Ga

pAt,'F pitq, xtq.

(c) We assume that there exists an agent identifier i1 such that the
triple pAs, i

1, xsq is a site instance in cj,◆ such that is “ �j,◆pi1q.
• If pAB1 , iB1 , xB1q P MAYprule◆q.
The agent instance pAB1 , iB1q has at least one site instance
(otherwise, the pattern component cj,◆ would have been made
of a single agent with no site instance, which would be absurd
since pAs, i

1, xsq is a site instance in cj,◆).
Let xw be a site name, such that the triple pAB1 , iB1 , xwq is a
site instance in the pattern cj,◆.
We have pAB1 , iB1 , xB1q P MAYprule◆q, so the agent instance
pAB1 , iB1q is removed by the rule rule◆. As a consequence, the
site pAB1,iB1 ,xwq is modified by the rule rule◆.

170 CHAPTER 8. PARTITIONED FLOW

By Constraint 1 of Definition 8.2.9, we have:

pAs, i
1, xsq ‹

cj,◆,Ga
pAB1 , iB1 , xwq.

By Lemma 8.2.8, it follows that:

pAs, is, xsq ‹
cj,◆ YpA ,Bq F ,Ga

pAB1 ,�j,◆piB1q, xwq.
By Constraint 1b of Definition 8.2.9 and Lemma 8.2.8, we
have:

pAB1 ,�j,◆piB1q, xwq ‹
cj,◆ YpA ,Bq F ,Ga

pAB1 ,�j,◆piB1q, xB1q.
Thus, we have:

pAB1 ,�j,◆piB1q, xB1q ‹
cj,◆ YpA ,Bq F ,Ga

pAt,'F pitq, xtq.
Thus, we can conclude that:

pAs, is, xsq ‹
cj,◆ YpA ,Bq F ,Ga

pAt,'F pitq, xtq.

• If the site instance pAB1 , iB1 , xB1q P MUST prule◆q.
The site instance pAB1 , iB1 , xB1q is modified by the rule rule◆.
By Constraint 1 of Definition 8.2.9, we have:

pAs, i
1, xsq ‹

cj,◆,Ga
pAB1 , iB1 , xB1q.

By Lemma 8.2.8, we can conclude that:

pAs, is, xsq ‹
cj,◆ YpA ,Bq F ,Ga

pAB1 ,�j,◆piB1q, xB1q.
By the previous case, we know that:

pAB1 ,�j,◆piB1q, xB1q ‹
cj,◆ YpA ,Bq F ,Ga

pAt,'F pitq, xtq.
Thus, we can conclude that:

pAs, is, xsq ‹
cj,◆ YpA ,Bq F ,Ga

pAt,'F pitq, xtq.

As a consequence, the site instance pAt,'F pitq, xtq is a target for the
pattern component cj,◆YA F . That is to say that the pattern component
cj,◆ YA F is a prefragment.

8.3. REDUCED MODEL 171

8.3.2 Contribution of proper production

Let us prove that for every rule index ◆, every prefragment F , every way M P–›Mp◆, F q of producing the prefragment F with the rule rule◆, for every position
�, the (corrected) concentration prc�,◆,F,M sq of the �-th pattern component of
the corresponding refinement of the rule rule◆, is equal to 0 or to the corrected
concentration of a prefragment.

Trivial rules

Let ◆ be the index of a trivial rule and F be a prefragment. By definition,
the rule rule◆ has the following form:

A

1

pxB2@yq, B
2

pyA1@xq Ñ A

1

pxq, B
2

pyq.

Hence, the number !p◆q of pattern components in the lhs of the rule rule◆ is
equal to 1.

We consider a pair pA , Bq P –›Mp◆, F q.
The rule rule◆ has no side e↵ect.
As a consequence, we have B “ H.
By Definition 5.4.2, it follows that A ‰ H.
We consider two cases according to whether or not the set A is a single-

ton.

1. Let us assume that the set A is a singleton.

We denote A “ ppAm1 , im1 , sm1q, pAm2 , im2 , sm2qq It follows that the
prefragment F contains a site instance s that is free. Then the pattern
component c1,◆,F,M is obtained (up to isomorphism) by binding in F
the site instance s to a link to a fresh agent.

We denote as F 1 the pattern that is obtained by replacing, in the pre-
fragment F the binding state of the site instance s with the binding
type that matches the link that is created by the rule.

Let us prove that the pattern F 1 is a prefragment.

- The pattern component F is a prefragment.

Thus there exists a target pAt, it, xtq.
Let h` be a homomorphism between F 1 and G.

The only di↵erence between the pattern components F 1 and c1,◆,F,M
is that a binding type in F 1 is replaced with a bond to a fresh agent.

172 CHAPTER 8. PARTITIONED FLOW

Since a summary graph contains only free sites and explicit bounds,
we can deduce that h` can be extended into an homomorphism h1̀
from c1,◆,F,M to G.

We denote as 'F an embedding between F 1 and c1,◆,F,M such that:
h1̀'F “ h`.

By Constraint 3 of Definition 8.2.5, there exists a species V P V ,
an embedding � from c1,◆,F,M to V and an homomorphism h2̀ from
V to G such that h1̀ “ h2̀�.
The embedding � defines RL Ñ RR a ground refinement of the
rule.

By constraint 2 of Definition 8.2.5, there exists a homomorphism
hR between RR and G.

Let pAs, is, xsq be a site instance in F 1.
Since pAt, it, xtq is a target in F , there exist two paths:

pi1, x1q ˝1 F,Ga . . .
˝n´1 F,Ga pin, xnq

and:

pi1
1, x

1
1q ˝1

1 F,Ga . . .
˝1
n1´1 F,Ga pi1

n1 , x1
n1q

such that:

– pi1, x1q “ pim2 , xm2q;
– pin, xnq “ pit, xtq;
– pi1

1, x
1
1q “ pis, xsq;

– pi1
n1 , xn1q “ pit, xtq.

It follows that the rule rule◆, the ground refinement RL Ñ RR,
the homomorphisms h2̀ and hR, and both paths:

p�p'F pi1qq, x1q ˝1 RLJ . . .
˝n´1 RLJ p�p'F pinqq, xnq

and:

p�p'F pi1
1qq, x1

1q ˝1
1 RLJ . . .

˝1
n1´1 RLJ p�p'F pi1

n1qq, x1
n1q

satisfies the assumptions in Constraint 3 of Definition 8.2.9.

Thus, for k between 1 and n1, we have:

ph2
`p�p'F pi1

kqqq, x1
kq ˝1

k Ga ph2
`p�p'F pi1

k`1qqq, x1
k`1q.

8.3. REDUCED MODEL 173

It follows that:

ph1
`p'F pi1

kqq, x1
kq ˝1

k Ga ph1
`p'F pi1

k`1qq, x1
k`1q.

Then:

ph`pi1
kq, x1

kq ˝1
k Ga ph`pi1

k`1q, x1
k`1q.

We have proved that:

ph`pisq, xsq ˝ ‹
Ga

ph`pitq, xtq,
for every homomorphism h` from F 1 to G.

That is to say that:

pis, xsq ˝ ‹
F 1,Ga

pit, xtq

By Constraint 3 of Definition 8.2.9, the pattern F 1 is a prefrag-
ment.

We wonder what are the di↵erent possibilities to refine the binding
type of the site instance s in the prefragment F 1. The site s might be
bound to a site instance in F , but the so-refined pattern would contain
a cycle, that is to say, since we have assumed that no species contains
cycles, that its (corrected) concentration would be equal to 0. The only
remaining case, is the one where the site s is bound to a site in a fresh
agent. In this case, the refined pattern is isomorphic to the pattern
c1,◆,F,M .

We conclude that
prc1,◆,F,M sq “ prF 1sq.

2. Let us assume that the set A contains two elements.

Then the pattern component c1,◆,F,M is obtained (up to isomorphism)
by binding in F two site instances. As a consequence the pattern
component c1,◆,F,M has a cycle.

Since we have assumed that species has no cycle, we can conclude that
the concentration of the pattern component c1,◆,F,M is equal to 0.

In all case, the corrected concentration prc1,◆,F,M sq is equal to 0, or to the
corrected concentration of a prefragment.

174 CHAPTER 8. PARTITIONED FLOW

Non-trivial rules

We assume that ◆ is the index of a non trivial rule. We denote by L Ñ R
the rule rule◆ We consider pA , Bq an element of the set P –›Mp◆, F q.

We consider 'F the embedding from the prefragment F to the pattern
component R YA F and �◆ be the embedding from the pattern R to the
pattern component R YA F , that we have used to define the gluing between
the fragment F and the rhs R of the rule rule◆.

R YA F

F R
⌘
1

CC

'F

- M

[[

�◆

Without any loss of generality, we assume that the pattern R YA F
matches the pattern R, that is to say that the injective substitution �◆ maps
pairs pA, iq to the agent identifiers i.

The pattern component F is a prefragment, thus there exists a site in-
stance pAt, it, xtq in F that is a target.

Let � be a natural number 1 and !p◆q.
We want to prove that the pattern component c�,◆,F,pA ,Bq is a prefragment.

1. We assume that the set A is not empty.

We denote as F´1 the antecedent of F .

Formally, F´1 is defined as the pattern that contains every agent in-
stance pA,'F piqq such that pA, iq is an agent instance in F and the
agent instance pA,'F piqq has not been created by the application of
the rule rule◆, every site instance pA,'F piq, xq such that pA, i, xq is a
site instance in F and the agent instance pA,'F piqq has not been cre-
ated by the application of the rule rule◆, and every bond between the
two site instances pA,'F piq, xq and pA1,'F pi1q, x1q such that there is
a bond between the site instance pA, i, xq and pA1, i1, x1q in F and the
bond between the site instance pA,'F piq, xq and pA1,'F pi1q, x1q has not
been created by the rule rule◆.

We denote as F´1
� the pattern that is made of every pattern component

of F´1 that contains at least one agent instance pA,�◆piqq for a given
site instance pA, iq in c�,◆.

Let us prove that any connected component F´1
pc of F´1

� contains a site
that has been modified by the rule rule◆.

8.3. REDUCED MODEL 175

- This is the case if F´1 is connected (by assumption, since B “ H,
F and P overlaps on a site that is modified by the rule rule◆).

- If F´1
pc is disconnected, each connected component of it contains

a site the binding site of which has changed.

Then, we propose to prove both following intermediary results:

(a) Whenever a pattern component of F´1
� contains the site instance

pAt,'F pitq, xtq, for every site instance pAs, is, tsq of this pattern
component, we have:

pis, tsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.

(b) Whenever a pattern component F´1
pc of F´1

� does not contain
the site instance pAt,'F pitq, xtq, then it contains a site instance
pA‚, i‚, x‚q such that the following properties are all satisfied:

• there exists an agent identifier i such that pA‚, i, x‚q is a site
instance in F and i‚ “ 'F piq;

• there exists an agent identifier i such that pA‚, i, x‚q is a site
instance in c�,◆ and i‚ “ �◆piq;

• for every site instance pAs, is, xsq of F´1
pc , we have:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

pi‚, x‚q.
Let us prove these properties:

(a) Let F´1
pc be a pattern component of F´1

� that contains the site
instance pAt,'F pitq, xtq.
Let pAs, is, xsq be a site instance in F´1

pc .

Let i1 be an agent identifier such that pAs, i
1, xsq is a site instance

in F and 'F pi1q “ is.

Since the site instance pAt, it, xtq is a target in F , we have:

pi1, xsq ‹
F ,Ga

pit, xtq.

Let us prove that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.
- The pattern component F is a prefragment.
Let h` be a homomorphism between c�,◆,F,pA ,Bq and G.

176 CHAPTER 8. PARTITIONED FLOW

By Constraint 3 of Definition 8.2.5, there exists a species V P
V , an embedding � from c1,◆,F,M to V and an homomorphism
h1̀ from V to G such that h` “ h1̀�.
The embedding � defines RL Ñ RR a ground refinement of
the rule.
By constraint 2 of Definition 8.2.5, there exists a homomor-
phism hR between RR and G.
Let pAm, im, xmq be a site instance in F´1

pc that has been mod-
ified by the rule rule◆.
Since pAt, it, xtq is a target in F , there exist two paths:

pi1, x1q ˝1 F,Ga . . .
˝n´1 F,Ga pin, xnq

and:

pi1
1, x

1
1q ˝1

1 F,Ga . . .
˝1
n1´1 F,Ga pi1

n1 , x1
n1q

such that:

– pi1, x1q “ pim, xmq;
– pin, xnq “ pit, xtq;
– pi1

1, x
1
1q “ pi1, xsq;

– pi1
n1 , xn1q “ pit, xtq.

It follows that the rule rule◆, the ground refinement RL Ñ RR,
the homomorphisms h1̀ and hR, and both paths:

p�p'F pi1qq, x1q ˝1 RLJ . . .
˝n´1 RLJ p�p'F pinqq, xnq

and:

p�p'F pi1
1qq, x1

1q
˝1
1 RLJ . . .

˝1
n1´1 RLJ p�p'F pi1

n1qq, x1
n1q

satisfies the assumptions in Constraint 3 of Definition 8.2.9.
Thus, for k between 1 and n1, we have:

ph1
`p�p'F pi1

kqqq, x1
kq ˝1

k Ga ph1
`p�p'F pi1

k`1qqq, x1
k`1q.

Then:

ph`p'F pi1
kqq, x1

kq ˝1
k Ga ph`p'F pi1

k`1qq, x1
k`1q.

We have proved that:

ph`pisq, xsq ˝ ‹
Ga

ph`p'F pitq, xtq,
for every homomorphism h` from c�,◆,F,pA ,Bqto G.
Thus, we can conclude that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.

8.3. REDUCED MODEL 177

(b) Let F´1
pc be a pattern component of F´1

� that does not contain the
site instance pAt,'F pitq, xtq.
Necessarily, the pattern component F´1

pc has been disconnected
from the rest of F .

That is to say that it contains a site the binding state of which
has changed.

Let pA‚t , i‚t , x‚tq be a site instance in F´1
pc that has lost a bond.

Since pA‚t , i‚t , x‚tq is a site instance in F´1
pc there exists an agent

identifier i1‚t such that pA‚t , i1‚t , x‚tq is a site instance in F and
i‚t “ 'F pi1‚tq.
It is not possible to create a bond in a rule, without having the
two corresponding site instances in the lhs of this rule.

As a consequence, there exists an agent identifier i2‚t such that
pA‚t , i2‚t , x‚tq is a site instance in c�,◆ and i‚t “ �◆pi2‚tq.
Let pA‚sq, i‚s , x‚sq a site instance in F´1

pc , and i1
s be an agent identi-

fier such that pA‚s , i1
s, x‚sq is a site instance in F and i‚s “ 'F pi1

sq.
Since F is acyclic, there is path:

pi‚s , x‚sq ‹
F,Ga

pi‚t , x‚tq.
that only passes through sites pi, xq such that the site instance
ptypeF piq,'F piq, xq belongs to the pattern component F´1

pc .

By Constraint 3 of Definition 8.2.9 (we skip some steps, since the
reasoning is very similar to the previous ones), we can conclude
that:

pA‚s , i‚s , x‚sq ‹
c�,◆,F,pA ,Bq,Ga

pA‚t , i‚t , x‚tq.
Let pAs, is, xsq be a site instance in the pattern component c�,◆,F,pA ,Bq,
one of the following property is satisfied:

(a) pAs, is, xsq is a site instance in F´1
� ;

(b) there exists an agent identifier i1
s such that pAs, i

1
s, xsq is c�,◆ and

is “ �◆pi1
sq.

We consider several cases according to whether the pattern compo-
nent c�,◆,F,pA ,Bq contains the site instance pAt,'F pitq, xtq, or not, and
according to whether or not it has been modified by the rule rule◆.

(a) We assume that the pattern component c�,◆,F,pA ,Bq contains the
site instance pAt,'F pitq, xtq.

178 CHAPTER 8. PARTITIONED FLOW

We will prove that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.

i. We have already proved it if the site instance pAs, is, xsq be-
longs to a pattern component of F´1

� that contains the site
instance pAt,'F pitq, xtq.

ii. If there exists an agent identifier i such that pAs, i, xsq is a
site instance of c�,◆ and is “ �◆piq.
There exists a site instance pAm, im, xmq in c�,◆,F,pA ,Bq satisfy-
ing the following constraints:

A. there exists an agent identifier im1 such that the site in-
stance pAm, im1 , xmq belongs to the pattern component c�,◆
and im “ '◆pim1q;

B. the pattern component of F´1
� that contains the site in-

stance pAt,'F pitq, xtq also contains the the site instance
pAm, im, xmq;

C. the site pAm, im1 , xmq is modified by the rule rule◆.

Then, by Constraint 1 of Definition 8.2.9, it follows that:

pi, xsq ‹
c�,◆,Ga

pim1 , xmq.
By Lemma 8.2.8, we get that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

pim, xmq.
Thus, from the precedent case, we can conclude that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.

iii. If pAs, is, xsq belongs to a pattern component of F´1
� that does

not contain the site instance pAt,'F pitq, xtq.
Then, there exists a site pAm, im, xmq in c�,◆ such that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p�◆pimq, xmq.
Thus, from the precedent case, we can conclude that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.
Thus, the pattern component c�,◆,F,pA ,Bq is a prefragment.

8.3. REDUCED MODEL 179

(b) We assume that: c�,◆,F,pA ,Bq “ c�,◆.

Then, by Constraint 2 of Definition 8.2.9, c�,◆,F,pA ,Bq is a prefrag-
ment.

(c) We assume that c�,◆,F,pA ,Bq ‰ c�,◆ and that the pattern component
c�,◆,F,pA ,Bq does not contain the site instance pAt,'F pitq, xtq.
Let pAm, im, xmq be a site instance in c�,◆ that has been modified
by the rule rule◆.

We will prove that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p�◆pimq, xmq.
i. If there exists an agent identifier i such that pAs, i, xsq is a

site instance of c�,◆ and is “ �◆piq.
By Constraint 1 of Definition 8.2.9, we have:

pi, xsq ‹
c�,◆,Ga

pim1 , xmq.
By Lemma 8.2.8, it follows that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p�◆pimq, xmq.
ii. If pAs, is, xsq belongs to a pattern component of F´1

� .
There exists a site pA‚, i‚, x‚q in c�,◆ such that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p�◆pi‚q, x‚q.
Thus, from the precedent case, we can conclude that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p�◆pimq, xmq.
Thus, the pattern component c�,◆,F,pA ,Bq is a prefragment.

2. We assume that the set A is empty.

The set B is a singleton that we write ppAB1 , iB1 , xB1q, pAB2 , iB2 , xB2qq.
Let � be a natural number between 1 and !p◆q.
(a) If the pattern component c�,◆ does not contain the agent instance

pAB1 , iB1q.
Then we have c�,◆,F,pA ,Bq “ c�,◆.

By Constraint 2 of Definition 8.2.9, the pattern component c�,◆ is
a prefragment.

Thus, c�,◆,F,pA ,Bq “ c�,◆.

We can conclude that prc�,◆,F,pA ,Bqsq “ prc�,◆sq.

180 CHAPTER 8. PARTITIONED FLOW

(b) If the pattern component c�,◆ contains the agent instance pAB1 , iB1q.
The pattern component c�,◆,F,pA ,Bq is equal up to isomorphism
to the pattern component pc�,◆ YH F qÒtpAB1 ,iB1 q,pAB2 ,iB2 qu (that is
to say, the disjoint union between c�,◆ and F , to which we have
added a bond between the site instance pAB1 , iB1 , xB1q and the
site instance pAB2 , iB2 , xB2q.
We want to prove that the site pAt,'F pitq, xtq is a target in the
pattern component prc�,◆,F,pA ,Bqsq.
Let pAs, is, xsq be a site instance in c�,◆,F,pA ,Bq.

i. We assume that there exists an agent identifier i1 such that
the triple pAs, i

1, xsq is a site instance in F and is “ 'F pi1q.
Since pAt, it, xtq is a target in F , we have:

pi1
s, xsq ‹

F ,Ga
pit, xtq.

By Constraint 3 of Definition 8.2.9 (we skip some steps, since
the reasoning is very similar to the previous ones), we can
conclude that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.

ii. We assume that pAs, is, xsq “ pAB1 ,�◆piB1q, xB1q.
By Constraint 1c of Definition 8.2.9, we have:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F piB2q, xB2q.
By the previous case, we know that:

p'F pi1
B2

q, xB2q ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.
By Lemma 6.3.3, we can conclude that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.

iii. We assume that there exists an agent identifier i1 such that the
triple pAs, i

1, xsq is a site instance in cj,◆ such that is “ �◆pi1q.
• If pAB1 , iB1 , xB1q P MAYprule◆q.
The agent instance pAB1 , iB1q has at least one site instance
(otherwise, the pattern component cj,◆ would have been
made of a single agent with no site instance, which would
be absurd since pAs, i

1, xsq is a site instance in cj,◆).

8.3. REDUCED MODEL 181

Let xw be a site name, such that the triple pAB1 , iB1 , xwq
is a site instance in the pattern cj,◆.
We have pAB1 , iB1 , xB1q P MAYprule◆q, so the agent in-
stance pAB1 , iB1q is removed by the rule rule◆. As a conse-
quence, the site pAB1,iB1 ,xwq is modified by the rule rule◆.
By Constraint 1 of Definition 8.2.9, we have:

pi1, xsq ‹
cj,◆,Ga

piB1 , xwq.
By Lemma 8.2.8, it follows that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p�◆piB1q, xwq.
By Constraint 1b of Definition 8.2.9, we have:

p�◆pAB1 , iB1q, xwq ‹
c�,◆,F,pA ,Bq,Ga

p�◆piB1q, xB1q.
By the previous case, we know that:

p�◆piB1q, xB1q ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.
Thus, we can conclude that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.
• If the site instance pAB1 , iB1 , xB1q P MUST prule◆q.
The site instance pAB1 , iB1 , xB1q is modified by the rule
rule◆.
By Constraint 1 of Definition 8.2.9, we have:

pi1, xsq ‹
cj,◆,Ga

piB1 , xB1q.
By Lemma 8.2.8, it follows that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p�◆piB1q, xB1q.
By the previous case, we know that:

p�◆piB1q, xB1q ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.
Thus, we can conclude that:

pis, xsq ‹
c�,◆,F,pA ,Bq,Ga

p'F pitq, xtq.
As a consequence, the site instance pAt,'F pitq, xtq is a target ifor
the pattern component c�,◆,F,pA ,Bq. That is to say that the pattern
component c�,◆,F,pA ,Bq is a prefragment.

In all cases, the corrected concentration of the pattern component c�,◆,F,pA ,Bq
is equal to 0, or to the corrected concentration of a prefragment.

182 CHAPTER 8. PARTITIONED FLOW

8.3.3 Balance

We have provided, for any prefragment F , an explicit definition of the proper
production �‹̀ pF q of the prefragment F and of the proper consumption �‹́ F
of the prefragment F , as a polynomial expression of the concentration of the
other prefragments F 1.

We consider the function F7 that maps each abstract state ⇢7 from V 7
to R, to the value of the expression �‹̀ pF q ´ �‹́ pF q. The function F7 is
well-defined.

Proposition 8.3.1. We have ˝ F “ F7 ˝ .
Proof. By construction of F7.

We can conclude with the soundness of our model reduction.

Theorem 8.3.2. The tuple pV ,F,V 7, ,F7q is an abstraction.

8.4 Conclusion

In this Chapter, we have provided a context-sensitive abstraction of the flow
of information between the sites of species. The level of resolution can be
specified by the choice of a summary graph, which allows to distinguish less
or more contexts. Each level of resolution provides its own fragmentation
which is proved to be self-consistent.

Two canonic cases could be considered. If we take the summary graph as
the contact map of the model. We get the model reduction that is proposed
in Chapter 6. If we take the summary graph as the disjoint union of all the
species, we get a framework that is similar to the one in [36] (additionnaly,
our framework deals with side e↵ects, and it has a better approximation of
the flow of information both in the case of trivial rules and in the case of
rules that may test that a site is bound, without specifying explicitly to which
site).

When the summary graph is finite, our analysis of the flow of informa-
tion always terminates and provides a finite symbolic representation of the
variables of the reduced system. It is worth noting that in Kappa, deciding
whether the set of species is finite or not, is undecidable [38].

Chapter 9

Conclusion

9.1 Contributions

In this thesis, we propose a general framework to reduce the di↵erential
semantics of biological models expressed in rule-based languages. We present
two di↵erent analyses, that are performed at the level of rules. So we never
need to execute the original model. Moreover we supply a general method
to combine these model reductions. The results are proved to be correct by
Abstract Interpretation.

The first analysis we propose is based on symmetries between sites. We
formally define the notion of symmetries at the level of interaction sites,
then we lift this definition to the level of the operational semantics. We show
that two symmetric sites induce an equivalence relation over the species of
the model and that this equivalence relation itself induces a bisimulation
over the states of the system. This defines a model reduction. In fact, a
system with symmetries is equivalent to a reduced system where the states
are lumped according to their equivalence classes.

The second method we propose tracks the information flow between dif-
ferent regions of chemical species. Our analysis detects, for each site, which
parts of the system influence its behaviour. This information is used to cut
the molecular species in smaller pieces and to write a new system, by ab-
stracting away the correlations that do not control the behaviour of any site.
Our framework extends and improves the one presented in [25,28], where the
species are cut just according to their type.

We introduce a hierarchy of representation both for species and the de-
scription of the flow of information among their sites. We show how every
grain of resolution in the hierarchy can be used to obtain a self-consistent
change of variables. We provide some criteria to ensure the soundness of the

183

184 CHAPTER 9. CONCLUSION

annotation. These criteria concern the flow of information and the backward
compatibility. Information flow captures the information that flows from
sites that are tested to sites that are modified, whereas the backward com-
patibility ensures that, for every reaction, the abstraction of the reactants is
at least as refined as the abstraction of its products. These criteria assure
that we are able to express properly the consumption and the production
of fragments in terms of other fragments. The context insensitive analy-
ses computed from a contact map is just a particular case in the hierarchy.
Specifically, the most abstract one. Interestingly, we notice that each an-
notated contact map already satisfies the backward compatibility criterion,
thus there is not need to impose constraints for it. It could be interesting
to investigate about other specific classes of representation that would enjoy
other useful algebraic properties.

Our framework is a strict improvement of the one in [28], that has been
successfully used to reduce a large section of the EGFR system. There, it
is considered a set of 71 rules expanding into 18 051 984 143 555 729 567
species, reduced into 175 988 fragments.

Model reduction plays a role at several levels. It supplies a more compact
representation, facilitating reasoning about inspected systems. Moreover, by
changing the point of view, it assists in finding new understandings. On the
computational side, it reconnects the system to the realm of feasible ODEs.
Finally, it can be used as a starting point for other kind of anlyses: for
example a reduction based on tropicalization [46, 47].

9.2 Future works

9.2.1 Dealing with cycles

In our framework, we have assumed that both species and fragments have
no cycle.

Let us consider a small example to understand the di�culties which arise
with species that exhibits cycles. We consider the set of species in Figure 9.1
and the following rule:

A Ñ H.

We wonder the quantity of the pattern Bpx! , y! q that is consumed by the
rule. In order to properly compute this quantity, we should consider both
the patterns where just the site x is bound and the patterns where x and y
are bound, paying attention to not overcount. This can be expressed as an
alternated sum. The same kind of attention should be used when we want
to compute the production of patterns.

9.2. FUTURE WORKS 185

A

B

x y

x y

A

B

x y

x y

A

B

x y

x y

A

B

x y

x y

A
x y

B

y x

B

y x

Figure 9.1: A set of species.

9.2.2 Tuning the context-sensitivity of the analysis

We showed that summary graphs can be used to tune the context sensitivity
of the analysis. Our framework is generic and is correct whichever summary
graph is chosen. Yet the choice of the summary graph is left as a parameter
of our abstraction, and we provide no criterion to choose between all the
possibilities.

One strategy would consist in computing a transition system for each kind
of site to abstract each qualitative behaviour. Then we could zoom in the
accuracy of the analysis by distinguishing contexts according to the states of
the transition system.

The method we proposed allows the user to select any trade-o↵ between
context-insensitive and fully context-sensitive abstractions of the information
flow. We plan to study methods to change the context during computation.

9.2.3 Contextual symmetries

In this thesis, we proposed a contextual analysis for the flow of information
between the sites of species. We wonder if it possible to develop a contextual
analyses also to discover sites that exhibit a symmetric behaviour just in a
given context and if this can be used to reduce further a model.

To understand better the idea of sites that exhibit a symmetric behaviour
in a given context we can have a look at Figure 9.2, that shows a protein A

186 CHAPTER 9. CONCLUSION

A

x

y

u

u

A

x

y

p

u

A

x

z

u

u

A

x

z

p

u

k1

k’1

k2

k’2

A

x

y

p

u

A

x

y

p

p

A

x

z

p

u

A

x

z

p

p

k3

k’3

k3

k’3

A

x

y z

u

p p

A

x

y z

p p

p

k4

k’4

Figure 9.2: System showing contextual symmetries.

with three sites x, y and z. When the site x is phosphorylated, sites y and z
have a symmetric behaviour.

Bibliography

[1] Mart́ın Abadi. Secrecy by typing in security protocols. J. ACM,
46(5):749–786, September 1999.

[2] Adrien Basso-Blandin, Walter Fontana, and Russ Harmer. A knowl-
edge representation meta-model for rule-based modelling of signalling
networks. In César A. Muñoz and Jorge A. Pérez, editors, Proceedings
of the Eleventh International Workshop on Developments in Computa-
tional Models, DCM 2015, Cali, Colombia, October 28, 2015., volume
204 of EPTCS, pages 47–59, 2016.

[3] Andreea Beica, Calin C. Guet, and Tatjana Petrov. E�cient reduc-
tion of kappa models by static inspection of the rule-set. In Alessandro
Abate and David Safránek, editors, Hybrid Systems Biology - Fourth In-
ternational Workshop, HSB 2015, Madrid, Spain, September 4-5, 2015.
Revised Selected Papers, volume 9271 of Lecture Notes in Computer Sci-
ence, pages 173–191. Springer, 2015.

[4] Michael L. Blinov, James R. Faeder, Byron Goldstein, and William S.
Hlavacek. Bionetgen: software for rule-based modeling of signal trans-
duction based on the interactions of molecular domains. Bioinformatics,
20(17):3289–3291, 2004.

[5] Nikolay M. Borisov, Alexander S. Chistopolsky, James R. Faeder, and
Boris N. Kholodenko. Domain-oriented reduction of rule-based networks
models. IET Systems Biology, 2(5), 2008.

[6] Nikolay M. Borisov, Nick I. Markevich, Jan B. Hoek, and Boris N.
Kholodenko. Signaling through receptors and sca↵olds: Independent
interactions reduce combinatorial complexity. Biophysical Journal, 89,
2005.

[7] François Bourdoncle. Abstract interpretation by dynamic partitioning.
J. Funct. Program., 2(4):407–423, 1992.

187

188 BIBLIOGRAPHY

[8] Peter Buchholz. Exact and ordinary lumpability in finite markov chains.
Journal of Applied Probability, 31(1):59–75, 1994.

[9] Peter Buchholz. Bisimulation relations for weighted automata. Theo-
retical Computer Science, 393(1-3):109–123, 2008.

[10] Ferdinanda Camporesi and Jérôme Feret. Formal reduction of rule-based
models. In Postproceedings of the Twenty-seventh Conference on the
Mathematical Foundations of Programming Semantics, MFPS XXVII,
volume 276C of Electonic Notes in Theoretical Computer Science, pages
31–61, Pittsburg, USA, 25–28 May 2011. Elsevier Science Publishers.

[11] Ferdinanda Camporesi, Jérôme Feret, Heinz Koeppl, and Tatjana
Petrov. Combining model reductions. In Michael Mislove and Peter
Selinger, editors, Postproceedings of the Twenty-sixth Conference on the
Mathematical Foundations of Programming Semantics, MFPS XXVI,
volume 265 of Electonic Notes in Theoretical Computer Science, pages
73–96, Ottawa, Cabada, 6–10 May 2010. Elsevier Science Publishers.

[12] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. Comparing chemical reaction networks:a categorical and al-
gorithmic perspective. In Proceedings of the Thirty-First Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE,
2016.

[13] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. Symbolic computation of di↵erential equivalences. In Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 137–150. ACM, 2016.

[14] Robert Cartwright and Mattias Felleisen. The semantics of program
dependence. SIGPLAN Not., 24(7):13–27, June 1989.

[15] H. Conzelmann, D. Fey, and E.D. Gilles. Exact model reduction of
combinatorial reaction networks. BMC Systems Biology, 2:78–78, 8 2008.

[16] Holger Conzelmann. Mathematical Modeling of Cellular Signal Trans-
duction Pathways — A Domain-Oriented Approach to Reduce Combi-
natorial Complexity. PhD thesis, Institut für Systemdynamik des Uni-
versität Stuttgart, 2008.

[17] Patrick Cousot. Abstract interpretation: Theory and practice. In Dra-
gan Bos̆nac̆ki and Stefan Leue, editors, Proceedings of the 9th Interna-
tional SPIN Workshop, Grenoble, France, Lecture Notes in Computer

BIBLIOGRAPHY 189

Science 2318, pages 2–5. Springer-Verlag, Berlin, Germany, 11–13 April
2002.

[18] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Conference Record of the Fourth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

[19] Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In Conference Record of the Sixth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 269–282, San Antonio, Texas, 1979. ACM Press, New
York, NY.

[20] Patrick Cousot and Radhia Cousot. Abstract interpretation and applica-
tion to logic programs. Journal of Logic Programming, 13(2–3):103–179,
1992.

[21] Vincent Danos, Jérôme Feret, Walter Fontana, Russ Harmer, Jonathan
Hayman, Jean Krivine, Christopher D. Thompson-Walsh, and Glynn
Winskel. Graphs, rewriting and pathway reconstruction for rule-based
models. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Rad-
hakrishnan, editors, IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2012, vol-
ume 18 of LIPIcs, pages 276–288. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2012.

[22] Vincent Danos, Jérôme Feret, Walter Fontana, Russ Harmer, and Jean
Krivine. Rule-based modelling of cellular signalling, invited paper. In
L. Caires and V.T. Vasconcelos, editors, Proceedings of the Eighteenth
International Conference on Concurrency Theory, CONCUR ’2007, Lis-
bon, Portugal, volume 4703 of Lecture Notes in Computer Science, pages
17–41, Lisbon, Portugal, 3–8 September 2007. Springer, Berlin, Ger-
many.

[23] Vincent Danos, Jérôme Feret, Walter Fontana, Russ Harmer, and Jean
Krivine. Rule-based modelling, symmetries, refinements. In Jasmin
Fisher, editor, Proceedings of the First International Workshop, For-
mal Methods in Systems Biology, FMSB ’2008, volume 5054 of Lecture
Notes in BioInformatics, pages 103–122, Cambridge, UK, 4–5 June 2008.
Springer, Berlin, Germany.

190 BIBLIOGRAPHY

[24] Vincent Danos, Jérôme Feret, Walter Fontana, Russ Harmer, and Jean
Krivine. Rule-based modelling and model perturbation. In Corrado Pri-
ami, Ralph-Johan Back, and Ion Petre, editors, Transactions on Compu-
tational Systems Biology XI, volume 5750 of Lecture Notes in Computer
Science, pages 116–137. Springer Berlin Heidelberg, 2009.

[25] Vincent Danos, Jérôme Feret, Walter Fontana, Russ Harmer, and Jean
Krivine. Abstracting the di↵erential semantics of rule-based models: ex-
act and automated model reduction. In Jean-Pierre Jouannaud, editor,
Proceedings of the Twenty-Fifth Annual IEEE Symposium on Logic in
Computer Science, LICS ’2010, volume 0, pages 362–381, Edinburgh,
UK, 11–14 July 2010. IEEE Computer Society.

[26] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Scal-
able simulation of cellular signaling networks, invited paper. In Z. Shao,
editor, Proceedings of the Fifth Asian Symposium on Programming Sys-
tems, APLAS ’2007, Singapore, volume 4807 of Lecture Notes in Com-
puter Science, pages 139–157, Singapore, 29 November – 1 December
2007. Springer, Berlin, Germany.

[27] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Ab-
stract interpretation of cellular signalling networks. In Francesco Lo-
gozzo, Doron A. Peled, and Lenore D. Zuck, editors, Proceedings of
the Ninth International Conference on Verification, Model Checking and
Abstract Interpretation, VMCAI ’2008, volume 4905 of Lecture Notes in
Computer Science, pages 83–97, San Francisco, USA, 7–9 January 2008.
Springer, Berlin, Germany.

[28] Jérôme Feret, Vincent Danos, Jean Krivine, Russ Harmer, and Walter
Fontana. Internal coarse-graining of molecular systems. Proceedings of
the National Academy of Sciences of the United States of America, April
3 2009.

[29] Jerome Feret, Thomas A. Henzinger, Heinz Koeppl, and Tatjana Petrov.
Lumpability abstractions of rule-based systems. Theoretical Computer
Science, 431(0):137 – 164, 2012. Modelling and Analysis of Biologi-
cal Systems Based on papers presented at the Workshop on Membrane
Computing and Bio-logically Inspired Process Calculi (MeCBIC) held
in 2008 (Iasi), 2009 (Bologna) and 2010 (Jena).

[30] Jérôme Feret, Heinz Koeppl, and Tatjana Petrov. Stochastic fragments:
A framework for the exact reduction of the stochastic semantics of

BIBLIOGRAPHY 191

rule-based models. International Journal of Software and Informatics,
7(4):527 – 604, 2013.

[31] Jérôme Feret and Kim Quyên Lý. Reachability analysis via orthogo-
nal sets of patterns. In Seventeenth International Workshop on Static
Analysis and Systems Biology (SASB’16), ENTCS. elsevier, 2017. to
appear.

[32] Steven Gay, François Fages, Thierry Martinez, Sylvain Soliman, and
Christine Solnon. On the subgraph epimorphism problem. Discrete
Applied Mathematics, 162:214–228, 2014.

[33] Roberto Giacobazzi and Isabella Mastroeni. Non-standard semantics for
program slicing. Higher-Order and Symbolic Computation, 16(4):297–
339, 2003.

[34] Alexander N. Gorban and Ovidiu Radulescu. Dynamic and static limita-
tion in multiscale reaction networks, revisited. In G.B. Marin, D. West,
and G.S. Yablonsky, editors, Advances in Chemical Engineering: Math-
ematics in Chemical Kinetics and Engineering, volume 34 of Advances
in Chemical Engineering, pages 103 – 173. Academic Press, 2008.

[35] Russ Harmer. Rule-based modelling and tunable resolution. In Barry S.
Cooper and Vincent Danos, editors, Proceedings Fifth Workshop on De-
velopments in Computational Models–Computational Models From Na-
ture, DCM 2009, Rhodes, Greece, 11th July 2009., volume 9 of EPTCS,
pages 65–72, 2009.

[36] Russ Harmer, Vincent Danos, Jérôme Feret, Jean Krivine, and Wal-
ter Fontana. Intrinsic information carriers in combinatorial dynamical
systems. Chaos, 20, September 2010.

[37] Edward L. Ince. Ordinary Di↵erential Equations. Dover Publications,
1956.

[38] Peter Kreyßig. Chemical organisation theory beyond classical models:
Discrete dynamics and rule-based models.

[39] Thomas G. Kurtz. Solutions of ordinary di↵erential equations as limits
of pure jump markov processes. Journal of Applied Probability, 7(1):49–
58, 1970.

[40] Thomas G. Kurtz. Limit theorems for sequences of jump markov pro-
cesses approximating ordinary di↵erential processes. Journal of Applied
Probability, 8(2):344–356, 1971.

192 BIBLIOGRAPHY

[41] Guillaume Madelaine, Cédric Lhoussaine, and Joachim Niehren. Struc-
tural simplification of chemical reaction networks preserving determin-
istic semantics. In Olivier F. Roux and Jérémie Bourdon, editors,
Computational Methods in Systems Biology - 13th International Con-
ference, CMSB 2015, Nantes, France, September 16-18, 2015, Proceed-
ings, volume 9308 of Lecture Notes in Computer Science, pages 133–144.
Springer, 2015.

[42] Guillaume Madelaine, Elisa Tonello, Cédric Lhoussaine, and Joachim
Niehren. Normalizing chemical reaction networks by confluent struc-
tural simplification. In Ezio Bartocci, Pietro Liò, and Nicola Paoletti,
editors, Computational Methods in Systems Biology - 14th International
Conference, CMSB 2016, Cambridge, UK, September 21-23, 2016, Pro-
ceedings, volume 9859, pages 201–215. Springer, 2016.

[43] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

[44] Tatjana Petrov and Heinz Koeppl. Maximal Reduction of ODE Seman-
tics of Rule-based Models: Syntax-Independent Setup. In International
Workshop on Computational Systems Biology, 2010.

[45] Ovidiu Radulescu, Alexander N. Gorban, Andrei Zinovyev, and Vin-
cent Noël. Reduction of dynamical biochemical reactions networks in
computational biology. Frontiers in Genetics, 3(131):., 2012.

[46] Ovidiu Radulescu, Sergei Vakulenko, and Dima Grigoriev. Model re-
duction of biochemical reactions networks by tropical analysis methods.
Mathematical Modelling of Natural Phenomena, 10(3):124–138, 2015.

[47] Jasha Sommer-Simpson, John Reinitz, Leonid Fridlyand, Louis Philip-
son, and Ovidiu Radulescu. Hybrid reductions of computational mod-
els of ion channels coupled to cellular biochemistry. In Ezio Bartocci,
Pietro Liò, and Nicola Paoletti, editors, Computational Methods in Sys-
tems Biology - 14th International Conference, CMSB 2016, Cambridge,
UK, September 21-23, 2016, Proceedings, volume 9859 of Lecture Notes
in Computer Science, pages 273–288. Springer, 2016.

Résumé

 Le comportement d'une cellule dépend de sa
capacité à recevoir, propager et intégrer des
signaux, constituant ainsi des voies de
signalisations. Les protéines s'associent entre
elles sur des sites de liaisons, puis modifient
leur structure spatiale, ce qui put cacher ou
révéler r leurs autres sites de liaisons.
 En raison, du grand nombre de différents
complexes bio-moléculaires, nous ne pouvons
pas écrire ou générer les systèmes d’ODEs
sous-jacents. Les langages de réécritures de
graphes à sites offrent un bon moyen de
décrire ces systèmes. Néanmoins la complexité
combinatoire resurgit lorsque l’on veut calculer
le comportement de ces systèmes, ce qui
justifie l'utilisation d'abstractions.
 Nous proposons deux méthodes pour
réduire la taille de ces modèles. Elles utilisent
respectivement la présence de symétries parmi
certains sites et le manque de corrélation entre
différentes parties du système. Des sites qui
ont la même capacité d'interaction sont liés par
une relation de symétrie, qui induit une
bisimulation. L'analyse du flot d'information
détecte les parties du système qui influencent
le comportement de chaque site. Ceci nous
autorise à couper les espèces moléculaires en
petits morceaux pour écrire un nouveau
système. Enfin, nous montrons comment
raffiner cette analyse pour tenir compte
d'information contextuelle.
 L e s d e u x m é t h o d e s p e u v e n t ê t r e
combinées. La solution analytique du modèle
réduit est la projection exacte de la solution
originelle. Le calcul du modèle réduit se fait au
niveau des règles, en évitant l'exécution du
modèle initial.

Mots Clés

Voies de signalisation, interprétation abstraite,
modél isat ion par règles de réécri tures,
réduction de modèles, bisimulations, flot
d’information.

Abstract

 The behaviour of a cell is driven by its
c a p a b i l i t y t o r e c e i v e , p r o p a g a t e a n d
communicate signals. Proteins can bind
together on some binding s i tes. Post-
translational modifications can reveal or hide
some sites, so new interactions can be allowed
or existing ones can be inhibited.
 Due to the huge number of different bio-
molecular complexes, we can no longer derive
or integrate ODE models. A compact way to
describe these systems is supplied by rule-
based languages. However combinatorial
complexity raises again when one attempt to
describe formally the behaviour of the models.
This motivates the use of abstractions.
 We propose two methods to reduce the size
of the models, that exploit respectively the
presence of symmetries between sites and the
lack of correlation between different parts of the
system. Symmetries relates pairs of sites
having the same capability of interactions. We
show that this induces a bisimulation which can
be used to reduce the size of the original
model. The information flow analysis detects,
for each site, which parts of the system
influence its behaviour. This allows us to cut the
molecular species in smaller pieces and to
write a new system. Moreover we show how to
tune the context sensitivity of this analysis.
 Both approaches can be combined. The
analytical solution of the reduced model is the
exact projection of the original one. The
computation of the reduced model is performed
at the level of rules, without the need of
executing the original model.

 
Keywords

Signaling pathways, abstract interpretation,
rule-based modeling, model reduction,
bisimulations, information flow.

