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Challenges

Challenges of Renewables: ducks & ramps

March 8th 2014:   Impact of wind 
and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
mid-day solar production
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Challenges

Challenges: regulation

Lack of large-scale storage with fast charging/discharging rates



Challenges

Comparison: Flight control
How do we fly a plane through a storm?

Brains

Brawn
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Brawn

What Good Are These?
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Challenges

Comparison: Flight control
How do we operate the grid in a storm?

Balancing Authority Ancillary Services Grid

Measurements:
 Voltage
 Frequency
 Phase

Σ

−

Brains

Brawn

What Good Are These?



Demand Dispatch

Demand Dispatch
Frequency Decomposition

Demand Dispatch: Power consumption from loads varies automatically and
continuously to provide service to the grid, without impacting QoS to the
consumer

Approach: Frequency decomposition
Each class of flexible loads allocated to
its own bandwidth of service, based on
QoS constraints and costs
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Demand Dispatch

Demand Dispatch
Responsive Regulation and desired QoS
– A partial list of the needs of the grid operator, and the consumer

High quality Ancillary Service?

Customer QoS constraints satisfied?

Cost effective?
Includes installation cost, communication cost, maintenance, and environmental.

Reliable?
Will AS be available each day?

(may vary with time, but capacity must be predictable)

Is the incentive to the consumer reliable?
If a consumer receives a $50 payment for one month, and only $1 the next, will there be an

explanation that is clear to the consumer?



Demand Dispatch

Control Goals and Architecture
Local Control: decision rules designed to respect needs of load and grid

Local feedback loop

Local
Control
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Min. communication: each load monitors its state and a regulation signal
from the grid.

Aggregate must be controllable: randomized policies for finite-state loads.

Questions

• How to analyze aggregate of similar loads? • Local control design?



Mean Field Model

Load Model
Controlled Markovian Dynamics & Mean Field Model of the Aggregate

...

Load 1

BA
Reference (MW)

Load 2

Load N

ζ
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+

Gc

Power
Consumption (MW) 

Discrete time: ith load Xi(t) evolves on finite state space X

Each load is subject to common controlled Markovian dynamics.

Signal ζ = {ζt} is broadcast to all loads

Controlled transition matrix {Pζ : ζ ∈ R}:

P{Xi
t+1 = x′ | Xi

t = x, ζt = ζ} = Pζ(x, x
′)

Mean-field analysis for the aggregate of loads
(R. Malhame et. al. 1984 –)



Mean Field Model

Example: pool pumps
How Pools Can Help Regulate The Grid

 1,5KW 400V

Needs of a single pool

. Filtration system circulates and cleans: Average pool pump uses 1.3kW and
runs 6-12 hours per day, 7 days per week

. Pool owners are oblivious, until they see frogs and algae

. Pool owners do not trust anyone: Privacy is a big concern

Single pool dynamics:
1 2

. . .On

O�
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Mean Field Model

Pools in Florida Supply G2 – BPA regulation signal∗
Stochastic simulation using N = 106 pools
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PI control: ζt = 19et + 1.4eIt , et = rt − yt and eIt =
∑t
k=0 ek

Each pool pump turns on/off with probability depending on
1) its internal state, and 2) the BPA reg signal

∗
transmission.bpa.gov/Business/Operations/Wind/reserves.aspx

transmission.bpa.gov/Business/Operations/Wind/reserves.aspx


Local Control Design



Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Individual Perspective Design
Local welfare function: Wζ(x, P ) = ζU(x)−D(P‖P0),

where D denotes relative entropy: D(P‖P0) =
∑
x′ P (x, x′) log

( P (x,x′)
P0(x,x′)

)
.

Markov Decision Process: lim supT→∞
1
T

∑T
t=1E[Wζ(Xt, P )]

Local control is a solution of AROE:

max
P

{
Wζ(x, P ) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗ζ

Explicit construction via eigenvector problem:

Pζ(x, y) =
1

λ

v(y)

v(x)
P̂ζ(x, y) , x, y ∈ X,

where P̂ζv = λv, P̂ζ(x, y) = exp(ζU(x))P0(x, y)

Extension/reinterpretation of [Todorov 2007] + [Kontoyiannis & Meyn 200X]
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Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Myopic Design
(one step optimization)

Pζ(x, x
′) := P0(x, x′) exp

(
ζU(x′)− Λζ(x)

)
with Λζ(x) := log

(∑
x′ P0(x, x′) exp

(
ζU(x′)

))
the normalizing constant.

System Perspective Design
Linearized aggregate model is passive:

∑∞
t=0 utyt+1 ≥ 0, ∀{ut}.
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Local Control Design

Tracking performance
and the controlled dynamics for an individual load

Heterogeneous setting:

40 000 loads per experiment;

20 different load types in each case

Stochastic OutputMean-�eld ModelBPA balancing reserves (�ltered/scaled)
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Local Control Design

Unmodeled dynamics

Setting: 0.1% sampling, and

1 Heterogeneous population of loads

2 Load i overrides when QoS is out of bounds
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Local Control Design

Control Architecture
Frequency Allocation for Demand Dispatch
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Conclusions and Future Directions

Conclusions
The virtual storage capacity from demand dispatch is enormous

Approach: creating Virtual Energy Storage through direct control of flexible loads
- helping the grid while respecting user QoS

These resources are free! Fans, Irrigation, pool pumps, ...

But, of course: Zero marginal cost 6= free

VES is cheaper than batteries. However, there is significant sunk-cost

Challenge: economic theory for a zero marginal cost market

Solutions: Contracts for services, as mandated in FERC Order 755, or
practiced by EDF or in FP&L’s On Call program since the 1980s

Ongoing and future work:

− Information Architecture: ζt = f(?)
Different needs for communication, state estimation and forecast.

− Resource optimization & learning:
Integrating VES with traditional generation and batteries.
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Conclusions and Future Directions

Conclusions

Thank You!
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Y. Chen, A. Bušić, and S. Meyn. State Estimation and Mean Field Control with Application to Demand

Dispatch. 54rd IEEE Conference on Decision and Control (CDC) 2015.
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