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1 Introduction

We are interested in bounding dependability measures like
point and steady-state availability and reliability of systems
modelled by very large Markov chains which are not numeri-
cally tractable. We suppose that the state space is divided into
two classes, UP (system is operational) and DOWN states.
The reliability at time t is defined as the probability that the
system has always been operational between 0 and t. The
point availability is the probability that the system is opera-
tional at time t, and the steady-state availability is the limit, if
it exists, of this probability.

The usual way to compute dependability measures of
continuous-time Markov chains (CTMC) is based on uni-
formization method. Thus we compute bounds on discrete-
time Markov chains (DTMC).

2 Algorithmic stochastic comparison approach

Our approach is based on stochastic comparison techniques
[5]. We use strong stochastic order (

�
st) which is defined

through comparison of expectations of increasing functions.
Thus this order can be used to compare increasing rewards
of two Markov models. The main result we use in our ap-
proach is the theorem on the comparison of two DTMC’s [5]:
if we have two DTMC’s X and Y which transitions matrices
and initial distributions are

�
st-comparable and at least one of

the transition matrices is
�

st -monotone, then we can compare
X and Y at each instant t and, if they exist, the steady-state
distributions are comparable too. Moreover, the

�
st compar-

ison and monotonicity can be characterized by linear alge-
braic constraints allowing thus an algorithmic approach. For
the transition matrix P of a given DTMC X , we compute a
bounding matrix Q such that P � st Q (relation 1) and the ma-
trix Q is � st-monotone (relation 2),

n

∑
k � j

Pi � k
� n

∑
k � j

Qi � k ��� i � j � (1)

n

∑
k � j

Qi � 1 � k
� n

∑
k � j

Qi � k ��� j �	� i 
 2 � (2)

In order to reduce the state-space size of the bounding chain,
we force matrix Q to be lumpable, i.e. such that, for a given
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partition Cl � l � L of the state space,

� l � L ��� j � L
n

∑
k � C j

Qi � k is constant � i � Cl � (3)

In [3] an algorithm computing a lumpable irreducible mono-
tone upper bounding Markov chain (LIMSUB algorithm) has
been developed. We extended this approach in two directions.

Bounding transient rewards: To our knowledge, the
algorithmic stochastic comparison approach has only been
used in steady-state analysis. Although the same theory
can be used to compute the bounds for both transient and
steady-state rewards, there are some points on which those
two problems differ and the algorithmic approach must be,
therefore, slightly modified. LIMSUB [3] algorithm includes
irreducibility constraints as they assure the existence of the
steady-state distribution of a bounding (finite and aperiodic)
Markov chain. More precisely, LIMSUB algorithm does
not allow to remove transitions in the upper triangle of the
stochastic matrix and it adds new entries into the sub diag-
onal. It is shown in [3] that these two constraints imply that
the bounding matrix is irreducible. When computing the tran-
sient bounds, we are not always interested in having an irre-
ducible bounding chain. Moreover, we might want to analyse
the original chains that are not necessarily irreducible. When
computing the reliability bounds, for instance, we take into
consideration the chain where all the DOWN states are ag-
gregated into one absorbing state. In that case, LIMSUB al-
gorithm cannot be used.

We have adapted the algorithm to compute the bounds of re-
ducible Markov chains. This new algorithm is called LMSUB
(Lumpable Monotone Stochastic Bound) and it is based only
on relations (1), (2) and (3). It uses a sparse matrix represen-
tation of P and Q and only three vectors are in memory. Un-
like LIMSUB, LMSUB does not use additional constraints to
insure irreducibility. Thus the new algorithm is much simpler.

Avoiding generation of the state space: We have also
developed a new algorithm that, using a high level formalism,
provides directly a stochastic matrix that is lumpable and

�
st-

larger, called LL algorithm [1]. Only the lumped matrix is
generated, thus we gain significantly both in terms of time
and storage complexity. Indeed, for some reliability models,
even the state space is too large to fit in memory. LL is based
on relations (1) and (3) and may depend on the high level
formalism used for the model specifications. Indeed, we do



for b � m downto 1 do
for j � last

�
b � downto f irst

�
b � do

for a � 1 to m do
for i � f irst

�
a � to last

�
a � do

sumqi � j � max
�
sumqi � 1 � j � ∑n

k � j pi � k � ;
if b � m and j � last

�
b � and i � f irst

�
a � then

sumqi � j � max
�
ra � b � 1 � sumqi � j � ;

end
end

end
for a � 1 to m do ra � b � sumqlast 	 a 
�� f irst 	 b 
 ;

end
Algorithm 1: LMSUB. P, Q and R denote respectively the
initial, lumpable and lumped matrix. sumqi � j � ∑n

k � j qi � k
with sumq � 1 � j � 0. We consider a partition into m macro
states. f irst  l � and last  l � denote the first and the last state
of a macro state. Only the lumped matrix R is actually com-
puted and stored.

not require at the first step to bound a monotone matrix. In
the second step, we use LMSUB to obtain a monotone upper
bound of the matrix given by LL.

3 Application on repairable systems

We illustrate our approach on the example of repairable mul-
ticomponent systems. The typical model consists of several
types of components and several units of each component
type. The units can fail and the failed units can be repaired.
The set of operational (UP) states of the system is defined by a
function on the state-space, usually through a minimal subset
of working components of each type.
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Figure 1: Repairable system example [4]

We have taken the example presented in [4] (Figure 1) and
applied our method to derive bounds for point and steady-
state availability and for reliability of that system, using the
same set of parameters considered in [2] for steady-state anal-
ysis. The numerical results for transient dependability mea-
sures (point availability and reliability) are given in Figure 2.
The lower bound for steady-state availability obtained by our
method is 0 � 999132158.

For more detailed description of the model we refer the reader
to [4], [2]. More details on the total ordering used on the
state-space and practical remarks on LL algorithm (used to
derive point availability bounds) can be found in [1]. Let us
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Figure 2: Lower bounds for point availability and reliability for the
system on Figure 1

just remark that the original model for analysed system has
only 36 components of 10 different types, yet the state-space
is of order of 9 � 1010 (more than 1012 transitions), which
completely excludes direct generation of the state-space. The
intermediate model, generated by means of LL algorithm, has
only 1312235 states (all the UP states have been generated).

Although steady-state availability bounds seem to be less ac-
curate than those obtained through former methods [4], [2]
(both perform only steady-state analysis), we can handle a
larger class of problems as we use no special properties on
the transition graph structure.
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