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March 8th 2014:   Impact of wind 
and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
mid-day solar production
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Challenges

Some of the Challenges

1 Ducks

MISO, CAISO, and others: seek markets for ramping products

2 Ramps
3 Regulation

One potential solution:
Large-scale storage with fast charging/discharging rates

Let’s consider some alternatives
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Virtual Energy Storage

Control Architecture
Frequency Decomposition

Power GridControl Flywheels
Batteries

Coal
Gas Turbine
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 Voltage
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Actuator feedback loop

A

LOAD

Today: PJM decomposes regulation signal based on bandwidth,
R = RegA + RegD

Proposal: Each class of DR (and other) resources will have its own
bandwidth of service, based on QoS constraints and costs.
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Virtual Energy Storage

Frequency Decomposition
Taming the Duck

March 8th 2014:   Impact of wind 
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ISOs need help: ... ramp capability shortages could result in a single, five-minute

dispatch interval or multiple consecutive dispatch intervals during which the price of

energy can increase significantly due to scarcity pricing, even if the event does not

present a significant reliability risk http://tinyurl.com/FERC-ER14-2156-000
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Virtual Energy Storage

Frequency Decomposition
Taming the Duck

One Day at CAISO 2020

ISO/RTOs are seeking ramping products
to address engineering challenges, and
to avoid scarcity prices

Do we need ramping products?

Net Load Curve
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Virtual Energy Storage

Frequency Decomposition
Regulation
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Demand Dispatch

Demand Dispatch
Responsive Regulation and desired QoS
– A partial list of the needs of the grid operator, and the consumer

High quality AS? (Ancillary Service)
Does the deviation in power consumption accurately track the desired
deviation target?

Reliable?

Cost effective?

Customer QoS constraints satisfied?
The pool must be clean, fresh fish stays cold, building climate is
subject to strict bounds, farm irrigation is subject to strict constraints,
data centers require sufficient power to perform their tasks.

Virtual energy storage: achieve these goals simultaneously
through distributed control
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data centers require sufficient power to perform their tasks.

Virtual energy storage: achieve these goals simultaneously
through distributed control
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Demand Dispatch

General Principles for Design

Two components to local controlLocal feedback loop

Local
Control

Load i
ζt Y i

tU i
t Pre�lter Decision

ζt U i
t

Xi
t

Xi
t

Each load monitors its state and a regulation signal from the grid.

Prefilter and decision rules designed to respect needs of load and grid

Randomized policies required for finite-state loads
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Demand Dispatch

MDP model

MDP model

The state for a load is modeled as a controlled Markov chain.
Controlled transition matrix:

Pζ(x, x
′) = P{Xt+1 = x′ | Xt = x, ζt = ζ}

Two components to local controlLocal feedback loop

Local
Control

Load i
ζt Y i

tU i
t Pre�lter Decision

ζt U i
t

Xi
t

Xi
t

Questions:

• How to analyze aggregate of similar loads? • How to design Pζ?
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Demand Dispatch

How to analyze aggregate?
Mean field model

 

 Reference Output deviation  (MW)

−300
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−100
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200

300

0 20 40 60 80 100 120 140 160
t/hour

 0 20 40 60 80 100 120 140 160

State process:

µt(x) ≈
1

N

N∑
i=1

I{Xi
t = x}, x ∈ X

Evolution: µt+1 = µtPζt

Output (mean power): yt =
∑
x

µt(x)U(x)

Nonlinear state space model Linearization useful for control design
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Frequency Allocation for Demand Dispatch
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can supply all of the RegD and RegA regulation needs of PJM  
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 around their natural cycle 
 the capacity is enormous in this bandwidth
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19% of the load

Imagine the capacity 
from water pumping 
in California?
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 around their natural cycle 
 the capacity is enormous in this bandwidth
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19% of the load

Imagine the capacity 
from water pumping 
in California?
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H. Chavez, R. Baldick, and S. Sharma. Regulation adequacy analysis under high wind penetration scenarios in ERCOT nodal. IEEE Trans. on Sustainable Energy, 3(4):743–750, Oct 2012.
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Conclusions

Conclusions

Volatility appears to be manageable!
Randomized control architecture designed so that everyone is happy.
The virtual storage capacity from demand dispatch is enormous

Open questions on many spatial and temporal scales

1 Most loads could provide synthetic inertia and governor response1.
Is this wise?

2 We don’t know why the grid is so reliable today
– we need better macro models2

3 And of course, incentives are needed: contracts and/or standards

1Scweppe et. al. 1980
2Thorpe et. al. 2004
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