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Ana Bušić(1), Jean-Michel Fourneau(1), and Nihal Pekergin(1,2)
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Abstract. We consider a finite buffer queue with one deterministic
server fed by packets arriving in batches. We assume that we are not
able to fully describe the batch distribution: only the maximal size and
the average number of packets are supposed known. Indeed, these two
quantities are simple to measure in a real system. We additionally allow
the batch distribution to be state dependent. We analyze the worst case
distribution of the queue length and the expectation of lost packets per
slot. We show that the increasing convex ordering provides tight bounds
for such a system.

1 Introduction

In the case when we do not have complete information but some qualitative
and quantitative information, a quite natural approach in many fields of ap-
plied probability consists in finding an extremal distribution. For instance, in
reliability modelling, one can compute the worst case Increasing Failure Rate
distribution knowing the first moment (for the definitions and method see Bar-
low and Proschan [2, p. 113]).

In Performance Evaluation such a method has received less attention. The
major exception are the (max, +) linear equations which naturally arise when
one models Stochastic Event Graphs, a subset of Petri Nets (see the book by
Baccelli et al. [1] for a considerable survey on these topics). Most of the results
obtained in this book can be generalized to models exhibiting stochastic linear
recurrence equations in some semirings: for instance (min, max) semiring or
(min, +) semiring. These results are based on the properties of the semirings:
when we consider more complex algebraic structures most results do not apply
any more.

A completely different idea was recently proposed by P. Buchholz [5]. The
main assumption is that the modellers do not know the real transition proba-
bilities. Thus, one wants to model a system by a family of Markov chains where
the transition probabilities belong to an interval. One has to derive the worst
case (or the best case) for all the matrices in the set. The theoretical arguments
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rely on Courtois’s polyhedral approach. The algorithms are very accurate as the
bounds can be reached by a matrix in the set. Unfortunately the complexity is
quite high. Very recently a similar problem was solved independently by Had-
dad and Moreaux [9]. Again one has to find the best and the worst matrices in
a set. However, Haddad and Moreaux’s approach is based on strong stochastic
ordering (st-ordering). The algorithm is simpler but the bounds are generally
less accurate. To the best of our knowledge, the two approaches have not been
compared on some benchmarking problems.

Our approach combines some of these ideas. We analyze a finite buffer queue
with a deterministic service fed by a batch process. The batch distribution can
be state dependant. We assume that we know the maximal batch size and the
average number of packets in a batch. Note that both quantities are simple
to obtain from the specifications of a system or from simple measurements.
The maximal size of the batch is the number of inputs in a slotted system and
the mean batch size is easily related to the load. A natural question when we
analyze such a system is to find the worst batch distribution when we compute
the distribution of the queue size, its average, or the average packet loss. Even
if the system exhibits a simple evolution equation, the analysis is quite difficult.
Indeed, due to the buffer finiteness this equation is based on three operators:
max, +, and min, and the theory developed in [1] does not apply.

The infinite buffer case has already been studied by several authors [10, 11].
In that case the model has an evolution equation on max and + operators and
the analysis is in general much simpler. Unfortunately, the finite buffer case
introduces min operator and the underlying monotonicity disappears on the
boundary of the state space.

We consider here a different approach based on Markov chains rather than
evolution equations. We design an upper bounding monotone chain for the con-
sidered system in the sense of the increasing convex order (icx-order). This order
is known for a long time [13] but only recently an algorithmic derivation of icx-
monotone chains has been proposed [4]. The main advantage of this order is that
it is possible to obtain a bound with the same mean as the initial distribution.
Such a property is very important here to obtain tight bounds. This property is
not valid with the usual st-ordering. Indeed, if X is smaller than Y in the sense
of the st-order and if the expectation of X is equal to the expectation of Y , then
X equals Y .

The problem we consider is related to the dimensioning of finite buffer in
systems with fixed size packets: for instance ATM [14] or optical packet net-
works like ROM [8]. Such systems are slotted, thus discrete time chains provide
natural models. The time slot is the service time and arrivals occur in batches
of packets. The maximum batch size is the number of wavelengths in the optical
transmission part of the network. The real distribution of batches is unknown
and the traffic can be state-dependent. Instead of trying to give more and more
details on the traffic, we try to derive a more pessimistic traffic. This traffic will
be used to dimension the buffer. Hence our approach is quite different from the
traditional traffic engineering approach.



The remaining of the paper is as follows. In Sect. 2 we briefly introduce the
icx-order and the useful results proved in [13] and [4]. We also describe the worst
case batch distribution in the sence of the icx-order. In Sect. 3 we construct an
upper bounding icx-monotone Markov chain for a Batch/D/1/N queue where
only the maximal and the average batch size are known, and we show that this
chain provides a worst case bound for the queue length. We additionally show
how we can use this bound to derive bounds on the number of lost packets.
Finally in Sect. 4 we present some numerical results.

2 Some Preliminaries on Stochastic Bounds and the
Icx-Worst Case Batch Distribution

In this section we first give some basic definitions and theorems of the stochastic
comparison. We refer to [13] for proofs and further details. Then we consider a
batch distribution whose average is known and we recall the worst case (largest)
distribution for the icx-ordering [15].

2.1 Stochastic Comparison under the Icx Order

Definition 1. Let X and Y be two random variables taking values on a totally
ordered space E. Then we say that X is smaller than Y in the increasing convex
sense (icx),

X �icx Y if E(f(X)) ≤ E(f(Y )), for all increasing and convex functions f,

whenever the expectations exist.

In the case of a finite state space E = {0, . . . , N}, we have the following
characterization of icx-comparison of two random variables.

Proposition 1. Let X and Y be two random variables with probability vectors
p = (pi)

N
i=0 and q = (qi)

N
i=0 (pi = P (X = i) and qi = P (Y = i), ∀i). Then,

X �icx Y ⇐⇒
N

∑

k=i

(k − i + 1) pk ≤
N

∑

k=i

(k − i + 1) qk, ∀i ∈ {1, . . . , N}.

Recall that the usual strong stochastic order (st) is generated by the family
of all increasing functions. Obviously, X �st Y implies X �icx Y , as the family
of all increasing functions is larger. Characterization of the st-comparison on a
finite space E = {0, . . . , N} is given by

X �st Y ⇐⇒

N
∑

k=i

pk ≤

N
∑

k=i

qk, ∀i ∈ {1, . . . , N}.



Example 1. Let us consider E = {0, . . . , 3}, and let

x = (0.5, 0.1, 0.1, 0.3), y = (0.3, 0.3, 0.1, 0.3), and z = (0.3, 0.2, 0.4, 0.1)

be probability vectors on E . Then x �st y and, therefore, x �icx y. The vectors
x and z are not icx-comparable (and, consequently, not st-comparable), as x3 =
0.3 > 0.1 = z3, but x1 + 2x2 + 3x3 = 1.2 < 1.3 = z1 + 2z2 + 3z3. Finally, vectors
y and z are not st-comparable, but z �icx y.

The stochastic comparison can be also defined on a process level.

Definition 2. Let {Xk}k≥0 and {Yk}k≥0 be two homogeneous Markov chains.
Then,

{Xk} �icx {Yk}, if Xk �icx Yk, for all k ≥ 0.

Let us now introduce the comparison and the monotonicity property for
stochastic matrices. It is shown in Theorem 5.2.11. of [13, p.186] that compar-
ison and monotonicity of the transition matrices of homogeneous discrete time
Markov chains yield sufficient conditions to stochastically compare the underly-
ing chains. Notice that Definitions 2, 3, 4, and Theorem 1 are also valid for the
st-order.

Definition 3. Let P and Q be two stochastic matrices. We say that P �icx Q

if
Pi,∗ �icx Qi,∗, ∀i ∈ {0, . . . , N}

where Pi,∗ denotes the ith row of matrix P.

Definition 4. A stochastic matrix P is said to be icx-monotone if for any prob-
ability vectors p and q,

p �icx q =⇒ pP �icx qP.

Theorem 1. Two homogeneous Markov chains {Xk}k≥0 and {Yk}k≥0 with the
transition matrices P and Q satisfy {Xk} �icx {Yk}, if

– X0 �icx Y0,
– P �icx Q

– at least one of matrices P or Q is icx-monotone.

Definition 4 is not very useful in practical applications. We give here the
algebraic characterization of icx-comparison for the finite space case. We refer
to [3, 4] for the proof. Characterization for the icx-monotonicity for E = Z can
be found in [12].

Let P be a stochastic matrix taking values on E = {0, . . . , N}. Let us first
introduce the following notations:

φi,j(P) =
∑N

k=j(k − j + 1)Pi,k, 0 ≤ i ≤ N, 0 ≤ j ≤ N,

∆i,j(P) = Pi,j − Pi−1,j , 1 ≤ i ≤ N, 0 ≤ j ≤ N.

We will denote by φ(P) the matrix φ(P) = (φi,j(P))N
i,j=0.



Proposition 2. A stochastic matrix P taking values on E = {0, . . . , N} is icx-
monotone if and only if the vector

φ∗,j(P) = (φi,j(P))N
i=0 is increasing and convex, for all j ∈ {1, . . . , N},

i.e.
φ1,j(P) ≥ φ0,j(P) and φi+1,j(P) + φi−1,j(P) ≥ 2φi,j(P),

for all i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , N}. Notice that the vector φ∗,j(P) is
increasing and convex if and only if the vector ∆∗,j(φ(P)) is non-negative and
increasing.

Example 2. Let us consider the two matrices

P =

0

@

0.2 0.5 0.3
0.3 0.3 0.4
0.2 0.3 0.5

1

A and Q =

0

@

0.5 0.4 0.1
0.3 0.3 0.4
0.1 0.4 0.5

1

A .

Using Proposition 2 it can be easily shown that the matrix P is icx-monotone,
while the matrix Q is not.

2.2 Icx-Worst Case Batch Distribution

We now study the existence and description of the worst case distribution within
the family of all distributions with the same mean. Formally, let Fα be the family
of all probability distributions on the space E = {0, . . . , N} having the same
mean α. This family admits a greatest distribution under the icx-order.

Proposition 3. The distribution q = (1 − α
N

, 0, . . . , 0, α
N

) satisfies

q ∈ Fα and p �icx q, for all p ∈ Fα.

See Theorem 2.A.9 of [15] for a proof.
Note that the family Fα does not admit a greatest element under the st-order.

Indeed, if for two random variables X and Y , Y �st X and E(X) = E(Y ), then
X and Y have the same distribution (see Theorem 1.2.9. of [13, p.5]).

In the next section we consider a finite capacity single server queue with batch
arrivals and we are interested in queue length worst case analysis. Distribution
q from Proposition 3 will be used to model the unknown batch distribution of a
given mean, thus we will refer to it in the following shortly as to “the worst case
batch”.

Finally, it is worthy to remark that this distribution q is also an icx-bound
for batch distributions whose mean is smaller than α.

3 Worst Case Analysis of a Batch/D/1/N Queue

We consider a finite capacity queue with a single server. The queue capacity
is N . The service is deterministic and equals to one time slot. The queue is



fed by a batch arrival process. We do not assume that the batch arrivals are
i.i.d., for instance they can be state dependent. We suppose that we know the

maximal size K of the batch. More precisely, let Ai = (a
(i)
0 , . . . , a

(i)
K ) denote the

distribution of the batch arrivals at state i. The exact values of a
(i)
k (0 ≤ k ≤ K)

are unknown. We only know the mean batch size α = E(Ai). In order to have
the mean load less than 1, we assume that α < 1. Note that the maximum batch
size is generally determined from the underlying physical system. For instance,
in the case of optical networks the batch size is upper bounded by the number
of wavelengths. Both parameters α and K are quite simple to measure or obtain
from specifications.

3.1 Upper Bound for the Queue Length

We suppose that K << N and that 0 < α < 1. We are interested in upper
bounding the queue length of an arbitrary Batch/D/1/N queue with the maximal
batch size equal to K and the mean batch size equal to α.

First step consists in finding the transition matrix P such that

R �icx P,

for each transition matrix R of a Batch/D/1/N queue with the maximal batch
size equal to K and the mean batch size equal to (or smaller than) α. From the
description of icx-worst case batch in the previous section, we easily get:

P =

8

>

>

<

>

>

:

P0,0 = 1 − α

K
P0,K = α

K

i = 1, . . . , N −K + 1 : Pi,i−1 = (1 − α

K
) Pi,i+K−1 = α

K

i = N −K + 2, . . . , N − 1 : Pi,i−1 = (1 − α

N−i+1
) Pi,N = α

N−i+1

PN,N−1 = (1 − α) PN,N = α

Notice that the rows i = N − K + 2, . . . , N are obtained by taking the worst
case batch (Proposition 3) with the mean batch size equal to α and the maximal
batch size equal to N − i + 1 (and not K), since we need to assure the icx-
comparison of the unknown matrix R and the matrix P, i.e. Ri,∗ �icx Pi,∗, for
all i. We want to emphasize that the matrix P actually belongs to the family
of queues we want to bound. However, this matrix is not icx-monotone so we
cannot directly apply Theorem 1.

Now we apply to P a linear transform which does not modify the steady-state
distribution,

Q = δP + (1 − δ)Id,

where δ is a real constant, 0 < δ < 1. This transform was shown to improve the
accuracy for st-bounds [6]. Here it has a crucial role as it allows to move some
probability mass to the diagonal elements (see (3) and the proof of Theorem 2).

Q =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Q0,0 = 1− δ α

K
Q0,K = δ α

K

i = 1, . . . , N −K + 1 :
Qi,i−1 = δ(1 − α

K
) Qi,i = 1 − δ Qi,i+K−1 = δ α

K

i = N −K + 2, . . . , N − 1 :
Qi,i−1 = δ(1 − α

N−i+1
) Qi,i = 1 − δ Qi,N = δ α

N−i+1

QN,N−1 = δ(1− α) QN,N = 1− δ + δα

(1)



Finally, we define the matrix B as follows:

B =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

B0,0 = 1− δ α

K
B0,K = δ α

K

i = 1, . . . , N −K + 1 :
Bi,i−1 = δ(1− α

K
) Bi,i = 1 − δ Bi,i+K−1 = δ α

K

i = N −K + 2, . . . , N − 1 :
Bi,i−1 = fi Bi,i = ei Bi,N = δ α

K
(i−N + K)

BN,N−1 = δ(1− α) BN,N = 1− δ + δα

(2)

where ei = 1 − δ + δα − (N − i + 1)Bi,N and fi = 1 − ei − Bi,N .
This matrix B will be used to derive the worst case bounds for the underlying

system. The proof of the following theorem is given in Appendix.

Theorem 2. Suppose that

δ ≤
1

1 + αU
, (3)

where U = maxr=2...K−1
r(K−r+1)

K
. Then,

1. B is a stochastic matrix.
2. B is irreducible.
3. Q �icx B.
4. B is icx-monotone.

Now Q �icx B gives δR + (1 − δ)Id �icx B, for each transition matrix R

of a Batch/D/1/N queue with the mean batch size smaller or equal to α. Note
that B is also icx-monotone. Therefore, it follows from Theorem 1 that

πδR+(1−δ)Id �icx πB,

where πA denotes the steady-state distribution, provided that it exists, of a
Markov chain with the transition matrix A. Since δR + (1 − δ)Id and R have
the same steady-state distribution, the matrix B provides an upper bound for
the steady-state queue length distribution of a queue given by matrix R, i.e.

πR �icx πB.

3.2 Deriving Bounds on Lost Packets

The bounds on the queue length we obtained in Sect. 3.1 can be also used to
compute the bounds on the average number of lost packets per slot. As we
consider the icx-order, we must prove that the rewards describing the mean
number of lost packets are increasing and convex. Unfortunately they are not in
general, thus we upper bound the rewards by an increasing and convex function.
Recall that we do not know the real batch distribution.

Let us remind that we consider the state dependant batches, where Ai =

(a
(i)
0 , . . . , a

(i)
K ) ∈ Fα denotes the distribution of batch arrivals in state i. Let us

define a reward g, with g(i) equal to the mean number of lost packets in state i,

g(i) =

{

0, 0 ≤ i ≤ N − K + 1
∑K

k=0 P (Ai = k)(i − 1 + k − N)+, N − K + 2 ≤ i ≤ N.



Proposition 4. The reward g is upper bounded by the increasing and convex
function h,

h(i) =

{

0, 0 ≤ i ≤ N − K + 1
r α

K
, i = N − K + 1 + r, 1 ≤ r ≤ K − 1.

Proof. From Ai ∈ Fα and Proposition 3 it follows that

Ai �icx q = (1 −
α

K
, 0, . . . , 0,

α

K
), (4)

for all i ∈ {0, . . . , N}. On the other hand, for i = N − K + 1 + r,

g(i) =

K
∑

k=0

a
(i)
k (i − 1 + k − N)+ =

K
∑

k=K−r+1

a
(i)
k (k − K + r),

for all r ∈ {1, . . . , K − 1}. Now from (4) and Proposition 1 it follows that

g(i) =

K
∑

k=K−r+1

a
(i)
k (k − K + r) ≤

K
∑

k=K−r+1

qk(k − K + r),

for all i = N − K + 1 + r, r ∈ {1, . . . , K − 1}. Notice that only the last term of
the right side in the above equation is strictly positive, thus

g(i) ≤ r
α

K
= h(i),

for all i = N − K + 1 + r, r ∈ {1, . . . , K − 1}, and, therefore, g ≤ h. 2

Finally we can bound the average number of lost packets per slot by the
expectation of the reward h on the steady state distribution of matrix B.

4 Numerical Results

As the matrices considered here are very small (up to one thousand states) we
use GTH [7], a direct elimination algorithm which is known to be very accurate.
First we show that the monotonicity constraints we impose on matrix B does
not have a very important effect on the accuracy of the bound. Recall that the
matrix B was constructed in three steps. First we found the matrix P, the largest
transition matrix in the sense of icx-order. There exists a state dependent batch
which allows to reach this largest batch matrix. Then we compute matrix Q

which has the same steady state distribution as P. Finally, matrix B is built
from Q to prove the monotone icx-bound at the steady state. Only the last step
of the method can add some perturbation. Tables 1 and 2 illustrate the quality
of the bound.

In Table 1 we report the average queue length. Clearly the relative errors are
not very large when the load is light or moderate. At heavy load (α > 0.95) they
are still smaller than 0.5%.



α
K=10 K=100

P B rel. error P B rel. error

0.5 5.000e+00 5.000e+00 <1.0e-15 5.000e+01 5.000e+01 5.292e-06
0.8 1.880e+01 1.880e+01 <1.0e-15 1.962e+02 1.965e+02 1.708e-03
0.9 4.140e+01 4.140e+01 1.602e-12 3.909e+02 3.924e+02 3.895e-03
0.95 8.645e+01 8.645e+01 4.452e-08 6.038e+02 6.060e+02 3.585e-03
0.99 3.984e+02 3.984e+02 1.670e-05 8.990e+02 8.999e+02 1.085e-03

Table 1. Comparison of the mean queue length at the steady-state between the
“largest-batch” queue (P) and the monotone upper bound (B) for N = 1000

Let us know consider the probability that the queue is full (Table 2). The
bounds are now less accurate, especially when the load is light. Even though the
relative errors are significant, the probabilities are very small and the absolute
errors are not so important. So we advocate that the bounds are tight. The
analysis provides a bound which is very close to one matrix in the feasible set.
We give in Figure 1 the evolution of the average queue length for the bound
when we change the load or the maximum batch size.

α
K=10 K=100

P B rel. error P B rel. error

0.5 1.375e-60 2.667e-60 9.404e-01 4.169e-07 3.299e-06 6.913e+00
0.8 1.646e-21 2.265e-21 3.759e-01 5.589e-03 1.341e-02 1.400e+00
0.9 9.240e-11 1.094e-10 1.838e-01 8.069e-02 1.261e-01 5.624e-01
0.95 1.154e-05 1.258e-05 9.056e-02 2.889e-01 3.619e-01 2.527e-01
0.99 1.057e-01 1.076e-01 1.788e-02 7.820e-01 8.184e-01 4.648e-02

Table 2. Comparison of π(N) at the steady-state between the “largest-batch” queue
(P) and the monotone upper bound (B) for N = 1000
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Fig. 1. Upper bounds for the mean number of packets for N = 1000



Now we consider a state dependent batch. We assume that the queue has
some kind of back-pressure mechanism. When the queue size is large, a signal is
sent to the sources of traffic to avoid congestion. We assume that this mechanism
changes the variability of the traffic. The traffic still has the same average but
the variability of the batch is now smaller. Typically a traffic shaper can have
this effect. More formally we assume that the back-pressure signal is sent when
the queue size is larger than 80% of the buffer size. We also assume that the
signal instantaneously acts upon the source and that the effect ends when the
queue size becomes smaller than the threshold. The batch distribution is the
worst batch introduced in Sect. 2 when the queue size is small. When the queue
becomes larger than the threshold we assume that the maximal batch size is now
2. Remember that the average batch size is still the same. We present in Table
3 the numerical results for the average number of packets in the queue.

α
K=10 K=100

S B rel. error S B rel. error

0.5 5.000e+00 5.000e+00 <1.0e-15 5.000e+01 5.000e+01 2.755e-05
0.8 1.880e+01 1.880e+01 <1.0e-15 1.935e+02 1.965e+02 1.526e-02
0.9 4.140e+01 4.140e+01 8.916e-09 3.690e+02 3.924e+02 6.346e-02
0.95 8.644e+01 8.645e+01 9.122e-05 5.453e+02 6.060e+02 1.113e-01
0.99 3.780e+02 3.984e+02 5.396e-02 7.946e+02 8.999e+02 1.325e-01

Table 3. Comparison of the mean queue length at the steady-state between the state
dependant “back-pressure mechanism batch” (S) and the monotone upper bound (B)
for N = 1000

We compute the exact solution and the bound to check the accuracy of the
approach for a large buffer (N = 1000). As expected, the bound is very accurate
at light load for small and large values of K. At heavy load the relative errors
are larger but it is still a good estimate.

Let us now consider the average number of lost packets per slot. We give
in Figure 2 the evolution of the mean number of lost packets for the bound as
a function of the load. In Figure 3 we compare this bound to the exact mean
number of lost packets for the queue with the i.i.d. batch (1 − α

K
, 0, . . . , 0, α

K
)

(“0-K” batch). The approach is acceptable when the load is relatively light. At
extremely heavy load (i.e. larger than 0.9) the bounds on the lost packets are
not accurate.

5 Conclusion

In this paper, we have shown how we can provide a worst case analysis of a finite
buffer queue with deterministic service and batch arrivals when the detailed
description of the arrival process is not available. The approach is based on the
derivation of a worst case matrix which is larger than the matrix in the set and
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which is also icx-monotone. Note that to the best of our knowledge it is not
easy to apply the coupling method here because we use the icx-ordering rather
than the st-ordering. We expect that such a method will help to dimension
networking components because it is more and more difficult to really model the
traffic characteristics and the worst case analysis is certainly a useful tool in the
context of traffic engineering.
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Appendix

In this appendix we give the proof of Theorem 2. Let us first show some properties
of diagonal and lower triangular entries of matrices Q and B.

Lemma 1. The diagonal entries of matrix φ(Q) have a constant value for all
i > 0. Moreover, the diagonal of matrix φ(B) is equal to the diagonal of matrix
φ(Q),

φi,i(B) = φi,i(Q) =

{

1 + δα, i = 0,

1 − δ + δα, for all i > 0.

Proof. Follows directly from the definitions of matrices Q and B (equations (1)
and (2)). 2

Lemma 2. The lower triangle entries of matrices φ(Q) and φ(B) have the same
values,

φi,j(Q) = φi,j(B) = 1 − δ + δα + (i − j), j < i.

Proof. Notice that, for 0 ≤ i ≤ N, 0 ≤ j ≤ N − 1,

φi,j(P) = φi,j+1(P) +
N

∑

k=j

Pi,k . (5)



The statement of the corollary follows directly from Lemma 1, (5), and the fact

that
∑N

k=j Qi,k =
∑N

k=j Pi,k = 1, for all i, j such that j < i. 2

Proof of Theorem 2.
1) B is a stochastic matrix. Notice that rows 0, . . . , N −K +1 and row N are

the same for matrices Q and B. For a row i = N −K + r, where 2 ≤ r ≤ K − 1,
we have 0 < r

K
< 1 and Bi,N = δα r

K
, thus

0 < Bi,N < 1, i = N − K + 2, . . . , N − 1. (6)

It remains us to show that

Bi,i = ei ≥ 0 and ei + Bi,N ≤ 1, i = N − K + 2, . . . , N − 1.

Then Bi,i−1 = fi ≥ 0 and
∑N

j=0 Bi,j = 1, i = N − K + 2, . . . , N − 1. For a row
i = N − K + r, where 2 ≤ r ≤ K − 1, we have

ei = 1 − δ + δα − δα
r(K − r + 1)

K
≥ 1− δ + δα − δαU. (7)

Now from (3) and δα > 0 it follows that Bi,i = ei > 0, i = N −K +2, . . . , N −1.

For a row i = N − K + r, where 2 ≤ r ≤ K − 1,

ei + Bi,N = 1 − δ(1 − α) − δα
r(K − r)

K
< 1, (8)

since 0 < α < 1. Thus,

Bi,i−1 = fi = 1 − ei − Bi,N > 0, i = N − K + 2, . . . , N − 1, (9)

and B is a stochastic matrix.

2) B is irreducible. Follows easily from (2) and the fact that 0 < α, δ < 1.

3) Q �icx B, i.e. φi,j(Q) ≤ φi,j(B), i = 0, . . . , N, j = 1, . . . , N. We need to
consider only the rows i = N −K + 2, . . . , N − 1, as the remaining ones are the
same for both matrices. Furthermore, from Lemmas 1 and 2 it follows that

φi,j(Q) = φi,j(B), j ≤ i.

On the other hand, from the definition of matrices Q and B we have φi,j(Q) =
(N − j + 1)Qi,N and φi,j(B) = (N − j + 1)Bi,N , N − K + 2 ≤ i < j < N.

Therefore, we need only to verify that

φi,N (Q) ≤ φi,N (B), N − K + 2 ≤ i ≤ N − 1.

For a row i = N − K + r, 2 ≤ r ≤ K − 1, we have

φi,N (Q) ≤ φi,N (B) ⇔ Qi,N ≤ Bi,N

⇔
1

K − r + 1
≤

1

K
r

⇔ r2 − (K + 1)r + K ≤ 0



The above second order equation has two real roots: 1 and K. Thus, for r =
2, . . . , K − 1, r2 − (K + 1)r + K < 0. Therefore, Q �icx B.

4) B is icx-monotone. After Proposition 2 this is equivalent to show that
φ∗,j(B) is an increasing and convex vector, i.e. that ∆∗,j(φ(B)) is a non-negative
and increasing vector for all j = 1, . . . , N .

We will consider the partition of matrix φ(B) into the following zones:

1
@

@
@

@
@@

2

3

@
@

@
@

@
@

@
@

@
@

@
@

4@@

5

@
@

@
@

@
@

@
@@

1. i = 0, K + 1 ≤ j ≤ N and
1 ≤ i ≤ N − K, i + K ≤ j ≤ N

2. i = 0, 0 ≤ j ≤ K

3. 1 ≤ i ≤ N−K+1, i+1 ≤ j ≤ i+K−1
4. N −K + 2 ≤ i ≤ N − 1, i + 1 ≤ j ≤ N

5. 1 ≤ i ≤ N , 0 ≤ j ≤ i

Matrix φ(B) can be then written as follows:

Zone 1 : φi,j(B) = 0,

Zone 2 : φ0,0(B) = δ(1 + α), φ0,j(B) = (K − j + 1)δ
α

K
, 1 ≤ j ≤ K,

Zone 3 : φi,j(B) = (i + K − j)δ
α

K
, (10)

Zone 4 : φi,j(B) = (i − N + K)(N − j + 1)δ
α

K
, (11)

Zone 5 : (Lemmas 1 and 2)

φi,j(B) = 1 − δ + δα + (i − j). (12)

Zone 1 is trivial as φ∗,j(B) has a constant value 0 within this zone for all j.
Notice that for an arbitrary column φ∗,j(B), inside of zones 3, 4, and 5 we have
a linear increase:

∆i,j(φ(B)) = δ
α

K
, for all (i − 1, j), (i, j) in zone 3, (13)

∆i,j(φ(B)) = (N − j + 1)δ
α

K
, for all (i − 1, j), (i, j) in zone 4, (14)

∆i,j(φ(B)) = 1, for all (i − 1, j), (i, j) in zone 5. (15)

Notice that δ α
K

≤ (N − j + 1)δ α
K

, since j ≤ N . Furthermore, inside of zone 4

we have j ≥ i + 1 ≥ N −K + 3. Thus, (N − j + 1)δ α
K

≤ δαK−3
K

< 1, as δα < 1.
For all j, 1 ≤ j ≤ N , column ∆∗,j(φ(B)) has thus a constant, non-negative

value within each of the zones 1, 3, 4, and 5. Additionally, those constants are
increasing with the respect of the number of the zone. Notice that the zones are
ordered in such a way that each column j crosses the zones in increasing order
with respect to the row index.

Some special care has to be done at the boundaries between different zones.
We illustrate the procedure on the example of boundaries 3 − 4 and 4 − 5. The
proof for other boundaries is simpler and it is omitted due to the lack of space.



Boundary 3 − 4. We have to show that

∆N−K+1,j(φ(B)) ≤ ∆N−K+2,j(φ(B)) ≤ ∆N−K+3,j(φ(B)), (16)

for all N − K + 3 ≤ j ≤ N. From (13) for j < N , φN−K+1,N (B) = δ α
K

, and
φN−K,N (B) = 0 it follows that ∆N−K+1,j(φ(B)) = δ α

K
, N − K + 3 ≤ j ≤ N.

Equations (11) for (N − K + 2, j) and (10) for (N − K + 1, j) imply

∆N−K+2,j(φ(B)) = (N − j + 1)δ
α

K
, N − K + 3 ≤ j ≤ N.

Thus, the left inequality in (16) holds.
Equation (14) implies ∆N−K+3,j(φ(B)) = (N−j+1)δ α

K
, N−K+4 ≤ j ≤ N.

Thus, the right inequality in (16) holds for N − K + 4 ≤ j ≤ N . It remains
us to show ∆N−K+2,N−K+3(φ(B)) ≤ ∆N−K+3,N−K+3(φ(B)). Equations (12)
for (N − K + 3, N − K + 3) and (11) for (N − K + 2, N − K + 3) imply
∆N−K+3,N−K+3(φ(B)) = 1 − δ + δα − 2(K − 2)δ α

K
. Therefore,

∆N−K+2,N−K+3(φ(B)) ≤ ∆N−K+3,N−K+3(φ(B))

⇔ 1 − δ + δα − δα
3(K − 2)

K
≥ 0.

Proposition hypothesis (3) implies δ(1+α
3(K−2)

K
) ≤ 1. Thus, the right inequality

in (16) holds also for j = N − K + 3.
Boundary 4 − 5. We have to show that

∆i−1,i(φ(B)) ≤ ∆i,i(φ(B)), N − K + 3 ≤ i ≤ N, and (17)

∆i,i(φ(B)) ≤ ∆i+1,i(φ(B)), N − K + 3 ≤ i ≤ N − 1. (18)

From (11) for (N − K + 2, N − K + 3), (10) for (N − K + 1, N − K + 3), and
(14) for i > N − K + 3, it follows that

∆i−1,i(φ(B)) = (N − i + 1)δ
α

K
, N − K + 3 ≤ i ≤ N.

Equations (12) for (i, i), (11) for (i − 1, i), and (15) give

∆i,i(φ(B)) = 1 − δ + δα − (i − 1 − N + K)(N − i + 1)δ
α

K
,

N − K + 3 ≤ i ≤ N,

∆i+1,i(φ(B)) = 1, N − K + 3 ≤ i ≤ N − 1.

Since α < 1 and (i − N + K)(N − i) > 0, N − K + 3 ≤ i ≤ N − 1, (18) holds.
In order to show (17), we have to show that

1 − δ + δα − (i − N + K)(N − i + 1)δ
α

K
≥ 0, N − K + 3 ≤ i ≤ N. (19)

Notice that, for N−K+3 ≤ i ≤ N−1, the left side of the above equation is equal
to Bi,i = ei (see (7)), and we have already proved that, under the hypothesis of
the proposition, ei ≥ 0, N − K + 2 ≤ i ≤ N − 1. It remains us to show (19) for
i = N . We have

1 − δ + δα − Kδ
α

K
= 1 − δ ≥ 0.

Thus, (18) holds for all i, N − K + 3 ≤ i ≤ N . 2


