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Abstract

Stochastic bounds are a promising method to analyze
QoS requirements. Indeed it is sufficient to prove that a
bound of the real performance satisfies the guarantee. How-
ever, the time and space complexity issues are not well un-
derstood so far. We propose a new algorithm to derive a
strong stochastic bound of a Markov chain, using a ma-
trix pattern specifing the structural properties a bounding
matrix should comply with. Thus we can obtain a simpler
Markov chain bounding for which the numerical computa-
tion of the steady-state solution is easier.

1. Introduction

Despite considerable works (see for instance Stewart’s
book [16] and the recent LAA issue [9] devoted to this
subject), the numerical analysis of Markov chains is still
a very difficult problem when the state space is too large
or the eigenvalues badly distributed. Fortunately enough,
while modeling high speed networks, it is often sufficient to
satisfy the requirements for the Quality of Service (QoS) we
expect. Exact values of the performance indices are not nec-
essary in this case and bounding some reward functions is
often sufficient. Stochastic bounds are in general obtained
with sample path arguments and coupling theorems ap-
plied to models transformation (see [14] for an example on
Fair Queueing delays comparison based on sample-paths).
Here, we only consider Markov chains and algorithmic op-
erations on stochastic matrices. Indeed, in the last decade,
many algorithmic techniques have been designed to model
complex systems with large Markov chains (Stochastic Au-
tomata Network [15], Superposition of Stochastic Petri Nets
[2], Stochastic Process Algebra [7]). So there are now sev-
eral well-founded methods to model complex systems us-
ing Markov chains with large state space but these models
can still not be solved.

The key idea of our methodology is to design a new chain
such that the reward functions will be upper or lower bounds
of the exact reward functions. This new chain is a simplified

model of the former one to reduce the complexity of the nu-
merical analysis. These bounds are based on stochastic or-
derings applied to Markov processes (see Stoyan [12] and
other references therein).

The fundamental algorithm to obtain a strong stochastic
(”st”) bound was developped by Vincent [1]. But it has sev-
eral drawbacks: the bounding matrix may be reducible and
the time and space complexity for the storage and the nu-
merical resolution are not considered. Unfortunately they
can be very bad and even worse than the original problem.
Thus we present here a new algorithm based on a matrix
pattern to insure irreducibility, and control the storage and
the resolution.

The remaining of the paper is as follows: in section 2, we
introduce briefly ”st” bounds and Vincent’s algorithm. Sec-
tion 3 is devoted to the matrix pattern approach and in sec-
tion 4 we show two structures which can be represented by
patterns and which simplify the computation.

2. Strong Stochastic Bounds

For the sake of simplicity, we restrict ourselves to Dis-
crete Time Markov Chains (DTMC) with finite state space���������
	�	�	��
���

but continuous-time models can be con-
sidered after uniformization. In the following,

�
will denote

the size of matrix � and ����� � will refer to row � of � . First,
we give a brief overview on ”st” ordering for Markov chains
and we obtain a set of inequalities to imply bounds which
gives us the basic algorithm proposed by Vincent and Abu-
Amsha [1].

2.1. A brief overview

Following [12], we define the strong stochastic ordering
by the set of non-decreasing functions.

Definition 1 Let � and � be random variables taking val-
ues on a totally ordered space. Then � is said to be less
than � in the strong stochastic sense, that is, ���������
if and only if

�! "�# �%$'&)( �* "�# �+$'& for all non decreasing
functions

"
whenever the expectations exist.



Property 1 (Characterization for a finite state space.) If �
and � take values on

��� � � � � ��	�	
	 �
���
with � and � as

probability distribution vectors, then � � �'� � if and only
if ����	��
 � � (��
��	��
 � � for � � � � � �
	�	
	 �
� .

Important performance indices such as average popula-
tion, loss rates or tail probabilities are non decreasing func-
tions. Therefore, bounds on the distribution imply bounds
on these performance indices as well. It is known for a long
time that monotonicity [8] and comparability of the one step
transition probability matrices of time-homogeneous MCs
yield sufficient conditions for their stochastic comparison.
This is the fundamental result we use in our algorithms.
First let us define the st-comparability of the matrix and the
st-monotonicity.

Definition 2 Let � and � be two stochastic matri-
ces. � � �'��� if and only if ��� � � �)�'��� ��� � for all � .
Definition 3 Let � be a stochastic matrix, � is st-
monotone if and only if for all � , ��� � , we have
� ��� ���)�'��� � � �
Theorem 1 Let � #�� $ and � #�� $ be two DTMC and � and� be their respective stochastic matrices. Then � #�� $ � �'�
� #�� $ ��� ��� , if:� � # ��$ � �'� � # � $ ,� st-monotonicity of at least one of the matrices holds,� st-comparability of the matrices holds, i.e. � ���'��� 	
Thus, assuming that � is not monotone and in order to ob-
tain a strong upper bound monotone matrix � for � , the
previous theorem leads to the following set of inequalities
on elements of � :� � � 
���� � ��� 
 ( � � 
���� � � � 
 � � � �� � 
���� � � � 
 ( � � 
���� � �! �" � 
 � � � � (1)

2.2. Vincent’s Algorithm

It is possible to derive a set of equalities, instead of in-
equalities. These equalities provide, once they have been or-
dered (in increasing order for � and in decreasing order for �
in system (2)), a constructive way to design a stochastic ma-
trix which yields a stochastic bound.� �
�
��#� � " � 
 � �
�
��#� � " � 
 � � � ��
�
��#� � �$ �" � 
 ��%'&)( # �
�
��#� � ��� 
 � �
�
��#� � �! �" � 
 $ � � � � �

(2)
The following algorithm [1] constructs an st-monotone up-
per bounding DTMC � for a given DTMC � . For the sake
of simplicity, we use a full matrix representation for �
and � . The sparse matrix version is straightforward. Note
that due to the ordering of the indices, the summations� ��	�+* � ��,-" � � and � ��	�+*  �" � ��� � are already computed when
we need them. However, we let them appear as summations
to show the relations with inequalities (1).

Algorithm 1 Construction of a st-monotone up-
per bounding DTMC � :.0/21 35476#/21 3 ;
for i=2 to n do .�891 354;:=<?>A@9.B8�CD/21 3FE96G8�1 3IH ;
for j=n-1 to 1 do. /21 J 4K6 /21 J ;

for i=2 to n do.�891 JL4:=<?>A@ � 3 MBN J .�8�CD/21 M E � 3 MBN J 6O8�1 M H�P � 3 MBN JRQ�/ .�891 M ;
end

end

It may happen that matrix S # � $ computed by Algorithm�
is not irreducible, even if � is irreducible. Indeed due to

the subtraction operation in inner loops, some elements ofS # � $ may be zero even if the elements with the same in-
dices in � are positive. To fix this problem, a new algo-
rithm has been derived in [5] which tries not to delete tran-
sitions and to add subdiagonal entries. A necessary and suf-
ficient condition on � has been obtained to ensure that the
bound is irreducible.

However, this solution does not fix the storage problem.
Indeed, it may be possible that the bound has many more
positive elements than the matrix � and it may be even com-
pletely filled. It is easy to build a matrix � with T � positive
elements resulting in a completely filled bounding matrix.
Furthermore, the Algorithm

�
builds a matrix which is, in

general, as difficult as � to analyze.

3. Matrix Pattern Approach

We use the two sets of constraints of system (1) and add
some structural properties to simplify the storage and the
resolution of the bounding matrix.

3.1. Boolean pattern

Those additional constraints can be defined by a boolean
pattern U imposing the exact graph structure of the bound-
ing transition matrix.

Definition 4 A boolean pattern U for a matrix � is a
boolean matrix (i.e.

� ��� �
V � � ��� ��� � � � � ) of the same size
as � . A bounding matrix � complies with a boolean pat-
tern U for � if and only if it satisfies:

� � � � � � � � � ��� if and only if
� ��� � � � 	 (3)

The following algorithm constructs an st-monotone upper
bounding DTMC � compliant with a boolean pattern U for
a given DTMC � . If such a bounding does not exist, the al-
gorithm sends a message of non-compatibility of U and � .



Algorithm 2 Construction of the st-monotone upper
bounding DTMC compliant with a boolean pattern U :���������
	�� ;
for 
�� 	 to � do

last = -1;
for ����� to 	 do

if � 
�� 	 and ����� � then������� � �"!$# ����� �"!$# � � 3 MRN J&% 89C#/21 M � � 3 MBN J � 8�1 M ��'� 3J NDM Q+/ % 8�1 M � ;
else if � 
�� 	�� then

���
�(� � �"!$# � � 891 3 � % 8�CD/21 3 � ;
else if � �)��� � then������� � �"!$# ����� � 3 MBN J � /21 M ' � 3 MBN JRQ�/ % /21 M � ;
else
���
�(� � � /21 3 ;

switch
� 891 J do

case �% 8�1 J � � ;
if
������� � � then

if *,+.- � � � then % 891 / 02143 � % 8�1 / 0214365 ���
�(� ;
else STOP : non-compatible!;

case 	
last = j;
if
������� � � then % 891 J � ������� ;

else if � 3 MBN JRQ�/7% /21 M � 	 then% 8�1 J � �98:�;	9' � 3 MBN JRQ�/ % 891 M � ;
else STOP : non-compatible!;

end
end

end

3.2. Generalized pattern

We might not always want to impose such a strict struc-
ture of a bound. Moreover, it should be possible to use some
information on the transitions in the initial matrix � . See for
instance the contraints for the irreducibility of a bound [5].
We introduce other letters in the pattern alphabet in order to
increase the structure defining possibilities.

We call an alphabet a set of symbols with rules associ-
ated to each symbol. For instance, for the boolean pattern
the alphbet is < � � � ����� with the rules: = # � $(> � � � � � �@?� ��� � � ��A�= #
� $(> � ��� � � � ? � ��� � ��� 	
Definition 5 A pattern U for a matrix � is a matrix of the
same size as � which elements are the symbols from an al-
phabet set < . A bounding matrix � complies with a pat-
tern U for � if and only if it satisfies the rules associated to
each pattern element.

In the following we will use the alphabet set< � � � �����CB ��D �$E�� with the associated rules:

letter rule
0

� ��� � � �@? �
� � � � �
1

� ��� � � � ? �
� � � � �B
no additional constraints

s
� ��� � �FE"G � ��� � ���@? �
� � � � �

w
� � � � �HDIG � ��� � � �@? ����� � � � if possible

For example, the pattern U corresponding to the IMSUB
algorithm yielding an irreducible upper bound [5] is given

by

U ��� � �
JLK E if M 4ONFP K EP E if MRQ N2ES E elsewhere T (4)

To obtain an algorithm deriving an st-monotone upper
bounding DTMC compliant with a given pattern U for a
DTMC � , it is sufficient to add the case blocks correspond-
ing to a new letters

B �UE �
D
to the algorithm 2.

case V
last = j;% 891 J � ������� ;

case - �;W
last = j;
if
���
�(� � � then % 891 J � ������� ;

else % 891 J � � ;
if
� 891 J � � then

if � 3 MBN JRQ�/7% /21 M � 	 then% 891 J � �98:�;	X' � 3 MBN JRQ�/ % 891 M � ;
else if

� 891 J �Y- then STOP : non-compatible!;

We say that the transition matrix � of an DTMC and a
pattern U are compatible if and only if there exist at least
one st-monotone bounding DTMC which transition matrix
complies with the pattern U . It is possible to show that our
algorithm (with the alphabet described above) results by
such a bounding DTMC for each pattern U compatible with
a given DTMC.

We have checked our algorithm (sparse version imple-
mentation) using Single Input Pattern (see 4.1) against IM-
SUB Algorithm described in [5] on the exemple of the loss
rate in a RR queue with Pushout Algorithm presented in
[5]. The computation times are quite similar when the num-
ber of blocks is small.

Buffer Size Imsub Patt. SI Pattern IMSUB [5]
(4) 10 blocks 100 blocks

500 251502 12.8s 16.4s 77.8s 18.3s
1000 1003002 52.5s 66.5s 315.7s 72.9s

4. Examples of Pattern

In the following we illustrate this principle with two ma-
trix patterns associated to simple resolution methods: the
single-input macro chains and the stochastic complement.

4.1. Single Input Macro State Markov Chain

Feinberg and Chiu [3] have studied chains divided into
macro-states where the transition entering a macro-state
must go through exactly one node. This node is denoted as
the input node of the macro-state. They have developed an
algorithm to efficiently compute the steady-state distribu-
tion by decomposition. It consists of the resolution of the
macro-state in isolation and the analysis of the chain re-
duced to input nodes. Unlike ordinary lumpability, the as-
sumptions of the theorem are based on the graph of the tran-
sitions and do not take into account the real transition rates.



We assume that for every macro state, the input
state is the last state of the macro state. Then the pat-
tern for this structure has the following block form:� � ��� � / � /�� �	�
��� /���
�	/ � � �	�
��� ���

...
...

. . .
...� � / � ��� �	�
� � �
���� � � 8 J � �� � �	�	� � V

...
. . .

...
...� �	�	� � V
�� �

� � � � � ���� � � where � denotes the number of the macro-
states. There is no additional constraints on the structure
of the blocks � � corresponding to the transitions inside the
macro-state � , i.e. � � � ��� # � �
� $ � B � � � �
� . The blocks corre-
sponding to the transitions between the macro-states have
the non zero elements only in the last column.

This structure have been used by several authors even if
their proofs of comparison are usually based on sample-path
theorem [6, 13, 10].

4.2. Partition and stochastic complement

The stochastic complement was initially proposed by
Meyer in [11]. Here we propose a completely different idea
based on an easy resolution of the stochastic complement
due to Quessette [4]. Let us consider a block decomposition

of � : ��� �� � � , where � and ! are square matrices. We

know that "$#%! is not singular if � is not reducible [11].
We decompose & into two components &(' and &+" to ob-
tain the stochastic complement formulation for the steady-

state equation:

J*),+
- 4/.) +10 4 K) /�4 ) +
2 where 3 �54!# "6#7!!$ ,-" ,
= � "8#9�:#�3<; and = �?> 'A@B3 > " .

Following Quessette [4], we chose to partition the states
such that matrix ! is upper triangular. It should be clear that
this partition is not mandatory for the theory of stochastic
complement. However it simplifies the computation of 3 .

One possible pattern for this decomposition, imposing an
irreducible upper bound is:CED8�1 J 4 � K E if M 4ONDP K EF E elsewhere G CEH891 J 4 � K E if N�4 M 4 K EF E elsewhere GCEI891 J 4 J K E if N#4�J-/

and M 4�J + EF E elsewhere G CEK8�1 J 4
J K E if M 4 NML K E. E if MON N2EF E elsewhere T

5. Conclusions

Strong stochastic bounds are not limited to sample-path
proofs. It is now possible to compute bounds of the steady-
state distribution directly from the chain. This approach
may be specially useful for high speed networks modeling
where the performance requirements are thresholds. How-
ever, the knowledge of the model characteristics is essen-
tial to choose an adequate pattern and to obtain the bounds

of satisfying quality for the measurements of QoS. Gener-
alizations to other orderings or to computation of transient
measures are still important problems to analyse.
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