
Acceleration of Perfect Sampling by Skipping Events

Furcy Pin
INRIA / ENS
Paris, France

furcy.pin@ens.fr

Ana Bušić
INRIA / ENS
Paris, France

ana.busic@inria.fr

Bruno Gaujal
INRIA Grenoble -

Rhône-Alpes
Montbonnot, France

bruno.gaujal@inria.fr

ABSTRACT
This paper presents a new method to speed up perfect sam-
pling of Markov chains by skipping passive events during
the simulation. We show that this can be done without al-
tering the distribution of the samples. This technique is
particularly efficient for the simulation of Markov chains
with different time scales such as queueing networks where
certain servers are much faster than others. In such cases,
the coupling time of the Markov chain can be arbitrarily
large while the runtime of the skipping algorithm remains
bounded. This is further illustrated by several experiments
that also show the role played by the entropy of the system
in the performance of our algorithm.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and model-
ing; G.3 [Probability and Statistics]: Markov processes

Keywords
Markov chains, perfect sampling, queueing networks.

1. INTRODUCTION
The perfect sampling algorithm for finite Markov chains was
introduced in the famed work of Propp and Wilson [10]. The
complexity of the algorithm is in O(Sτ) where S is the size
of state space and τ is the expected coupling time.

It has been shown that the number of simulated trajectories,
S, can be reduced when the Markov chain is monotone by
using extreme states [10] or by using bounding chains when
the chain is not monotone [7, 3].

As for the coupling time, it may seem that it is impossi-
ble to improve on it while keeping the same events giving
the construction of the Markov chain. The coupling time is
usually difficult to estimate and even to bound, except for
some specific Markov chains [5, 1, 8]. Furthermore, there
are cases where the coupling time is known to be extremely

large, for example when the spectral gap (one minus the size
of the second largest eigenvalue of the transition matrix of
the chain) is close to zero. This is typically the case when the
Markov chain has different time scales: Certain transition
events have a very large probability to occur while others
have a very small probability. Such chains are very common
in queueing theory (where the rate of certain transitions are
much higher than the rest) or in social networks (where the
connection graph is made of tightly connected components
with loose connections between them [6, 9].

In this paper we present a new algorithm for perfect sam-
pling whose complexity is not linear in the coupling time τ
but can be arbitrarily smaller. It is based on a partial gen-
eration of the sequence of events leading to coalescence. Up
to our knowledge, this is the first simulation algorithm of
general Markov chains whose runtime can remain bounded
while the coupling time of the chain goes to infinity.

Let us now present the main idea of this algorithm more
precisely. Perfect simulation as introduced by Propp and
Wilson uses a coupling from the past technique. A se-
quence un−1 . . . u1 of random innovations (or events) is gen-
erated backwards: The new random event un is added at
the head of the sequence, that becomes unun−1 . . . u1. This
sequence is used to simulate a Markov chain (over a fi-
nite state space S): Starting from an initial state X, one
can generate a new state obtained by letting the event un
act on the state, denoted X · un. By applying the events
of the sequence one by one, one gets X · unun−1 . . . u1 :=
(((X · un) · un−1) · . . . · u1). The main property of this con-
struction is that if the random innovations are generated ac-
cording to the transition probabilities of the Markov chain
and if the final state X · unun−1 . . . u1 is the same for all
states X ∈ S, then this final state is distributed according
to the stationary distribution of the Markov chain. This
property can be translated into an algorithm for generating
samples of the stationary distribution of the Markov chain:
For each sequence of events generated according to the tran-
sition probabilities the algorithm computes a sample of the
stationary distribution.

As mentioned before, in our new perfect sampling algorithm,
the sequence of random events is not generated beforehand
but only partially at each iteration of the algorithm. We will
show that our partial generation does not introduce a bias
on the distribution and that our approach can be very use-
ful is certain cases. Indeed, some events may have no effect

on the current trajectory. Such passive events, instead of
being generated, could simply be skipped. When they occur
very often, this leads to a clear gain of memory and com-
puting time. We provide examples where this new algorithm
yields a major improvement in the time and memory needed
to generate one sample. We give now one simple example,
which will be used throughout the paper, to illustrate the
motivations of our work.

Example 1. Consider two queues in tandem, Q1 and Q2,
of capacity C = 20 each, with exponential service times of
parameters µ1 = µ2 = 10 and receiving customers with a
Poisson arrival process with rate λ. Arriving customers join
the first queue Q1, unless it is full in which case they are
lost. After being served in Q1 in a FIFO manner, they go
in Q2 unless it is full, in which case they are lost. When a
client in Q2 is served, it leaves the system. The state of the
system is given by the number of customers in each queue.
In this Markov chain, there are three types of events: arrival
of customers, service in the first queue (implying a transfer
in the second queue), and service in the second queue.

An arrival in Q1 will have no effect on the system when the
queue Q1 is full, since the arriving client will be lost. Thus,
when λ is much larger than µ1 and µ2, Q1 will be full most
of the time and all the very frequent arrivals will have no
effect on the system. One would thus want to ignore these
events. Each time Server 1 will execute a service, the next
arrival will have an effect on the system again, thus it will
be important to ignore events only when they are passive.

Notice that the spectral gap of the transition matrix goes
to zero when λ goes to infinity, so that the coupling time
also goes to infinity. This is an example where, even if the
coupling time goes to infinity, the perfect sampling time will
remain bounded using our skipping technique.

The paper is organized as follows. In Section 2 we introduce
the notion of a Markov automaton, providing the framework
for both the event description of the evolution of a Markov
chain and the use of regular language notation. Then, in
Section 3 we introduce the idea of event skipping, Section
4 gives a quick reminder of the Envelope Perfect Sampling
Algorithm (EPSA) [3], which implements Perfect Sampling
by coupling from the past using bounding intervals for cou-
pling detection. In Section 5, we modify this algorithm to
apply the event skipping idea to it, and we show its correct-
ness. In the last part we show its efficiency through several
experiments.

2. DEFINITIONS AND NOTATIONS
Here is a short introduction to several standard notions,
along with some others specific to our work. The partial
generation of the sequence of events will be facilitated by
seeing this sequence as a word and by using regular expres-
sions. A discrete event description of a Markov chain can be
formally defined as a Markov automaton. This also allows
for a more compact notation for bounding interval chains,
used for coalescence detection in perfect sampling.

2.1 Notations on Words
An alphabet A is a set of letters. For example A = {a, b, c,
. . . , y, z} is the Latin alphabet. A word is a sequence of let-
ters, for example spaghetti is a word on the Latin alphabet.
We denote by A∗ the set of all finite words on the alphabet
A, including the empty word ε. We denote by Aω the set of
all infinite words on A.

Words can be naturally concatenated. For instance the
concatenation of the words east and wood gives the word
eastwood.

A word x is said to be a factor of the word u ∈ A∗ if u can
be written u = vxw where v ∈ A∗ and w ∈ A∗. For any
i ≤ j, we denote by ui→j := uiui+1 . . . uj , and for i > j we
define ui→j := uiui−1 . . . uj .

A word x is a prefix of the word u in A∗ if u can be written
u = xv with v ∈ A∗ For instance, the prefixes of saloon are
{s, sa, sal, salo, saloo, saloon}.

Finally, we say that u is a subword of v if the sequence of
letters in u appear in that order inside the word v. For
instance the word leaf is a subword of leevancleef but not
a subword of vancleef .

2.2 Regular Expressions
Regular expressions give us a convenient way to write some
words or set of words (called regular languages).

Definition 1. Regular languages on an alphabet A are in-
ductively defined as follows:

• ∅ (the empty language) is regular.

• ε (i.e. the language {ε}) is regular.

• For all letter a ∈ A, the language {a} is regular.

• If e and e′ are regular languages, then

– (e + e′) := e ∪ e′ the union of the two languages
is regular.

– (ee′) := {uu′ | u ∈ e, u′ ∈ e′} the concatenation
of the two languages is regular.

– Let ek denote the concatenation of the language
e with itself k times: ek := {u1 . . . uk | u1 ∈
e, . . . , uk ∈ e}. Then ek is regular for all k.

– Let e∗ denote the concatenation of the language
e with itself any number of times: e∗ :=

S
k≥0 e

k.

Then e∗ is also regular.

We will also identify any set of letters B ⊂ A with the
regular language {b ∈ B}.

2.3 Markov Automaton
It is well known that a Discrete Time Homogeneous Markov
Chain (simply Markov chain in the rest of the paper) on
a finite state space S can be generated using a represen-
tation with discrete events. Such a representation can be

interpreted as the transition of an automaton on a finite
alphabet A with the same state space S, and without any
initial nor final state (only the transitions are important).
Given the adequate probability distribution on the letters on
A, drawing a discrete event can be seen as drawing a letter
from A. More formally, we introduce a new notion called
Markov Automaton in the following, which is an automaton
without any initial or final states on an alphabet equipped
with a probability distribution.

Definition 2. A Markov Automaton is a tuple (S, A,D, ·)
where S is the set of states of the automaton, A is an alpha-
bet, D is a probability distribution on that alphabet and ·
is a right action by the letters of A on the states in S and
is called the transition function:

· : S ×A→ S,
(x, a) 7→ x · a.

Equivalently, this action can be most naturally defined as
(or extended to) a right semigroup action by A∗ on S.

· : S ×A∗ → S,
(x, u) 7→ x · u := x · u1 · u2 · . . . · un

where u = u1 . . . un.

Any Markov automatonM := (S, A,D, ·) naturally induces
a Markov chain with the following construction:

Let (u1, . . . , un, . . .) be an infinite sequence of random let-
ters of A i.i.d. distributed according to D. More conve-
niently for the rest of the paper, we will directly consider
the infinite random word u = u1 . . . un . . . in Aω and say
abusively that it is distributed according to D.

Then for any x0 ∈ S, the random process (Xn := x0 ·
u1→n)n∈N is a Markov chain with initial state x0 and with
probability transition matrix P given by

for all x, y in S, P (x, y) =
X
a∈A
x·a=y

D(a). (1)

We will say that the Markov chain (Xn) is generated by
the Markov automaton A. Conversely, for any probability
transition matrix P on a finite space state S, it is easy to see
that there exists a Markov automaton A = (S, A,D, ·) such
that (1) holds, i.e. such that A generates a Markov chain
on S with transition matrix P , but that automaton is not
unique in general.

We also introduce the notion of synchronizing words of an
automaton, which is well known in automata theory. Infor-
mally, a synchronizing word is a word that sends all states
of the automaton to the same state.

Definition 3. Let A = (S, A,D, ·) be a Markov automa-
ton. A word u ∈ A∗ is synchronizing for the automaton A
(or u synchronizes A) if the set {x ·u | x ∈ S} is a singleton.

It is easy to see that if any word u has a factor which is
synchronizing, then u is synchronizing as well.

One of the interests of Markov automatons, while the classi-
cal transition function representation (with ϕ(x, a) instead
of x·a) may have sufficed, is the convenience of the notations
used in automata theory. Firstly the right action notation
allows us to simply denote by x·ab what we should have writ-
ten ϕ(ϕ(x, a), b), which would become dreadful with more
letters. Secondly the simplicity of notations brought by reg-
ular expressions will prove to be very handy in the following.

Example 2. We continue Example 1. This queueing sys-
tem can be modeled using the Markov automaton A =
(S, A,D, ·) with:

• S = [0, C]× [0, C] where [0, C] = {0, 1, . . . , C}

• A = {a, b, c} where a corresponds to an arrival in the
system, b to a service by Q1, and c to a service by Q2.

• D is given by: D(a) = λ/Σ, D(b) = µ1/Σ and D(c) =
µ2/Σ = D(b), where Σ = λ+ µ1 + µ2.

• · is given by : for any x = (x1, x2) ∈ S

x · a = ((x1 + 1) ∧ C, x2)

x · b =

(
(x1 − 1, x2 + 1 ∧ C) if x1 > 0,

(x1, x2) else

x · c = (x1, (x2 − 1) ∨ 0)

It is straightforward to verify that the Markov chain gener-
ated by this automaton will simulate the considered queue-
ing system in discrete time.

2.4 Grand Coupling
Markov automata have a double interest. First, many sys-
tems can be modeled with discrete events (e.g. queueing
networks), and induce naturally a representation of Markov
chains with Markov automata. Second, and this is the main
interest for us here, an Markov automaton also generates
naturally a grand coupling of Markov chains.

Definition 4. Given a Markov chain M with finite space
state S and transition matrix P , a grand coupling of that
Markov chain is a family of random processes {(Xn(x))n≥0 |
x ∈ S} such that each (Xn(x))n≥0 is a Markov chain on S
with transition matrix P starting from x (i.e. X0(x) = x).

We say that the grand coupling has coalesced at time t if
all the processes (Xn(x)) are in the same state at time t, or
equivalently if the set {Xt(x)|x ∈ S} is a singleton.

Given a Markov automaton A = (S, A,D, ·) and an infinite
random word u distributed according to D, the family of
random processes {(Xn(x)) := x · u1→n)n∈N) | x ∈ S} is
a grand coupling. By construction, a grand coupling given
by a Markov automaton always has a property that when a
coalescence occurs, the chains stay together from that point
on. It is important to notice that this grand coupling has
coalesced at time t if and only if the random word u1→t
drawn is a synchronizing word of the automaton A.

2.5 Bounding Interval Chains
We assume now that the space state S has a lattice order �.
This can be done with no loss of generality by using the
Dedekind-MacNeille completion [4] of the state space. We
introduce the following notions.

Definition 5. A lattice interval (or simply interval) is a
set of the form [m,M] := {x ∈ S | m � x � M} for
two given states m,M in S. Notice that this interval is
nonempty if and only if m �M . We denote by I the set of
all nonempty intervals on S.

Definition 6. Given a grand coupling {(Xn(x))n≥0 | x ∈
S}, we will call bounding interval chain of that grand cou-
pling any Markov chain ([mn,Mn])n≥0 of nonempty intervals
of S such that for all x in S and all n ≥ 0, Xn(x) ∈ [mn,Mn].

In particular, for any bounding interval chain (mn,Mn)n≥0,
we have [m0,M0] = [⊥,>] = S, where ⊥ := inf S and > :=
supS.

In the rest of the paper, we assume that we can construct an
action � by A on I verifying the two following properties:

(P1) For all interval [m,M], all state x ∈ [m,M] and all
letter a, we have x · a ∈ [m,M]� a.

(P2) If [m,M] is an interval, a is a letter and if we denote
[m′,M ′] := [m,M]�a, then m = M implies m′ = M ′.

Thus, the Markov chain ([mn,Mn])n∈N, starting from the
whole space [m0,M0] = [⊥,>] = S, and generated from
some infinite random word u ∈ Aω as [mn,Mn] = [⊥,>] �
u1→n is a bounding interval chain of the grand coupling
{(Xn(x) := x · u1→n)n∈N) | x ∈ S} generated by A with the
same random word u.

We show in [2] how to construct and compute efficiently such
an action � for a specific type of events which include the
ones seen in the example of this paper. We will not give
further details about this here.

Bounding interval chains were first introduced in [2]. They
can be used to detect when a grand coupling has coalesced
without having to compute each Markov chain of the grand
coupling. This can be used among other things to perform
perfect sampling using coupling from the past as shown in
Section 4.2.

3. EVENT SKIPPING
Here, we introduce the concept of event skipping for the
forward simulation of one Markov chain. We first give an
informal presentation of the skipping method and then state
the algorithm.

3.1 Informal Presentation
Let us consider a Markov automaton A = (S, A,D, ·), gener-
ating a Markov chain (Xn = x0 ·u1→n)n∈N from the random
word u.

One can compute Xn inductively by generating the random
letters of u = u1 . . . un . . . one by one and updating Xn+1 =
Xn · un+1.

Now, let us assume u is of the form u = vakw with v ∈ A∗,
a ∈ A and w ∈ Aω, such that the state y := x0 ·v is invariant
by a: y · a = y. In that case, and when k is large, one might
want to avoid unnecessary computations of y · a (k times),
and even avoid drawing these k letters.

This can be done in the following manner. Let us say we
have already generated the word v and computed y = x0 · v.
We then draw a new letter according to D which happens to
be an a, and by computing y · a notice that is is equal to y.
All the consecutive a’s we are going to draw will be passive,
so we can directly draw the next non-a letter coming in the
word with the probability Da given by

∀b ∈ A, Da(b) = PD(X = b | X 6= a)

= D(b)/(1−D(a)).

where X is a random letter of A with distribution D.

The word u is then of the form u = vakw where k is an
unknown (and unused) random variable and w is an infinite
random word, not drawn yet. Since we know that x0 · va =
x0 · v = y, we have already computed x0 · vak = y for free.

Now, assume w is of the form w = bw′ for some letter b. We
consider two cases:

If y = x0 · vak is not invariant by b: z := y · b 6= y, then
we attained a new state z and we can draw a’s again since
we do not know if z is invariant by a or not. Thus the next
letter drawn will be drawn according to D.

On the other hand, if y is invariant by b: y · b = y, we can
apply the same reasoning to skip the longest sequence of
b which is prefix of w′. But since we also know that y is
invariant by both a and b, we can skip the longest prefix of
w′ in (a+ b)∗.

Let us assume now that w′ is of the form v′cw′′ where v′ is
in (a+b)∗, i.e. v contains only a and b’s, c is a letter distinct
from a and b, and w′′ is an infinite word not generated yet.

Since we know that y · a = y · b = y, we have y · v′ = y,
and thus we only need to draw that letter c, which we can
obtain by drawing the next non-a and non-b coming in our
word with probability D{a,b} given by

∀c ∈ A, D{a,b}(c) = PD(X = c | X 6= a,X 6= b)

= D(c)/(1−D(a)−D(b)).

If our state y is also invariant by c, we continue the same
scheme by deactivating the letter c and drawing the next
non-a, b, c letter. If y is not invariant by c, then we reactivate
the letters a and b and continue by drawing all the letters
with D.

3.2 Algorithm
We derive this into an algorithm for forward simulation of a
Markov chain (Xn). We will need the following notations:

Definition 7. Given a Markov automaton A = (S, A,D, ·)
and an alphabet B ⊂ A, we denote by DB the probability
distribution of a random letter of A with distribution D
conditionally to the fact that it is not in B. Thus for any
letter a ∈ A ,

DB(a) =

(
0 if a ∈ B
D(a)/

`
1−

P
b∈B D(b)

´
if a ∈ A \B

The algorithm consists in updating a disabling alphabet B
and draw letters with the distribution DB . We start with
B initially empty and X = x0 the initial state of the chain.
We then use the following iteration as long as we want to
simulate our Markov chain:

• Draw a random letter a in A with distribution DB :

– if X · a = X, then B := B ∪ {a}
– else, X := X · a and B := ∅.

If at some point we have B = A, it means that the state x
reached is invariant by all events, and is thus an absorbing
state. From now on, we will only consider ergodic Markov
chains.

We will now apply the same method to perfect sampling of
Markov chains using coupling from the past.

4. PERFECT SAMPLING
Consider an ergodic Markov chainM on a finite state space
S, with transition matrix P and stationary distribution π.
Perfect sampling is a method to draw in finite time random
sample exactly distributed according to the stationary dis-
tribution π. This section gives a brief introduction to the
perfect sampling algorithm proposed by Propp and Wilson
[10] and its extensions using bounding interval chains [3, 2].

4.1 Coupling from the Past
Take A = (S, A,D, ·) a Markov automaton generating M,
and take an infinite random word u = u1 . . . un

We assume that the automaton has a synchronizing word,
i.e. there exists a word v = v1 . . . vn such that the set {x ·v |
x ∈ S} is a singleton. Then, almost surely, ev := vn . . . v1
is a factor of u (by the infinite monkey theorem), and thus
almost surely, there exists a N ∈ N such that uN→1 is syn-
chronizing.

We define τ := min{n | un→1 is synchronizing} the back-
ward coupling time of the Markov automaton. It is easy to
see (from the infinite monkey theorem again) that E(τ) <
∞. Then, since uτ→1 is synchronizing, the random variable
Yτ := x · uτ→1 does not depend on x.

Theorem 1 (Propp, Wilson [10]). The random vari-
able Yτ is distributed with the stationary distribution π.

This theorem remains true if we replace the coupling time τ
by any stopping time τ ′ satisfying τ ′ > τ almost surely.

Ordered
States

u

M

Yτ ′

m

Trajectories
Bounding

Normal
Trajectories

0

Time

Figure 1: Bounding trajectories provide a perfect
sample when they meet at time 0.

4.2 Coupling with Bounding Interval Chains
When the size of the state space S is large, fully computing
the grand coupling of chains starting from each state of S
might be impossible to achieve in practice. For this reason,
we will use the bounding interval chains introduced earlier to
detect if the grand coupling has coalesced. This is illustrated
in Figure 1.

We keep the automaton A and random word u ∈ Aω in-
troduced previously, and we take an interval action � by A
on I verifying the two properties (P1) and (P2) as seen in
Section 2.5. We assume that there exist a word v such that
S � v is a singleton (we will say that v reduces S to a sin-
gleton). By (P2), any word having v as a factor reduce S to
a singleton. By (P1), we also know that any word reducing
S to a singleton synchronizes the automaton A. By taking
τ ′ = min{n | |S � un→1| = 1}, we thus have that τ ′ > τ
almost surely and E(τ ′) <∞. By Theorem 1, we have [3]:

Proposition 2. Yτ ′ := x · uτ ′→1 does not depend on x,
is almost surely equal to the unique element of {S �uτ ′→1},
and is distributed with the stationary distribution π.

The following Algorithm 1 draws in finite time a random
variable exactly distributed along the stationary distribu-
tion π. Informally, the algorithm can be described as fol-
lows:

0) Generate a random word u of length 1.

1) If S · u is not a singleton, then double the length of u
by adding a random prefix to it and redo 1), if S · u is
a singleton, return that element.

The reason why we double the length of the word u is that
computing S · u takes a time linear in the length of u,
thus adding just one letter to u and recomputing S · u each
time would make the computing time proportional to E(τ ′2),
while doubling the length of u makes it linear in E(τ ′). This
observation was already given in [10] for the monotone case.

Algorithm 1: Perfect Sampling with Bounding Intervals.

PSBI(A):
Data: A = (S, A,D, ·) a Markov automaton. Rand(A,D)

draws a random letter of A with distribution D.
Result: a state distributed along the stationary

distribution π.
begin

let u := ε
/* u is a word (we use a double chained list in

practice) */

let n := 1
while true do

let [m,M] := [⊥,>]
let v := ε
for i = 1 . . . dn/2e do

a := Rand(A,D) // Loop 1

v := va
[m,M] := [m,M]� a

for i = 1 . . . length(u) do
[m,M] := [m,M]� ui // Loop 2

if m = M then
return m

u := vu
n := 2n

end

We give Algorithm 1 in a (seemingly) unnecessarily com-
plicated way as this description will be useful to apply the
skipping method to accelerate this algorithm. Indeed, it will
be important to distinguish between the part where we dou-
ble the size of the word u by adding to it a new random
prefix v of same length (Loop 1), and the part where we
read the word u previously generated (Loop 2).

5. SKIPPING IN PERFECT SAMPLING
We now present our main contribution, Algorithm 2, which
improves Algorithm 1 by including the event skipping idea
introduced in Section 3.

For convenience in this section, we will say that an event a is
passive at the current time of the algorithm if [m,M]� a =
[m,M], and that it is active otherwise.

Algorithm 2 will be most effective for systems such as the
one in Example 1, where one or multiple events occur much
more often than others and are most of the time passive.
In that case, one might want to skip such passive events in
Loop 1 of Algorithm 1.

However, these skipped events can be passive for the current
interval [m,M] and become active in a further iteration of
the algorithm when we read them again in Loop 2. Indeed,
if [m′,M ′] ⊂ [m,M], then [m,M] � a = [m,M] does not
imply that [m′,M ′] � a = [m′,M ′]. Therefore, we need a
way to deactivate letters when they are passive in Loop 1
and reactivate them if they become active again in Loop 2.
Figure 2 shows an intuitive example where such precaution
has to be taken.

Ordered
States

M 1

m1

wu′v

u1

u2

ak

M 2

Yτ ′

m2
Time

Figure 2: In this illustration, we see that, in the
first iteration of the loop, the random word is of the
form u1 = u′akw, where a is a passive event for the
current trajectory [m1,M1] and can thus be skipped.
But since |S ·u1| 6= 1, the algorithm restarts and adds
a new prefix v to u1 (u2 = vu1), so that the ak fac-
tor may now become active for the new trajectory
[m2,M2].

5.1 Algorithm
The main idea of the method is to apply the skipping method
as presented above in Loop 1 and mark passive letters, then
use this marking to expand the skipped part of the word
when the letters become active.

Formally, if the event alphabet is A = {a, b, c, . . . }, we in-

troduce a marked alphabet bA := {ba,bb,bc, . . . }. We will now
code our generated word u with these two alphabets.

Theorem 3. Algorithm 2 generates almost surely a ran-
dom variable distributed along the stationary distribution π.

Algorithm 2 is decomposed into Loop 1 and Loop 2, given
respectively in Algorithms 3 and 4. The rest of the section is
devoted to explaining the two loops and proving Theorem 3.

5.1.1 LOOP1

In the first loop, given in Algorithm 3, we generate the new
random prefix v and compute the trajectory [⊥,>] � v, by
marking the passive letters and skipping the repetition of
these passive letters. For this we build an alphabet of dis-
abled letters (called B− in the algorithm) and draw letters
conditionally to not being in that disabling alphabet. Each
time we draw a passive letter a, we mark it (v := vba) and
add it to this disabling alphabet (B− := B− ∪ {a}), such
that the repetition of this passive letter will not be drawn
as long as the trajectory [m,M] has not moved.

Algorithm 2: Perfect Sampling with Bounding Intervals
and Skip.

PSBIS(A):
Data: A = (S, A,D, ·) a Markov automaton.
Result: We obtain almost surely a random variable

distributed along the stationary distribution π.
begin

let u = ε // u is a word on the alphabet A ∪ bA
let n = 1
while true do

let [m,M] := [⊥,>]
([m,M], v) := LOOP1([m,M], dn/2e)
([m,M], u) := LOOP2([m,M], u)
if m = M then

return m
u := vu
n := 2n

end

Algorithm 3: LOOP1.

LOOP1([m,M], k):
Data: [m,M] interval, k integer. Rand(A,D) draws a

random letter of A with distribution D.
Result: Returns ([mout,Mout], v), where the word v is of

length k, and [mout,Mout] = [m,M]� v. Passive
letters in v are marked (except the last letter) and
the repetitions of these passive letters are skipped.

begin
let B− := ∅ // B− is the disabling alphabet

let v := ε
for i = 1 . . . k do

let a = Rand(A,DB−)
if [m,M] = [m,M]� a & i 6= k then

// a is passive

B− := B− ∪ {a} ; v := vba
else

// a is active

B− := ∅ ; v := va
[m,M] := [m,M]� a

return ([m,M], v)
end

When an active letter is drawn, the trajectory moves again,
and we do not know anymore which letters are passive or
not. Thus the disabling alphabet has to be cleared.

Remark 1. We emphasize that the key ingredient to un-
derstand the algorithm (and in particular LOOP2) is that
when we draw a passive letter, it is marked and added to the
disabling alphabet (B− := B− ∪ {a} ; v := vba), and when
we draw an active one, it is not marked and the disabling
alphabet is cleared (B− := ∅ ; v := va).

For instance, if the output of LOOP1 is ([m,M], v) with v =

ubabbbcw, this means that letters a, b and c have been drawn
but are all passive on the interval [⊥,>] � u, thus for any
word v′ in u(a+ b+ c)∗w we have [⊥,>]� v′ = [⊥,>]�uw.

Algorithm 4: LOOP2.

LOOP2([m,M], u):

Data: [m,M] interval, u finite word on A ∪ bA.
Rand(A,D) draws a letter of A with distribution D.
head(u) and tail(u) give respectively the first letter of u
and all the other letters of u: If a = head(u) ∈ A and
w = tail(u) ∈ A∗, then u = aw.
Result: Returns ([mout,Mout], w) where [mout,Mout] =

[m,M]� w and where w is the word u where we
re-inserted the repetition of active letters which
were previously passive (some letters may remain
passive in w, including the re-inserted ones).

begin
let B+ := ∅ // B+ is the enabling alphabet

let w := ε // w is a word

while u 6= ε do
if head(u) ∈ A then

// head(u) is not marked

let a := head(u)
let [m,M] := [m,M]� a
B+ := ∅ ; w = wa

else
// head(u) is marked

let B− := ∅ // B− is a disabling alphabet

let ba := head(u)
let a be the corresponding non-marked letter
B+ := B+ ∪ {a}
if [m,M] = [m,M]� a then

// a is still passive

B− := B− ∪ {a} ; w := wba
else

// a is now active

B− := ∅ ; w := wa
[m,M] := [m,M]� a

while b := Rand(A,DB−) ∈ B+ do
if [m,M] = [m,M]� b then

// b is passive

B− := B− ∪ {b} ; w := wbb
else

// b is active

B− := ∅ ; w := wb
[m,M] := [m,M]� b

u := tail(u)
return ([m,M], w)

end

5.1.2 Reconstruction
Before explaining the second loop, we show informally how
we can, from the marked word u generated by LOOP1, recon-
struct the word we should have obtained without skipping
any letters. To better illustrate this, we will call true word
the word that we would have generated without skipping
any letter, and skipped word, the word obtained by marking
passive letters and skipping repetitions, such as in LOOP1.

Let us consider a skipped word u ∈ (A ∪ bA)∗. This word
can be decomposed as a sequence of words alternatively in

A∗ and in bA∗. We write

u = u1bu2u3 . . . bu2nu2n+1

where, for all k, u2k+1 ∈ A∗ are unmarked factors and bu2k ∈bA∗ are marked factors, with u1 = ε or u2n+1 = ε if necessary.
The corresponding true word must be of the form

v = u1v2u3 . . . v2nu2n+1,

with each v2k in A∗ having the unmarked version of bu2k as
a subword. By construction of u, we see that the marked

factors bui contain each letter of bA at most once. Moreover,
we can see by construction that if a marked factor is of the

form bu2k = babbbc . . . , then the corresponding v2k will be in
aa∗b(a + b)∗c(a + b + c)∗ . . . ; indeed in LOOP1, each time a
marked letter is added to the word u, it is also added to the
disabling alphabet, and thus repetitions of that letter are
skipped until the disabling alphabet is cleared, which hap-
pens when an unmarked letter is added to u. For simplicity,

we assume we have bu2k = babb. Thus, to draw v2k, we need
to reinsert random words in a∗ first and then in (a + b)∗

drawn with the distribution D. To obtain these we can sim-
ply draw words in A with the distribution D and keep the
longest prefix in a∗ and then in (a + b)∗. In other words if
we want to get a word in (a+ b)∗, we draw letters in A until
we obtain a non-a-nor-b letter. We can thus obtain v from
u with the following reconstruction algorithm:

Take B+ = ∅ an alphabet (called enabling alphabet) and
read the letters of u one by one:

• If the current letter is not marked, clear B+ and read
the next letter.

• If the current letter is marked, unmark it, add it to B+

and insert new letters after the current one by drawing
new letters in A according to D as long as they are in
B+. When a letter in A \ B+ is drawn, drop it and
read the next letter of u.

The enabling alphabet B+ is in fact a reproduction of the
disabling alphabet used to skip letters in the generation of u.

Lemma 4. The previous reconstruction algorithm gener-
ates a true word where each letter is i.i.d. with distribu-
tion D.

Proof. (sketch) We can see that the word finally ob-
tained will have the right distribution with the following
reasoning: Consider A and B (A two alphabets. Any
word u has a unique decomposition as u = vw with v ∈ B∗
its longest prefix in B∗ and w ∈ ε+(A\B)A∗. Thus we can
draw a word u ∈ A∗ distributed along D by drawing first
its longest prefix v ∈ B∗ and then w ∈ ε + (A \ B)A∗. We
can obtain v by drawing letters with distribution D one by
one and stop at the first letter not in B, dropping that last
letter. Assuming w 6= ε we can draw it by drawing a letter
in A conditionally to not being in B, and then draw letters
in A normally. By doing so we will obtain a word whose
letters are independent and identically distributed along D.
Also, v and w can be drawn completely independently, and
in particular we can draw w and then later draw v. This is
exactly what we do by skipping letters first and reinserting
them later.

5.1.3 LOOP2

The second loop is described in Algorithm 4. In this loop,
we read the previously generated word u, apply it to our tra-
jectory [m,M], and reinsert skipped events if they are active
again. However, the reconstruction of the true word may not
be complete since some reinserted events can become pas-
sive again so that they are skipped once more. The second
loop will thus combine the reconstruction idea described in
the previous paragraph and the skipping method of LOOP1

applied to the reinsertion of letters.

For this, we use two auxiliary alphabets. An enabling alpha-
bet B+ which will be used for the reconstruction, and will
reproduce the disabling alphabet used in past iterations of
LOOP1 (and LOOP2), and a new disabling alphabet B− which
will allow us to skip passive events during the re-insertions.

For instance, let us say that at some iteration of the loop, we
have u = aw with a ∈ A an unmarked letter, and w ∈ (A ∪bA)∗. Then we just read that letter and update the trajectory

[m,M] := [m,M]�a. If we have instead u = baw with ba ∈ bA
a marked letter (and a its corresponding unmarked letter),
then we add the letter a to the enabling alphabet B+, and
we compute [m,M]�a. Two distinct cases may then occur.

In the first case, we still have [m,M]� a = [m,M]. Then a
is still passive, we let it marked (w := wba) and we add it to
the disabling alphabet (B− := B− ∪ {a}).

In the other case, a is active again: [m,M]�a 6= [m,M]. In
that case we need to reinsert the skipped repetitions of a.
For this we start inserting new letters with distribution DB−
as long as they are in B+, and we stop at the first drawn
letter not in B+ (this is done in the while loop). However
some of these inserted letters might be passive as well and we
thus skip them. For this we use the same method as before:
If the new inserted letter is passive, we mark it and add it
to the disabling alphabet B−, if not we leave it unmarked
and clear the disabling set B−.

5.2 Implementation Issues
The goal of this section is to explain how the algorithms can
be efficiently implemented. It also gives some insights on the
overhead induced by the skipping method. The words used
in these algorithm can be represented using double-chained
lists.

The several subroutines used in both algorithms are detailed
below:

• The routines tail and head are easy to implement for
double-chained lists with a constant time complexity.

• The computation of the action of one event over an
interval: [m,M]� a is done using a different function
for each event. It has been shown in [2] that for most
events in queueing networks, this function can be com-
puted in O(log(S)) elementary operations.

• As for the random generation of events, Rand(A,DB−),
for each new set B− created by LOOP1 or LOOP2, an alias
table is constructed to generate samples under distri-
bution DB− (see [11] for the alias method for sampling

from an arbitrary discrete probability distribution with
a finite number of outcomes). The time needed to con-
struct the alias table is in O(|A|). The generation of
one event is done in constant time once the alias table
has been built. The alias tables are stored in a hash
table so that whenever a set B− has to be used again,
the alias does not need to be reconstructed.

6. NUMERICAL EXPERIMENTS
We first apply our algorithm to Example 1: two queues in
tandem with service rate µ1 = µ2 = 10 and arrival rate λ in
the first queue.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

C
ou

pl
in

g
T

im
e

(n
um

be
r

of
 e

ve
nt

s)

λ

Without Skip
With Skip

Figure 3: Average coupling time with and without
the skipping method on Example 1 (two queues in
tandem).

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

P
ro

ce
ss

in
g

T
im

e
(s

ec
on

ds
)

λ

Without Skip
With Skip

Figure 4: Average processing time with and without
the skipping method on Example 1 (two queues in
tandem).

Figure 3 shows a comparison of the number of events gener-
ated by the algorithm to get one sample, with and without
the skipping method, for λ increasing exponentially from 1
to 10000. As one can see, without the skipping method,
the log of the number of events is asymptotically linear in

log λ while with our method the number of events remains
bounded. The small pike at λ = 10 comes from the fact that
at this value the system is in a critical state, which makes
the coupling time longer.

Of course, the implementation of the skipping method has
a cost. In Figure 4 we compare the average computing time
of one sample with and without the skipping method. The
skipping method outperforms the classical one when λ is
larger than 20 times the service time, with the same asymp-
totic behavior as for the number of generated events.

Sensitivity to Entropy. Here is a guess on what makes the
skipping method efficient: Whenever an event occurs with
high probability, many of its occurrences should actually be
passive, so that the efficiency of the skipping method should
increase when the probabilities of some events are high. To
test this conjecture, we computed the ratio of the runtime
of the skipping method with the runtime without skipping
against the entropy of the event distribution. Indeed, the
entropy being a measure of the dispersion of the probabili-
ties, the worst case for the skipping method should be when
the entropy is maximal (all the probabilities are equal) and
the best case when the entropy goes to 0 (one probability
goes to 1).

JSQ

JSQ
10

1

1

3

4

6

7

8

5

2

C = 20

C = 20

C = 20

C = 20 10

10

1

1

C = 20

C = 20

µ2

C = 20

C = 20

µ3

µ4

µ1

Figure 5: Network used to generate Figure 6.

For that, we consider the queueing network given in Figure 5.
Servers 1 and 2 receive clients at rate 10 and 1, respectively.
The service rates µ1, µ2, µ3 and µ4 are kept as parameters
while the other services rates are fixed as indicated in the
figure. The clients served by Server 1 are sent to Server 5
or 6 according to a Join the Shortest Queue (JSQ) routing
policy, and similarly, between Server 2 and Servers 7 and 8.
All queue have capacity C = 20. To test the efficiency of our
skipping method, we will choose high values for µ1, µ2, µ3

and µ4, so that the system stays in the stable regime.

Table 1 gives the values taken by µ1, µ2, µ3 and µ4 up to
a permutation, and the corresponding partial entropy H =
−p1 log2 p1 − · · · − p4 log2 p4 with pi = µi/(µ1 + · · · + µ4).
Note that the sum µ1 + µ2 + µ3 + µ4 remains constant, so
that the partial entropy is always equal to the global entropy
up a multiplicative constant.

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5

T
im

e
ra

tio

Entropy

Time Ratio

Figure 6: Time ratio in number of event between the
algorithm with and without the skipping method,
for simulating the network displayed on Figure 5,
with the parameters given in Table 1.

Table 1: Several values of service rates and the cor-
responding entropy, used in Figure 6.

µ1 µ2 µ3 µ4 H
5500 5500 5500 5500 2
10000 10000 1000 1000 1.43
15000 5000 1000 1000 1.27
19000 1000 1000 1000 0.79
20000 1000 500 500 0.57
21400 200 200 200 0.36

Figure 6 gives the ratio (in terms of the number of events
generated) between the algorithm without and with the skip-
ping method against the entropy of the system. The points
with the same entropy correspond to all permutations of the
values of µ1, µ2, µ3 and µ4. This ratio is between 20 and 40
and increases when the entropy decreases (at least up to a
certain point).

7. CONCLUSION
In this paper, we show that perfect simulation of Markov
chains can benefit from an ad-hoc generation of the events
driving the simulation: We designed an algorithm where the
events are only generated when they have an effect on the
current set of trajectories being simulated. Furthermore,
we show that the simulation time remains bounded when
the rate of some events goes to infinity (implying that the
spectral gap of the Markov chain goes to 0).

The next step is to combine the skipping method with other
improvements of perfect simulation such as splitting [3] and
to improve its implementation by designing a compact and
efficient data structure for the partially generated sequence
of events.

8. REFERENCES
[1] J. Anselmi and B. Gaujal. Coupling time in markovian

queueing networks, 2010. Submitted.

[2] A. Busic, B. Gaujal, and F. Pin. Perfect sampling of

Markov chains with piecewise homogeneous events,
2010. Submitted. Preprint arXiv:1012.2910.

[3] A. Busic, B. Gaujal, and J.-M. Vincent. Perfect
simulation and non-monotone markovian systems. In
Valuetools’08, Athens, Grece, 2008.

[4] B. Davey and H. Priestley. Introduction to lattices and
orders. Cambridge University Press, 1991.

[5] J. Dopper, B. Gaujal, and J.-M. Vincent. Bounds for
the coupling time in queueing networks perfect
simulation. In Numerical Solutions for Markov Chains
(NSMC’06), pages 117–136, Charleston, 2006. The
2006 A.A. Markov Anniversary Meeting (MAM 2006).

[6] M. Granovetter. The Strength of Weak Ties. The
American Journal of Sociology, 78(6):1360–1380, 1973.

[7] M. Huber. Perfect sampling using bounding chains.
Ann. Appl. Probab., 14(2):734–753, 2004.

[8] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov
chains and mixing times. American Mathematical
Society, Providence, RI, 2009. With a chapter by
James G. Propp and David B. Wilson.

[9] A. Mislove, M. Marcon, K. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In Proc. of the IMC, 2007.

[10] J. G. Propp and D. B. Wilson. Exact sampling with
coupled Markov chains and applications to statistical
mechanics. Random Structures and Algorithms,
9(1-2):223–252, 1996.

[11] A. J. Walker. An efficient method for generating
discrete random variables with general distributions.
ACM Trans. Math. Softw., 3:253–256, September
1977.

