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Abstract—The famed perfect sampling method of Propp and
Wilson [3] uses a backward coupling scheme to compute unbiased
samples of the stationary distribution of Markov chains. It
has been implemented in a software tool, called PSI2, that
proved very efficient for monotone chains coming from queuing
networks [4]. However, when the system includes at least one non-
monotone event, the backward simulation scheme has to consider
all possible states as starting points. This can be avoided by
taking a new point of view that consists in bounding all possible
trajectories of the Markov chain by envelopes. The new version
of PSI2 presented here implements these latest improvements,
including envelope techniques and splitting. Envelopes have been
introduced by Bušić et al [1]. As soon as envelopes couple, then
all trajectories must have coupled, so that an unbiased sample
is obtained. As for splitting, it consists in generating all the
trajectories of the Markov chains inside the envelopes to run
a classical backward coupling technique from that point on.

Combining these two techniques in PSI2 makes it a more
efficient tool that covers a wider class of queuing networks than
previously. This includes networks with non-monotone events
such as negative customers, arrivals by batches, forks and joins
as well as cox-distribution for services.

I. ENVELOPE PERFECT SAMPLING

Let {Xn}n∈N be an irreducible and aperiodic discrete time
Markov chain with a finite state space X and a transition
matrix P = (pi,j). Let π denote the steady state distribution
of the chain: π = πP . The evolution of the Markov chain
can always be described by a stochastic recurrence sequence
Xn+1 = Φ (Xn, en+1), with {en}n∈Z an independent and
identically distributed sequence of events en ∈ E , n ∈ N. The
transition function Φ : X × E → X verifies the property that
P (Φ(i, e) = j) = pi,j for every pair of states (i, j) ∈ X × X
and a random event e ∈ E .

As proved in [3], there is ` ∈ N such that

lim
n→∞

∣∣Φ (. . .Φ (Φ (X , e1) , e2) , . . . , en)
∣∣ = ` almost surely.

The Markov chain couples if ` = 1. In that case, this singleton
is steady state distributed and its coupling time is the minimum
value of n such that the set is reduced to the singleton.

A. Envelope Perfect Sampling Algorithm

When the state space X is equipped with a complete lattice
order relation�, we bound the trajectories of the Markov chain
starting from all possible states by envelopes that can be used
to build a new perfect sampler of a Markov chain, given in
Algorithm 1.

Algorithm 1: Envelope Perfect Sampling Algorithm
(EPSA)

Data: Φ , {e−n}n∈N
Result: A state with stationary distribution
begin

n = 1; M := Top; m := Bottom;
repeat

for i = n− 1 downto 0 do
m := infm�x�M Φ(x, e);
M := supm�x�M Φ(x, e);

/* Splitting into S = {x ∈ X ,m � x �M}
trajectories is done here, if |M −m| < L */
n := 2n;

until M = m ;
return M ;

end

The trajectories of m,M as constructed in Algorithm EPSA
are the envelopes of the chain. All states of the chain stay in
S = {x ∈ X ,m � x � M}. Therefore, as soon as m = M
(after, say τe steps, called the coupling time of EPSA), the
chain has coupled at state m = M that is an unbiased sample
of π.

The gain, comparing to classical perfect sampling algorithm,
is that the complexity does not depend on the size of the state
space. However, the coupling time of envelopes τe might be
larger than the coupling time τ for the initial chain. Therefore,
the efficiency of envelopes depends on the comparison of τe
with τ |X |.

In the framework of queuing networks, this comparison is
often in favor of envelopes [1]. For example, batch arrivals,
negative customers, fork and join nodes, Cox service times all
produce events that are non-monotone but for which envelopes
are easy to compute and have a short coupling time.

B. Splitting

Even if the two envelopes do not couple or if their coupling
time is too long, they still may get close. One way to
take benefit from the envelopes in that case is to continue
the simulation once the gap between the envelopes reaches
some threshold L using a classical PSA, i.e. simulating the
chain starting with all states between the upper and lower



trajectories. This is called splitting in the following and can
be added in EPSA at the point where the comment is inserted.

II. IMPLEMENTATION AND APPLICATION EXAMPLES

The new version of Psi2 (version 4.4.6), http://psi.

gforge.inria.fr/, handles envelopes and splitting in its
kernel. Users define the computation of the envelopes of any
event as a function in an external library. Then, the main
loop of PSI2 will call that function over a couple of states
(m,M) corresponding to the current lower and the upper
envelope, anytime the corresponding event is drawn. Splitting
is an option of envelopes, where the users specify the condition
on the size of the interval [m,M ] to trigger the splitting of
trajectories.

In the following subsections, we illustrate the efficiency of
the new PSI2 by showing its behavior in two examples.

Batch arrivals

Consider a network of 5 M/M/1 queues in tandem with
overflow and batch arrivals, as displayed below.

Batch arrival B

C = 200 µ = 1 B = 2 with probability 1
2 and B = 3 with probability 1

2

C µ C µ C µ C µ C µλ

The whole batch is rejected if it cannot enter the queue
entirely. This is a non monotone event. Indeed, if the number
of packets in the first queue is 199 (resp. 198) and a batch
arrival of size 2 occurs, then the number of packets becomes
199 (resp. 200), so that the order between the states is changed.

Sample size = 1000
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The time (in ms) to compute 1000 samples of the stationary
distribution of the system using PSI2 is displayed in the
figure above (solid line). It never gets over 50 ms while the
state space size is |X | = 2005 ≥ 3 · 1011. Furthermore, the
execution time is almost the same as for 5 queues in tandem
with the same load but individual arrivals that is monotone
(dashed line). In that case, the envelope method extends the
applicability of perfect sampling at almost no cost.

Tandem queues and Cox service

Here, we consider two queues in tandem where the first
queue has a service with a Cox-2 distribution.

p = 1
2 λ = 1µ2 = 2C = 1000

λ C µ1 µ1
p

C µ2

Cox Server

1− p

Again, the Cox service event is not monotone.
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As shown in the figure above, once again, PSI2 performance is
almost the same when the service in the first queue is Coxian
(solid line) and when it is exponential with an equivalent
rate. The noticeable pick when the load is one is because the
coupling time behaves as the square of the capacity of queues
in that case instead of being almost linear in all other cases
[2].

III. CONCLUSIONS AND FUTURE WORKS

In the current version of PSI2, the envelopes for several
non-monotone events for queues have been implemented. The
current library contains generalized JSQ (index), negative
customers, forks and joins, batch arrivals, cox-2 servers.

Future additions of available envelopes concern general
phase-type service distributions.

Another improvement to get faster execution include selec-
tion of events taking into account the current envelope state
and the tuning of the splitting threshold based on coupling
time estimations.
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