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Summary. Deflection Routing is proposed for all optical core switches because of
the lack of optical memory. In Shortest-path Deflection Routing, switches attempt
to forward packets along a shortest hop path to their destinations. Each link can
send a finite number of packets per time-slot (the link capacity). Incoming packets
have to be sent immediately to their next switch along the path. If the number of
packets which require a link is larger than the link capacity, only some of them will
use the link they ask for and the other ones have to be misdirected or deflected.
We build the Markov chain which models a packet routing in an odd torus. We
prove that this matrix is �st-monotone. The proof is based on increasing sets as we
consider a partial ordering on the state space based on the network topology.

1 Introduction

All optical packet networks have received considerable attention during the
last years due to the high bandwidth they could offer. But the lack of opti-
cal memory prohibits the buffering of packets inside the network and the use
of “store and forward” routing algorithms. Deflection Routing [1] and Con-
vergence Routing [4] have been developed to overcome this weakness. These
routing strategies do not lose packets but they keep them inside the network,
increase the delay and reduce the bandwidth. In Shortest-path Deflection
Routing, switches attempt to forward packets along a shortest hop path to
their destinations. Each link can send a finite number of packets per time-slot
(the link capacity). Incoming packets have to be sent immediately to their next
switch along the path. If the number of packets which require a link is larger
than the link capacity, only some of them will use the link they ask for and the
other ones have to be misdirected or deflected, and they will travel on longer
paths. Packets will eventually never reach their destination (i.e. the livelock
problem). The tail of the transportation delay is therefore a major measure of
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interest. Previous analytical studies of deflection algorithms and networks are
based on approximate Markovian model of very simple topologies and switch-
ing elements (see [3] for a review). Recently a fixed point system based on two
Markov models has been proposed [3]. One of these models describes the end
to end delay of a tag packet when the deflection probabilities are known. The
other model allows the computation of the deflection probabilities when the
link capacity is 1.

Here we prove that the Markov chain associated to the end to end delay is
monotone. Thus we can find bounds on the end to end delay when we replace
an unknown value of the deflection probability by an upper bound. First in
Sect. 2 we briefly introduce stochastic ordering on a partially ordered space.
Then we present in Sect. 3 the routing, the topology and the proof of the
main theorem on stochastic monotonicity. Finally in Sect. 4 we show using
the monotonicity theorem that the end to end delay is stochastically increas-
ing and that the necessary condition on the traffic to obtain the monotone
property is satisfied for saturation traffic under some technical constraint. We
must emphasize here that the main result allows to bound the delay for any
traffic using the monotone matrix as an upper bound. We can use our result
to guarantee performance for larger link capacity and more complex traffic.

2 Stochastic ordering on a partially ordered space

We will first give the definition of �st-comparison of two random variables
defined on a partially ordered space. Then we will introduce the monotonicity
property for a transition matrix of a homogeneous discrete time Markov chain
(DTMC).

Recall that a binary relation � on a set S is called a partial order on S
if it reflexive, transitive, and antisymmetric. If additionally for all x, y ∈ S
either x � y or y � x holds, then the relation � is called a total order on S.
A typical example of a partial order that is not a total order is the product
order on a product space. Let S be N

I or R
I , where I is a countable set. The

product order � on S is defined by x, y ∈ S, x � y if xi ≤ yi, ∀i ∈ I.

Definition 1. Let S be a space endowed with a partial order � and let X and
Y be two random variables on S. X is smaller than Y in a strong stochastic
sense, X �st Y , if

E[f(X)] ≤ E[f(Y )], for each increasing function f,

provided that the expectations exist.

A subset U ∈ S is called an increasing (upper) set if its indicator function
1U is increasing. It follows that U is an increasing set if and only if x ∈ U
and x � y imply y ∈ U . The following characterization (see [6] for a proof) is
often used as definition of �st-order on a partially ordered space S.
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Proposition 1. X �st Y if and only if P (X ∈ U) ≤ P (Y ∈ U), for all
increasing sets U ⊂ S.

In the following we consider some properties of transition matrices of ho-
mogeneous DTMCs on a finite partially ordered state space (S,�).

Definition 2. A transition matrix P is monotone if for all probability vectors
u and v, u �st v implies uP �st vP .

Let us denote by Px,∗ row x of transition matrix P . Then the �st-
monotonicity can be characterized as follows (see [6]).

Proposition 2. A transition matrix P is �st-monotone if for all x, y ∈ S
such that x � y, Px,∗ �st Py,∗, i.e. if

∑

k∈U Px,k ≤
∑

k∈U Py,k for all increas-
ing sets U .

Let P and Q be transition matrices of two homogeneous DTMCs on the
same state space.

Definition 3. We say that P �st Q if Px,∗ �st Qx,∗ for all x ∈ S, i.e. if
∑

k∈U Px,k ≤
∑

k∈U Qx,k for all increasing sets U .

The monotonicity property and stochastic comparison of transition matri-
ces give sufficient conditions for comparison of two DTMCs.

Theorem 1. (see [6] for a proof) Let (S,�) be a partially ordered space and
let {Xn}n≥0, {Yn}n≥0 be two DTMCs with transition matrices P and Q.
If X0 �st Y0, at least one transition matrix P or Q is �st-monotone, and
P �st Q, then {Xn}n≥0 �st {Yn}n≥0, i.e. Xn �st Yn, for all n ≥ 0.

3 Deflection Routing is �st-monotone

Consider a 2D odd torus (see Fig. 1) of size N = 2M +1 with uniform traffic.
We are interested in end to end delay of an arbitrary tag packet. It has been
proved in [5] that the more efficient routing algorithms route with a higher
priority the packets which have only one good direction to follow on the torus.
Remember that we assume that the packets try to follow a shortest path. In
an odd torus and a grid, packets may have one or two possible directions.
In this paper, packets are respectively denoted as type 1 and type 2 packets.
A type 1 packet has reached one coordinate of its destination while a type 2
packet must progress in two directions to reach its exit. Of course, at each step,
packets may change their types according to their distance to destination and
the issue of the deflection algorithm. Their deflection probabilities are denoted
as p1 and p2. We model the optimal routing algorithm described in [2].

The state of the tag packet is its distance vector to destination. As
with packets, states may be of type 1 or 2. Due to the symmetry of torus
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Fig. 1. A 2D torus of size 5

and traffic assumptions, we can aggregate states with equivalent vector of
distances: for instance (1, 2) and (2, 1). The state space of the model is
S =

{

x = (x1, x2)
∣

∣ 0 ≤ x2 ≤ x1 ≤ M
}

, where M =
⌊

N
2

⌋

. We will denote
by S∗ = S − {(0, 0)}.

Following [3] we can build the transition matrix using four rules to describe
the evolution of both types of packet when they are deflected or when they
succeed. Remember that the size is odd and take care of the boundary of the
torus. The behaviour of the boundary cases may be found in [3].

• A type 1 packet which is not deflected and which is at distance k is kept as a
type 1 as it progresses along only one direction. Its distance to destination
is therefore k − 1.

• A type 2 packet which is deflected remains a type 2 packet. In general, the
deflection increases by one the distance to destination.

• A type 1 packet at distance k which is deflected has three possible direc-
tions. One direction leads to a type 1 packet (at distance k+1) and two
directions lead to a type 2 packet (at distance (k,1)).

• A type 2 packet at distance (m, k) which is not deflected decreases its
distance to (m, k − 1) or (m− 1, k). And according to its position and the
direction selected it may become a type 1 (if m − 1 = 0 or k − 1 = 0) or
stay a type 2 packet otherwise.

We obtain the following matrix for a 7 × 7 torus (with q1 = 1 − p1 and
q2 = 1− p2). The states are ordered according to their type (1 or 2) and then
according to the distance to destination.

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1
q1 p1/3 2p1/3

q1 p1/3 2p1/3
q1 p1/3 2p1/3

q2 p2

q/2 q2/2 p2/2 p2/2
q2/2 q2/2 p2/2 p2/2

q2 p2

q2/2 q2/2 p2/2 p2/2
q2 p2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Note that this matrix is not �st-monotone under this total order on the
state space. We will consider the classical product partial order �? on S:
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for x = (x1, x2), y = (y1, y2) ∈ S,

x �? y if xi ≤ yi, i = 1, 2.

We use an event based description of the chain. Suppose that the actual
position of the packet is x ∈ S∗. We will denote by d the direction that
corresponds to the first component. We distinguish the following events:

1. The packet is deflected in the direction d̄ that is opposite to d (event E1).
2. The packet is deflected in other direction than d̄ (event E2).
3. The packet is not deflected and it takes direction d (event E3).
4. Only for type 2 states: the packet is not deflected and it takes the other

direction than d (event E4).

Remark that, for type 1 states, event E2 is in fact the aggregated version
of events corresponding to two different remaining deflection directions. How-
ever, due to the symmetry of torus, both events induce the same transition
(x1, 0) → (x1, 1). The probabilities of events are different for type 1 (x2 = 0)
and type 2 states (x2 > 0) and are given in Table 1.

Type of state P (E1) P (E2) P (E3) P (E4)

Type 1 (x2 = 0) p1

3

2p1

3
q1 −

Type 2 (x2 > 0) p2

2

p2

2

q2
2

q2
2

Table 1. Probabilities of events for type 1 and type 2 states.

It remains us to study the transitions induced by each event. Events E1 and
E4 can be simply described by functions f1 : S∗ → S and f4 : S − {x | x2 =
0} → S,

f1(x1, x2) =
(

min{M, x1 + 1}, x2

)

,

f4(x1, x2) = (x1, x2 − 1).

Remark that f1(M, x2) = (M, x2) is a consequence of the structure of an odd
torus. For events E2 and E3 we need to consider separately the case when
x1 = x2 = t because of aggregation of positions with distance vectors (t, t+1)
and (t + 1, t) into one state (t + 1, t). Thus, we can describe E2 and E3 by
functions f2, f3 : S∗ → S,

f2(x1, x2) =

{

(x1, min{M, x2 + 1}), x1 > x2

(min{M, t + 1}, t), x1 = x2 = t

=
(

max{x1, min{M, x2 + 1}}, min{x1, min{M, x2 + 1}}
)

,

f3(x1, x2) =

{

(x1 − 1, x2), x1 > x2

(t, t − 1), x1 = x2 = t

=
(

max{x1 − 1, x2}, min{x1 − 1, x2}
)

.

The following lemma follows easily from the fact that the operators min
and max are order preserving.
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Lemma 1. Functions f1, f2, f3, and f4 are increasing functions under the
product partial order �?.

Let us remark that functions fi correspond to events Ei, i = 1 . . . 4 and
not directly to different transitions. Indeed, in the case x1 = x2, we have
only two possible transitions as f1(x) = f2(x) = (min{M, x1 + 1}, x1) and
f3(x) = f4(x) = (x1, x1 − 1). We will now show that the transition matrix of
considered model is �st-monotone with respect to the partial order �? and
under the hypothesis that deflection probabilities p1 and p2 verify p1 ≤ p2.
This hypothesis is needed to assure the comparison of rows of the matrix
corresponding to two states x, y ∈ S∗ such that x �? y, x2 = 0 (type 1 state)
and y2 > 0 (type 2 state).

Theorem 2. Assume that the deflection probabilities p1 and p2 verify p1 ≤ p2.
Then the transition matrix of the end to end delay for a Deflection Routing
in an odd torus is �st-monotone with respect to the partial order �?.

Proof. Let x and y be two arbitrary states from S such that x �? y. We
need to show that Px,∗ �st Py,∗ (see Proposition 2). After Proposition 1 this
is equivalent to show that

∑

k∈U Px,k ≤
∑

k∈U Py,k for all increasing sets U .
Let us remark first that P(0,0),∗ �st Px,∗, ∀x ∈ S since (0, 0) is an absorbing
state and (0, 0) �? x, ∀x ∈ S. Suppose now that x 6= (0, 0). We distinguish
the following cases:

1. both x and y are type 1 states, i.e. x2 = y2 = 0,
2. both x and y are type 2 states, i.e. 0 < x2 ≤ y2,
3. x is type 1 and y type 2 state, i.e. 0 = x2 < y2.

The proof for the first two cases follows directly from Lemma 1 and the fact
that, for the two states of the same type, the probability of each event is
constant (Table 1). Indeed, if for i ∈ {1, . . . , 4}, fi(x) ∈ U for an increasing
set U , then fi(y) ≥ fi(x) since fi is increasing, so fi(y) ∈ U by definition of
an increasing set. Thus,

∑

k∈U Px,k ≤
∑

k∈U Py,k for all increasing sets U .
Let us consider now the third case. We have: f1(x) = (min{M, x1 + 1}, 0),

f2(x) = (x1, 1), and f3(x) = (x1 − 1, 0). We can notice that

f3(x) �? f1(x) and f3(x) �? f2(x). (1)

On the other hand, from Lemma 1 we have

fi(x) �? fi(y), ∀i ≤ 3. (2)

Additionally,
f2(x) �? f1(y), f3(x) �? f4(y). (3)

We have three different types of increasing sets U for which
∑

k∈U Px,k > 0:

• f3(x) ∈ U . Then (1) implies f1(x), f2(x) ∈ U . On the other hand, (2) and
(3) give fi(y) ∈ U, ∀i, so

∑

k∈U Px,k =
∑

k∈U Py,k = 1.



Deflection Routing on a Torus is Monotone 7

• f3(x) 6∈ U , f2(x) ∈ U . Then (2) and (3) imply f2(y), f1(y) ∈ U . Thus by
hypothesis p1 ≤ p2,

∑

k∈U Px,k ≤ p1 ≤ p2 ≤
∑

k∈U Py,k.
• f2(x), f3(x) 6∈ U , f1(x) ∈ U . Then (2) and hypothesis p1 ≤ p2 imply

∑

k∈U Px,k = p1

3 ≤ p2

2 ≤
∑

k∈U Py,k. Thus, Px,∗ �st Py,∗. ut

4 End to end delay

We will show that end to end delay is stochastically increasing in deflection
probability parameter vector p = (p1, p2).

Theorem 3. Let p = (p1, p2) and r = (r1, r2) be two deflection probability pa-
rameter vectors such that p1 ≤ r1 and p2 ≤ r2, and let {Xn}n≥0 and {Yn}n≥0

be respectively the two DTMCs describing Deflection Routing on a torus with
parameter vectors p and r. If X0 �st Y0, and at least one of p1 ≤ p2 or r1 ≤ r2

holds, then {Xn}n≥0 �st {Yn}n≥0.

Proof. Let P and Q denote respectively transition matrices of chains {Xn}n≥0

and {Yn}n≥0. Theorem 2 and p1 ≤ p2 or r1 ≤ r2 imply that at least one
transition matrix, P or Q, is �st-monotone. It remains us to show that P �st

Q. Then {Xn}n≥0 �st {Yn}n≥0 follows from Theorem 1.
P(0,0),∗ �st Q(0,0),∗ is trivially verified. For an arbitrary state x ∈ S∗,

f3(x) ∈ U implies f1(x), f2(x) ∈ U , for each increasing set U . For type 2
states, additionally f4(x) ∈ U implies f1(x), f2(x) ∈ U , for each increasing set
U . Then from p1 ≤ r1, p2 ≤ r2, and Table 1 it follows that for each x ∈ S∗,
∑

k∈U Px,k ≤
∑

k∈U Qx,k for all increasing sets U . Thus, by Definition 3,
P �st Q. ut

Let us denote by TX and TY end to end delays for DTMCs {Xn}n≥0 and
{Yn}n≥0.

Corollary 1. Under the same hypothesis as in Theorem 3, TX �st TY (�st

is seen here as stochastic comparison under the usual total order on N0).

Proof. Theorem 3 implies Xn �st Yn, ∀n. In particular, for increasing set S∗,
we have P (Xn ∈ S∗) ≤ P (Yn ∈ S∗), ∀n. This gives P (TX ≤ n) = P (Xn =
(0, 0)) = 1 − P (Xn ∈ S∗) ≥ 1 − P (Yn ∈ S∗) = P (TY ≤ n), ∀n. Thus,
TX �st TY . ut

It is important to remark here that we prove an inequality on distribu-
tions of the end to end delay. This is much more useful than a comparison
of expectations. For instance we can derive very easily a bound on the tail
probability of the delay. Furthermore, we do not assume that the real model
is monotone. So we can use now the theorem with conservative estimation of
the deflection probabilities to obtain a bound on the end to end delay.

Even if the condition p1 ≤ p2 is not necessary for the real model of the
network, we now show briefly that it is true for saturation traffic when the link
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capacity is 1. We compute d1(i, j) and d2(i, j), the conditional probabilities of
deflection for type 1 and 2 packets knowing that i type 1 and j type 2 packets
are also competing, with independent arrivals (as in [3]).

Take care that the table of d1() and d2() given in [3] contains some ty-
pos. The corrected values are: d1(0, 3) = 0, d1(1, 2) = 1/8, d1(2, 1) = 11/48,
d1(3, 0) = 81/256, d2(0, 3) = 5/64, d2(1, 2) = 5/32, d2(2, 1) = 15/64, and
d2(3, 0) = 9/32.

The deflection probabilities p1 and p2 may be computed as a function of
the probability u1 that a link contains a type 1 packet. However, we can show
that if u1 < 0.68 then p1 < p2 under saturation traffic. Again, both real system
and bound are not required to be monotone. Only one is necessary and the
bounding matrix is proved to be monotone under the p1 ≤ p2 assumption. If
we are able to bound the deflection probabilities with two values which satisfy
the constraint, this is sufficient to bound end to end delay.

5 Conclusion

We showed that the transition matrix of a packet in an odd torus with De-
flection Routing is �st-monotone under the usual product partial order �?.
We then stated that end to end delay is stochastically increasing in deflection
parameter. With the help of large deviation tools, these results open paths to
compute bounds on the delay distribution. Bounds on the distribution delay
are much more useful than expectations. For instance, delay distribution may
permit to scale timers.
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