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Abstract—We develop a non-classic algebraic theory for the
purpose of investigating the convergence properties of dynamic
routing protocols. The algebraic theory can be regarded as a
generalization of shortest-path routing, where the new concept of
free cycle generalizes that of a positive-length cycle. A primary
result then states that routing protocols always converge, though
not necessarily onto optimal paths, in networks where all cycles
are free. Monotonicity and isotonicity are two algebraic properties
that strengthen convergence results. Monotonicity implies protocol
convergence in every network, and isotonicity assures convergence
onto optimal paths.

A great many applications arise as particular instances of the al-
gebraic theory. In intra-domain routing, we show that routing pro-
tocols can be made to converge to shortest and widest paths, for ex-
ample, but that the composite metric of Internet Gateway Routing
Protocol (IGRP) does not lead to optimal paths. The more inter-
esting applications, however, relate to inter-domain routing and its
Border Gateway Protocol (BGP), where the algebraic framework
provides a mathematical template for the specification, design, and
verification of routing policies. We formulate existing guidelines for
inter-domain routing in algebraic terms, propose new guidelines
contemplating backup relationships between domains, and derive
a sufficient condition for signaling correctness of internal-BGP.

Index Terms—Algebra, convergence, inter-domain routing,
intra-domain routing, routing protocols.

I. INTRODUCTION

NON-CLASSIC algebra has made headway in many
branches of electrical engineering and computer sci-

ence, from coding and cryptography to compiler design and
networking, unifying seemingly unrelated concepts and es-
tablishing fundamental results. Can it also shed light into
distributed network routing, especially as witnessed in the In-
ternet protocols? We answer affirmatively by defining suitable
algebraic structures and exploring their properties.

Packets in the Internet are forwarded by routers as a function
of their destinations, regardless of their origins. The forwarding
table at each router is kept up to date by dynamic routing proto-
cols that react to network failures and additions. Routing is ad-
ministratively divided in intra-domain and inter-domain, each
with its own set of goals and protocols. A domain is a collec-
tion of routers under the administrative and operational con-
trol of a single entity. Intra-domain routing is, in general, per-
formance-oriented: the entity administering the domain aims at
the best use of its internal network resources. Routing Informa-
tion Protocol (RIP) [1], [2], Interior Gateway Routing Protocol
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(IGRP) [3], and Open Shortest Path First (OSPF) [4], [5] are ex-
amples of intra-domain routing protocols, the first and second
of distance-vector type, and the third of link-state type [6]. By
contrast, inter-domain routing is policy-oriented: the various do-
mains forward packets toward the destinations as a function of
local policies that reflect the commercial relationships estab-
lished between them. The Border Gateway Protocol (BGP) [7],
[8] is currently the only protocol for inter-domain routing and
is a path-vector protocol [6].

The purpose of the algebraic theory herein presented is to es-
tablish fundamental results on the convergence of routing proto-
cols, and see them applied in a variety of different environments.
The convergence results are formulated in terms of path-vector
protocols, but they bear as well to distance-vector protocols.
Link-state protocols call for a more specific, less general, al-
gebraic theory, which is presented in [9].

An algebra for routing comprises a set of labels, a set of sig-
natures, and a set of weights. Each network link has a label and
each network path has a signature. There is an operation to ob-
tain the signature of a path from the labels of its constituent
links, and a function mapping signatures to weights. Ultimately,
each path will have a weight, and these weights are ordered such
that any set of paths with the same origin and destination can be
compared: the lower the weight of a path the more preferred
the path is. For example, if labels, signatures, and weights are
real numbers, composed by standard addition and ordered by
the standard less-than-or-equal relation, the resulting instance
of the algebra represents shortest-path routing. In light of this,
the algebraic theory can be seen as providing a generalization
of shortest-path routing.

A central concept is that of free cycle. In a free cycle, for any
collection of paths, each starting at a different node of the cycle,
at least one of these paths weighs less than the path that starts
at the same node, proceeds to the node’s neighbor around the
cycle, and continues with the path that starts at the neighbor.
Intuitively, if a cycle is free, then, given any destination in the
network, at least one of its nodes forwards packets to the des-
tination out of the cycle, instead of around the cycle, thus pre-
venting packets from being trapped in a loop. In the instance
of the algebra representing shortest-path routing, the free cycles
are exactly the positive-length cycles, so that the former cycles
generalize the latter. Moreover, the generalization carries over
to the role those cycles play on the convergence of routing pro-
tocols. In shortest-path routing, it is known that path-vector pro-
tocols converge if all network cycles have positive length [10].
For the broader algebraic theory, we show that path-vector pro-
tocols converge if all network cycles are free.

Some algebras are enriched by properties that intertwine
its elements, allowing for stronger statements about protocol
convergence to emerge, and permitting a computationally easy
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characterization of free cycles. Two such properties are consid-
ered here: monotonicity and isotonicity. Monotonicity implies
that the weight of a path does not decrease when prefixed by
a link. If the algebra is monotone, then every network can be
made free, thereby insuring convergence of path-vector pro-
tocols. Isotonicity implies that the order relationship between
the weights of any two paths with the same origin is preserved
when both are prefixed by the same link. If the algebra is iso-
tone, then the paths onto which path-vector protocols converge
are optimal.

Many applications can be drawn from the general theory. In
performance-oriented environments, we conclude, for example,
that path-vector protocols can be used to make packets travel
over shortest or widest paths, but that the composite metric of
IGRP does not make them travel over optimal paths [11]. The
more interesting applications of the algebraic framework, how-
ever, are to policy-oriented routing and BGP. We formulate the
guidelines of Gao and Rexford [12] in algebraic terms, both at
the domain level and at the router level, present new guidelines
that exploit backup relationships between Internet domains, and
provide a sufficient condition for signaling correctness of In-
ternal-BGP (IBGP) [13]–[17]. A couple of different applica-
tions can be found in our previous work [18].

We address related work in Section II. The algebra is pre-
sented in Section III. An example path-vector protocol is
described in Section IV. Freeness and its relation to protocol
convergence are examined in Section V. Monotonicity and
isotonicity are dissected in Sections VI and VII, respectively.
Applications of the algebra in performance-oriented envi-
ronments and policy-oriented environments are discussed in
Sections VIII and IX, respectively.

II. RELATED WORK

The monographs by Carré [19] and by Gondran and Minoux
[20], [21] cover great many algebraic structures and supporting
sequential algorithms to solve optimization problems defined
over networks, and they served as inspiration for our work.
However, the problems addressed here are different from
those enunciated in [19]–[21], leading to different algebraic
structures. On the one hand, we are interest in convergence
properties of routing protocols, which are distributed rather
than sequential algorithms. On the other hand, optimality of
the converged solutions is too strong a requirement in most
scenarios, notably in those that pertain to inter-domain routing.
Freeness and monotonicity are two properties that care for
the convergence of routing protocols without concern for the
optimality of the converged solutions.

Griffin et al. [22], [23] were the first to come up with a com-
prehensive model to study convergence of path-vector proto-
cols. In their model, each network node is explicitly assigned
an ordered set of permitted paths, through which a given des-
tination can be reached. A sufficient condition for convergence
is related to a property that intertwines the various sets of per-
mitted paths. The algebraic model presented here is positioned
at a higher level of abstraction, bringing two main advantages.
On the one hand, an algebra provides a semantic context for
the specification and design of routing strategies. On the other

hand, properties of an algebra and of networks labeled with its
elements relate directly to the convergence properties of path-
vector protocols, and they can typically be verified at low com-
putational complexity.

III. ALGEBRA FOR ROUTING

A. Basic Definitions

A network is modeled as a directed graph. The presence of
link in a network means that packets can flow from to ,
and that signaling routing messages may be sent in the opposite
direction, from to . Link has node for head and node

for tail; we say that node is an out-neighbor of node , and
that node is an in-neighbor of node .

A walk in a network is a sequence of nodes
such that is a network link for . Note
that we choose to index the nodes of a walk backward, from
last to first. A path is a walk where all nodes are distinct, and a
cycle is a walk where all nodes are distinct except for the first
and last. The order of a walk is the number of links it contains.
A path of order zero is called trivial. Given walks and
where the last node of is the first node of , we denote their
concatenation by . Specifically, if
and , with , then

. For the special case where
is a path with only two nodes, we say that is the extension
of walk to node , or that is the extension of walk
by link .

B. Algebra

An algebra for routing is an ordered septet
. It comprises:

• a set of weights ;
• a set of labels ;
• a set of signatures ;
• a total order on ;
• a binary operation that maps pairs with a label and a

signature into a signature;
• a function that maps signatures into weights;
• the special signature .

The relation on is defined such that if and
; the relation is defined such that if ; and the

relation is defined such that if and . Every
algebra for routing has at least the following two properties.

Absorption For all .
Maximality For all .
An algebra for routing is finite if is finite, in which case the

set of labels and the set of weights can also be taken finite. The
set of labels can be assumed finite because every label defines
a mapping from signatures to signatures via operation and
there are such distinct mappings;1 the set of weights can
be assumed finite because the range of is finite.

Although an algebra for routing has an existence of its own,
regardless of networks or routing protocols, its elements and
properties have been defined with these concepts in mind, to
ultimately arrive at conclusions related to the convergence of

1jSj denotes the cardinality of set S.
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routing protocols. The links of a network are assigned labels
from the set , with denoting the label of link .
The walks of the network are assigned signatures from the set

, with denoting the signature of walk . The signature
of walk is obtained from the labels of its constituent links
through composition with operation . If is the trivial path
consisting only of node , then is an intrinsic property of
node ; otherwise, can be written as , for some nodes

and and walk , and . The special
signature is reserved for unusable walks, which are those that
cannot be used for packet transport. Any walk with signature
different from is said to be usable. The absorption property
implies that the extension of an unusable walk by a link produces
another unusable walk. The mapping from signatures to the
totally ordered set of weights results in an assignment of
weights to walks, with the weight of walk being given by

. It thus establishes a ranking among walks. Informally,
the lower the weight of a walk, according to the order , the
“better.” The maximality property implies that any usable walk
is “better” than an unusable one. An optimal path from to
is a usable path from to of minimum weight, that is, whose
weight is less than or equal, according to the order , to that
of any walk from to . Hence, an optimal path is “better” or
“equally good” as any walk from to .

The most familiar example of an algebra for routing
is the one that leads to shortest-path routing, henceforth
called the shortest-path algebra. In this case, labels, signa-
tures, and weights represent lengths: labels are real num-
bers; signatures are indistinguishable from weights, being
real numbers adjoined with the special element ; the
signature of a walk is obtained by adding the labels of
its constituent links; and weights are compared with the
less-than-or-equal order. The shortest-path algebra is thus the
septet ,2 where
denotes the identity function on . Absorption follows
easily from , for all , and maximality
follows from , for all . An
optimal path in this algebra is a standard shortest path.

C. Optimal and Local-Optimal In-Trees

An in-tree is a subgraph of a network satisfying the following
three clauses:

• it has only one node, called the root, without out-
neighbors;

• all its other nodes have one and only one out-neighbor;
• there is an in-tree path from every one of its nodes to the

root.

An in-tree does not have to be spanning: not all network nodes
need to be part of it. Fig. 1 shows an in-tree rooted at node
0. In-trees are the graph structures one expects to find when
forwarding packets based only on their destination addresses,
as is usually the case in the Internet.

An optimal in-tree rooted at is an in-tree rooted at which,
in addition, satisfies the following two clauses:

2 denotes the set of real numbers, denotes the set of positive reals,
denotes the set of non-negative reals, denotes the set of non-negative inte-
gers, and denotes the set of positive integers.

Fig. 1. The dark links represent an in-tree rooted at node 0.

• node belongs to the in-tree if and only if there is a usable
walk in the network from to ;

• the in-tree path from to is optimal in the network.

A local-optimal in-tree rooted at is an in-tree rooted at
which, in addition, satisfies the following two clauses:

• node belongs to the in-tree if and only if it has an out-
neighbor in the in-tree such that is a usable walk
in the network, where is the in-tree path from to ;

• the in-tree path from to has weight less than or equal to
that of any walk in the network of the form with
an out-neighbor of in the in-tree and the in-tree path
from to .

In the shortest-path algebra, every local-optimal in-tree is op-
timal as well, but this assertion does not carry over to all other
algebras. In Sections VIII and IX, we will see examples of alge-
bras for which a local-optimal in-tree is not necessarily optimal.
The converse assertion always holds, however: whatever the al-
gebra, an optimal in-tree is also local-optimal.

IV. PATH-VECTOR PROTOCOL

A. Description

We consider a collection of nodes wanting to exchange
packets by making use of the links of a network. Links fail
and are added in the course of time, presumably at a rate much
lower than that of packet transmissions. A routing protocol is
a distributed algorithm that maintains the forwarding tables,
one per node, that collectively guide packets toward their
destinations. In destination-based packet forwarding, the for-
warding tables contain correspondences between destinations
and out-neighbors that should bring packets closer to those
destinations.

A path-vector protocol is a routing protocol whereby the basic
unit of signaling information kept at the nodes and exchanged
between them is either a pair of the form , with a us-
able path to a destination and its signature, or else the pair

, where stands for the absence of a path to reach
a destination. We call such pairs couplets. The terminology we
have used for paths carries over to couplets, so that, for instance,
the weight of couplet is , and we say that couplet

is usable if is not , in which case its origin and desti-
nation are those of path . Note that, because of the dynamics
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of the system, the couplets known by the nodes and being an-
nounced in the network at a given time may be stale. For ex-
ample, when a node receives a signaling routing message re-
porting usable couplet , path may no longer exist in
the network—some link of might have failed—or its signa-
ture may no longer be —some link of might have failed and
have been repaired with a different label.

Fixing a destination, at any given time each node knows of
a couplet to reach the destination by going through each one
of its out-neighbors. The node chooses one of those couplets
and installs in the forwarding table the correspondence between
the destination and the out-neighbor associated with the chosen
couplet. The chosen couplet is always one of minimum weight
from among those known by the node. If there is more than one
couplet of minimum weight, the node deterministically chooses
one of them. We assume that the relative preference given to
equal-weight couplets having the same origin and the same des-
tination totally orders those couplets. The strict partial order
on usable couplets captures these relative preferences:

if both couplets have the same origin and the same desti-
nation, and either weighs less than or they have the
same weight but is preferred to at their common
origin.

Algorithm 1 presents representative path-vector pro-
tocol code for node . This code is executed atomically
when node receives couplet from its out-neighbor

pertaining to destination node . The pair of variables
holds the couplet currently known by

node to reach node through out-neighbor , and the pair
of variables holds the couplet currently
chosen at node to reach node . Algorithm 1 states that
once node receives couplet , it first updates the pair of
variables to reflect a new couplet to
reach through . If is not a node of and dif-
fers from , then is a usable path to through , which
is stored in variable , with signature
being stored in variable . Otherwise, if either is
a node of or equals , then there is no usable
path to through is stored in , and is
stored in . After computing the new couplet to reach

through , node chooses the most preferred, minimum
weight couplet from among the couplets stored in the pairs of
variables , with an out-neighbor of

, and copies it to the pair of variables .
If the chosen couplet is usable, the associated out-neighbor
is installed in the forwarding table entry corresponding to
destination . Otherwise, if the chosen couplet is unusable,
destination is declared unreachable in the forwarding table.
Finally, the chosen couplet is advertised to all in-neighbors
of node but only if it has changed with the reception of the
signaling routing message. Similar code exists to deal with the
failure or addition of a link. We assume that for each link
in the network, the signaling routing messages in transit from
to are delivered at is the order sent by and they are only
lost if the link fails.

Some variations of Algorithm 1 can be found in implemen-
tations. For example, in the last two lines of code, if node
can determine that node is already part of path , or

that equals , it may send couplet
to in-neighbor , instead of couplet . Also,
the signature of a couplet may be omitted if it can be inferred
from the enumeration of the nodes that make up the path and the
label of the link joining the recipient to the sender of the cou-
plet. These variations do not alter our main conclusions.

B. Specification

The specification of every path-vector protocol contains at
least a liveness requirement and a basic safety requirement. The
liveness requirement imposes convergence of the protocol. That
is, if no more links fail or are added from a certain time onwards,
then there is a future instant of time when no more signaling
routing messages are to be found in transit in the network. The
basic safety requirement imposes that the paths onto which the
protocol has converged form in-trees, one for each destination.
Other safety requirements may be imposed depending on the
application. A typical requirement found in performance-ori-
ented routing is the optimality requirement, which states that
the in-trees onto which the protocol converges should be op-
timal in-trees.

V. NETWORK FREENESS AND PROTOCOL CONVERGENCE

In this section we introduce the concepts of free cycle and
free network and relate them to the convergence of path-vector
protocols. Define the function that maps walk and signature

into signature as follows: if is a trivial path, then
; otherwise, can be written as ,

for some nodes and and walk , and
. Therefore, would be the signature of walk

if were the intrinsic signature of the trivial path composed of
its last node alone. In particular, , with the
last node of .

Freeness Cycle , with , is
free if for every , with

, there is an index , such that
.

Freeness of a cycle implies that given any collection of walks,
each walk starting at a different node of the cycle, at least one
of these walks will weigh less than the walk that starts at the
same node, proceeds to this node’s out-neighbor in the cycle,
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Fig. 2. Cycle 0 5 4 3 2 1 0 and a particular assignment of signatures to its
nodes such that f(� ) � f(S(1 0; � )); f(� ) � f(S(2 1; � )); f(� ) �
f(S(3 2; � )); f(� ) � f(S(4 3; � )); f(� ) � f(S(5 4; � )), and
f(� ) � f(S(0 5; � )).

and then continues with the walk that starts at the out-neighbor.
Intuitively, if a cycle is free, then, given any destination in the
network, at least one of its nodes forward packets to the destina-
tion out of the cycle, instead of around the cycle, thus preventing
packets from being trapped in a loop. Fig. 2 shows a cycle and
an assignment of signatures for which the signatures assigned
to nodes 2 and 4 weigh less than the signatures obtained by
composing the labels of the links joining these nodes to their
out-neighbors with the signatures assigned to the out-neighbors.

Further insight into the concept of free cycle is obtained by
uncovering its meaning in the shortest-path algebra. As the next
proposition shows, a free cycle in the shortest-path algebra is ex-
actly a positive-length cycle, so that free cycles can be regarded
as a generalization of positive-length cycles.

Proposition 1: A cycle is free in the shortest-path algebra if
and only if it has positive length.

Proof: Recall that the shortest-path algebra is the ordered
septet . Suppose first
that cycle , with , is free, and let

and for
. From these definitions, we get

, for .
Therefore, for the cycle to be free, it must be the case that

. Developing this inequality
yields

meaning that cycle has positive length. To
prove the converse, suppose that cycle , with

, is not free. Then, there are ,
with , such that

for . Adding these inequalities yields

meaning that the length of cycle is not
positive.

We have implicitly used several properties of the real num-
bers in deducing the equivalence between free cycles and pos-
itive-length cycles, in the shortest-path algebra. In general, and
for the finite case, one would need to consider sig-
nature combinations to check whether or not a cycle of order
is free. This computational complexity is reduced if the algebra
has more structure as discussed further in Sections VI and VII.

For the shortest-path algebra, it is well-known that
path-vector protocols converge to shortest-paths if all cy-
cles in the network have positive-length [10]. A generalization
of this result is given in the following theorem, where we say
that a network is free if all its cycles are free.

Theorem 1: In a free network, the path-vector protocol con-
verges to local-optimal in-trees.

Theorem 1 is the conjunction of a liveness property and a
safety property. The liveness property corresponds to the live-
ness requirement; it states that if the network onto which the
system settles down is free, then the path-vector protocol con-
verges. The safety property tells us a bit more than the basic
safety requirement; it states not only that once the path-vector
protocol has converged it has converged onto in-trees, but also
that these in-trees are local-optimal. A semi-formal proof of
Theorem 1 supported on temporal logic [24], [25] is presented
in the Appendix.

VI. MONOTONICITY

Monotonicity An algebra for routing is monotone if
for all and .
In a network, monotonicity implies that the weight of a walk

does not decrease when it is extended by a new link. Checking
whether or not a finite algebra is monotone entails
binary operations and that same number of binary comparisons,
assuming that the signatures are sorted in increasing order of
weights.

For every , define the set

If label belongs to , then there is a walk that maintains its
weight when it is extended by a link with label . The sets

, can be constructed as we check for
monotonicity, and they allow for an easy characterization of free
cycles.

Theorem 2: In a monotonic algebra, cycle is free if and
only if for every weight there is a link in the
cycle whose label does not belong to .

Proof: We first show the forward implication. Write cycle
as , with , and suppose there is

such that for all
. Then, for every link , in there

is such that
. In addition, let . There-

fore, , for ,
showing that cycle is not free.
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To prove the reverse implication, suppose that cycle is not
free. Then, there are , with

, such that for all
. Because the algebra is monotone, we have

for . This set of inequalities implies
, for . Letting

denote the weight common to all signatures , we have that
.

Theorem 2 is perhaps easier to comprehend and apply in the
following form: cycle is non-free if and only if all its links’
labels belong to a common set . There-
fore, we can verify whether or not a cycle is free by testing
membership of its links’ labels in a common set , where
each such set has a maximum of elements. A special case
of monotonicity is strict monotonicity. An algebra for routing is
strictly monotone if for all and

. In strict monotonic algebras, is empty whatever
, every network is free, and the path-vector

protocol always converges. A statement of this fact, arrived at
with a different formulation, appears in [26]. For the case in
which the algebra is monotone, but not necessarily strict mono-
tone, we have the following theorem.

Theorem 3: If the algebra is monotone, then the path-vector
protocol can be made to converge to local-optimal in-trees what-
ever the network.

Proof: Informally, the idea is to break the non-free cy-
cles by appending to the weight of a walk its order, effectively
forcing nodes to always prefer couplets of lowest order among
couplets of equal weight. Non-free cycles can only be broken
this way if the algebra is monotone.

From the original algebra , we define
a primed algebra , such that:

; ;
if , or if and

; and . The in-
trinsic primed signature of node is . Any couplet that
weighs less than another in the original algebra also weighs less
in the primed algebra. However, among couplets with the same
weight in the original algebra, the primed algebra gives prefer-
ence to the ones of lowest order. The primed algebra is strictly
monotone implying that every network is free. From Theorem 1,
the path-vector protocol converges.

The converse to Theorem 3 also holds: if the algebra is not
monotone, then we can find a network for which path-vector
protocols do not converge. If the algebra is not monotone, then
there are and such that . In
particular, . In the network of Fig. 3, node 0 is the desti-
nation, and . Suppose that signaling routing
messages incur a delay of exactly one unit of time traveling ei-
ther from 1 to 2 or from 2 to 1. At time zero, nodes 1 and 2
have just chosen couplets and to reach node 0,
respectively, and advertised these choices to each other. After
one unit of time has elapsed, node 1 learns of couplet
and, because , it changes its chosen couplet

Fig. 3. Thick lines represent paths and thin lines represent links. Suppose that
f(�) � f(l��). Then, paths 1 2�P and 2 1�P weigh less than pathsP and
P , respectively. If signaling routing messages are exchanged synchronously,
then the path-vector protocol never converges.

to ; ditto for node 2, which changes its chosen
couplet to reach 0 to . After one more unit of
time has elapsed, node 1 learns that node 2 has chosen couplet

to reach 0. Since path contains node 1,
it is not an option for node 1: node 1 reverts its couplet choice to

. Similarly, node 2 reverts its couplet choice to .
We are back at the initial conditions, the described sequence of
events repeats itself, and the protocol never converges.

The shortest-path algebra is not monotone, because if is neg-
ative, then for all . However,
redefining the shortest-path algebra so that the set of labels is

, rather than , makes it monotone. In this case,
for every . From Theorem 2, we conclude that a cycle is
non-free if and only if all its links have label 0, or equivalently,
if and only if the cycle has zero length. Because the labels are
constrained to be non-negative, the previous statement is further
equivalent to that of Proposition 1: a cycle is free if and only
if it has positive length. Invoking Theorem 3, the path-vector
protocol can be made to converge even in networks with cy-
cles of zero length, if each node always prefers paths with the
minimum number of links among paths of the same length. The
shortest-path algebra would be strict monotone if the set of la-
bels were to be further constrained to .

VII. ISOTONICITY

Isotonicity An algebra for routing is isotone if for all
and .

In a network, isotonicity implies that the weight relationship
between two walks with the same origin is preserved when both
are extended by a common link. Checking whether or not a fi-
nite algebra is isotone entails binary operations and

binary comparisons, assuming that sig-
natures are sorted in increasing order of weights. As was the
case with monotonicity, isotonicity allows an easy, albeit dif-
ferent, characterization of free cycles.

Theorem 4: In an isotonic algebra, cycle is free if and
only if for every signature we have that

.
Proof: Let cycle be written as , with

. We start with the forward implication, for which iso-
tonicity is not needed. Suppose that is free and that we are
given . Define the inductively as follows:

; and for . Therefore,
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for . If
for some , then .

Otherwise, because , for
, and cycle is free, we must have

concluding the forward implication.
For the reverse implication, suppose that is not free. Then,

there are , with ,
such that the set of inequalities
holds for all . We show by induction that

for . The base case is
which follows directly from the fact

that is not free. For the induction step, assume that
. From isotonicity, we obtain

Because is not free, , so
that, using as well the previous inequality, we get

, which completes the induction step.
Now, taking and defining to equal , yields

,
which is what we wanted to prove.

In a finite algebra, we only need to consider the sig-
natures of set to decide whether or not cycle is free.
Isotonicity also has a consequence on the characteristics of the
local-optimal in-trees onto which the path-vector protocol con-
verges: these in-trees are optimal.

Theorem 5: If the algebra is isotone, then every local-optimal
in-tree is an optimal in-tree.

Proof: Suppose we are given a network with a local-op-
timal in-tree rooted at destination . Let be a network node
with a usable walk to , and let be any such
walk, with and . We will show by induction
that node belongs to the in-tree, and that the in-tree path
from to weighs less than, or has the same weight as, walk

, for . Then, the case yields the
desired optimality of .

The base case is trivial, since . For the induction
step, assume that the in-tree path from to weighs
less than, or has the same weight as, walk ,
that is, , for .
Applying isotonicity, we get

In particular, walk is usable. Hence, belongs
to the in-tree, and because the in-tree is a local-optimal one, we
have

Fig. 4. Thick lines represent paths and thin lines represent links. Suppose that
f(�) � f(�), but f(l��) � f(l��). Then, the local-optimal in-tree rooted
at 0 that contains path P , and not path Q, is not an optimal in-tree rooted at 0.

Combining the two inequalities, completes the desired induction
proof.

Combining Theorems 1 and 5, we conclude that if the net-
work is free and the algebra is isotone, then a path-vector pro-
tocol converges to optimal paths. The converse to Theorem 5
also holds: if the algebra is not isotone, then we can find a net-
work for which a local-optimal in-tree is not an optimal in-tree.
If the algebra is not isotone, then there are and
such that but . In Fig. 4, node
0 is the destination, path has signature , path has signa-
ture , and link has label . The in-tree that contains path

to the disadvantage of path is a local-optimal in-tree be-
cause . As a consequence,
the path in the local-optimal in-tree from 1 to 0 is path ,
if any. However, that is not an optimal path from 1 to 0, since

.
The shortest-path algebra is isotone, because if

, then for all
and . Theorem 4 applied to the shortest-path
algebra confirms what we already knew from Proposition 1: a
cycle is free if and only if it has positive length.

From Theorem 5, we further conclude that every in-tree of
local-shortest paths is an in-tree of shortest paths.

VIII. APPLICATIONS TO PERFORMANCE-ORIENTED ROUTING

A. Standard Optimal-Path Routing

We have already introduced the shortest-path algebra
, and shown that it iso-

tone but not monotone, and that the free cycles are the positive
length cycles. For a diverse example, take the algebra that leads
to widest-path routing. A widest path is a path of maximum ca-
pacity (width), where the capacity of a path equals that of its link
of least capacity. The widest-path algebra is the ordered septet

. This
algebra is both monotone and isotone. Referring back to Sec-
tion VI, we have for every

. Therefore, from Theorem 2, all cycles are
non-free. Notwithstanding, path-vector protocols may still con-
verge, as stated in Theorem 3. For convergence, it suffices to
have each node prefer a couplet of lowest order among couplets
of equal capacity. Other examples of optimal-path algebras can
be found in [9].

B. Composite Metric of IGRP

The composite metric of IGRP [3] provides an example of an
algebra that is monotone but not isotone, implying convergence
of path-vector protocols, but not to optimal paths, against what
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one would expect to find in an intra-domain performance-ori-
ented environment [11]. In its most basic form, the composite
metric of IGRP can be described by an algebra with

. The first component
of a label represents length and the second represents capacity.
Accordingly, , and

for . The order
is , and the function is given by

where is a positive constant. It is easy to verify that the al-
gebra is monotone. The failure of isotonicity can be exempli-
fied with the inequalities , and

. Because the first component of every
label is positive, all networks are free.

IX. APPLICATIONS TO POLICY-ORIENTED ROUTING

A. Primer on Inter-Domain Routing and BGP

In this section, we present sufficient information on inter-
domain routing and BGP to contextualize the ensuing appli-
cations. Currently, the commercial relationships between In-
ternet domains, also called Autonomous Systems (ASes), can be
classified into customer-provider, peer-peer, and backup [12],
[27]–[30]. A customer pays to its providers for connectivity to
the Internet whereas any two peers agree to exchange traffic
between their customers free of charge. Backup relationships
maintain Internet connectivity in the event of link failures. The
policies configured at the routers of an AS reflect the commer-
cial relationships the AS has established with its neighboring
ASes, and they consist of import/export and preference rules
for routes. A route is the basic unit of information kept at BGP
routers and exchanged between them. Common import/export
rules state that [12], [27]:

• an AS does not export to a provider or peer routes that it
learned from other providers and other peers;

• an AS can export to its customers any route it knows of.
The preference rules suggested in Guideline A of Gao and Rex-
ford [12] state that routes learned from customers should be pre-
ferred to routes learned from either providers or peers, leaving
ASes latitude to assign relative preferences among customer
routes, and among peer and provider routes. The import/export
and preference rules are realized with recourse to the BGP at-
tributes associated with every route. The basic BGP attributes
are LOCAL-PREF, AS-PATH, and MED [7]. LOCAL-PREF is
a degree of preference locally assigned to a route; AS-PATH is
the, possibly inflated, sequence of ASes traversed by a route; and
MED discriminates among several links joining neighboring
ASes. MED brings its own set of problems to routing which are
not addressed here [31].

BGP can also be used to distribute routing information in-
side an AS. To distinguish BGP sessions established between
two routers in different ASes from BGP sessions established
between two routers in the same AS, the former are called ex-
ternal BGP (EBGP) sessions and the latter are called internal
BGP (IBGP) sessions. The most basic scenario has each pair
of routers in an AS holding an IBGP session, leading to a fully

connected mesh of IBGP sessions. The import/export rules de-
termine that a router does not export to other routers in the same
AS routes learned via IBGP. An alternative to the fully con-
nected topology is provided by route reflection [13]–[17]. In the
simplest form of this strategy—the one we consider here—the
routers inside an AS are partitioned into clusters. Each cluster
contains one route reflector and a number of clients. IBGP ses-
sions are established between every pair of route reflectors, and
between a route reflector and every one of its clients. They may
also be established between two clients in the same cluster. The
import/export rules only permit the following exports [13]:

• a route learned by a route reflector from another is ex-
ported to all its clients;

• a route learned by a route reflector from one of its clients
is exported to all its other clients and to all route reflectors;

• a route learned by a router via an EBGP session is ex-
ported through all the router’s IBGP sessions.

Whether or not route reflection is used, a router with more
than one route at the same level of external preference to
reach a given destination—as defined by the LOCAL-PREF,
AS-PATH, and MED attributes—chooses only one of these
routes according to the following internal preference rules,
taken in order [7]:

• routes learned via EBGP sessions are preferred to routes
learned via IBGP sessions;

• routes with a shorter Internal Gateway Protocol (IGP) dis-
tance to the border router that announced the route into the
AS are preferred;

• routes announced into the AS by border routers with lower
identifiers are preferred.

B. Interdomain Routing at the as Level

We formulate Guideline A of Gao and Rexford [12] in
algebraic terms, assuming that each network node repre-
sents an AS. We have , and

. The order is . Links joining providers
to customers are called customer links, and have label ; links
joining customers to providers are called provider links, and
have label ; and links joining peers to other peers are called
peer links, and have label . We call primary paths to the usable
paths obtained with the guidelines of this section. Primary
paths are subdivided according to their signatures into four
classes: trivial paths, comprised of a single node, have signature
; customer paths, whose first link is a customer link, have

signature ; provider paths, whose first link is a provider link,
have signature ; and peer paths, whose first link is a peer link,
have signature .

The binary operation is given in the next chart, where the
first operand, a label, appears in the first column and the second
operand, a signature, appears in the first row.

For example, means that a peer path cannot be ex-
tended by a customer link. In other words, an AS does not export
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Fig. 5. Network with customer-provider and peer-peer relationships. Labels
are taken from the set fc; r; pg, where c; r, and p, identify customer, peer, and
provider links, respectively. Peer links are represented with dashed lines as a
visualization aid.

to a provider a route learned from a peer. From the definition of
operation , we deduce that any primary path is of the form

, where path contains only provider links, path
is either a trivial path or a path formed by a single peer link,

and path contains only customer links. Any of the paths ,
and can be a trivial path. Fig. 5 depicts a network where links
have labels taken from set . Node 5 is a provider of node 2, and
consequently, node 2 is a customer of node 5. Nodes 2 and 3 are
peers. Link is a customer link; link is a provider
link; and links and are peer links. Path 5 2 0 is a
customer path; path 3 6 5 2 0 is a provider path; and path 3 2
0 is a peer path. Paths 5 2 3 0 and 2 0 3, for example, are not
primary paths. The function is given by

The inequality means that a
node always prefers a customer path to either a peer path or a
provider path.

The algebra is both monotone and isotone, so that a path-
vector protocol can always be made to converge, and when it
does, it converges to optimal paths, although that was not a re-
quirement in the first place. Theorem 2 can be used to iden-
tify the free networks associated with this algebra. Scanning
the pairs label-signature, we obtain: is the empty set, since

for every , since
; and ,

since and
. Hence, a cycle

is non-free if either: i) all its links have label or ii) all its links
have label : a free network is a network without such cycles.

This is equivalent to the hierarchical assumption of [12] which
states that: i) the subgraph of the network induced by the cus-
tomer links alone and ii) the subgraph of the network induced by
the provider links alone should be acyclic. In terms of the rela-
tionships established between Internet domains, a free Internet
is a network where no domain is a provider of one of its direct or
indirect providers. To guarantee convergence of the path-vector
protocol without constraining the network, it suffices to have
each domain break ties within paths of the same class—cus-
tomer, provider, or peer—with the order of the path.

C. Interdomain Routing at the Router Level

The previous model does not anticipate the possibility of
having two routers in the same AS choosing different paths to
reach a given destination, since an AS was modeled by a single
node. We now take the internal router structure of ASes into
account. Hence, each network node represents a router, and
we assume that an IBGP session exists between every pair of
routers in the same AS, leading to a network link from every
router to every other router in same AS.

We have
, and . The pairs of are

lexicographically ordered based on the order . Links joining
a node to another in the same AS are called internal links, and
have label of the form , where is positive and represents
the IGP distance between the node at the head of the link and
the node at its tail. The other links are labeled in line with the
previous section: links joining a node in a provider to a node
in a customer are called customer links, and have label ; links
joining a node in a customer to a node in a provider are called
provider links, and have label ; and links joining two nodes in
different peers are called peer links, and have label . We again
distinguish four classes of paths: local paths, which are either
trivial or composed of a single internal link, have signature of
the form ; customer paths, whose first non-internal link is a
customer link, have signature of the form ; provider paths,
whose first non-internal link is a provider link, have signature
of the form ; peer paths, whose first non-internal link is
a peer link, have signature of the form . Moreover, paths
whose first link is not internal are called external paths, their
signatures having zero for second component; paths whose first
link is internal are called internal paths, their signatures having
a positive number for second component.

The binary operation is given in Chart (1), shown at the
bottom of the page, where is a positive number. The last three
rows in the chart, corresponding to labels , and , are similar
to the ones in the previous section, whereas the first row corre-
sponds to internal links. For example,

(1)
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means that an external customer path becomes an internal cus-
tomer path when extended by an internal link. The sequence of
equalities ,
for , means that an internal path cannot be further extended
by an internal link. In other words, a router does not export to
other routers in the same AS routes learned via IBGP. The us-
able paths in this algebra are the usable paths of the previous
algebra possibly interspersed by non-consecutive internal links.
The function is given by

For instance, for
means that external customer paths are preferred to internal

customer paths. That is to say, routers prefer customer routes
learned via EBGP to customer routes learned via IBGP.

The algebra is neither monotone nor isotone. Nevertheless,
with insight acquired from the previous section, we could guess
that the non-free cycles are: i) those consisting of customer links
and internal links, or ii) those consisting of provider links and
internal links, with the additional restriction that internal links
do not appear consecutively. A formal proof of this fact is in-
structive in its own right, and we sketch it in the remainder of
this section.

First, we show that any cycle , with
, comprising only customer links and non-consec-

utive internal links is non-free. Choose the set of signatures
, with , as follows:

if , then ; otherwise, if
, then , and because internal links do not ap-

pear consecutively, we must have . Therefore,
if , then

; otherwise, if , then
.

These equalities imply that is not free. The proof that cy-
cles with only provider links and non-consecutive internal links
are also non-free would proceed similarly.

Second, we show that all cycles other than those with only
customer links and non-consecutive internal links, or those with
only provider links and non-consecutive internal links, are free.
Construct an auxiliary algebra which has the same elements as
the original algebra except for the binary operation which is
defined by the following chart.

Because , for all and all ,
every cycle that is free in the auxiliary algebra is also free in
the original algebra. Since the auxiliary algebra is isotone, its
free and non-free cycles can easily be determined from The-
orem 4. A cycle is non-free in the auxiliary algebra if and only
if (i) it has at least one customer link and all other links are ei-
ther customer or internal links, or (ii) it has at least one provider
link and all other links are either provider or internal links. To

complete the proof, we need only show that of the non-free cy-
cles in the auxiliary algebra those that contain at least two con-
secutive internal links are indeed free in the original algebra.
Let , with , be a cycle with
at least one customer link, two consecutive internal links, and
with all other links either customer or internal links. Without
loss of generality, assume that is a customer link,

is an internal link with label , for ,
with , and is again a customer link. Thus,

is a subpath of cycle with consecutive
internal links. If cycle were not free, then there would exist

such that

where the first and last inequalities are justified because
and , respectively, are customer links.

This set of inequalities does not admit a solution
in the original algebra. Hence, cycle is free. Analogous
methods could be used to show that cycles with at least one
provider link, two consecutive internal links, and with all other
links either provider or internal links are also free.

D. Backup Relationships in Interdomain Routing

We now explore backup relationships between Internet do-
mains, resorting to the one node per AS model of Section IX-B.
Backup relationships expand the set of usable paths beyond pri-
mary paths so as to maintain network connectivity in the pres-
ence of link failures. For example, if links and are
down in the network of Fig. 5, then the parsimonious relation-
ships of Section IX-B isolate node 6 from node 0. In contrast, the
backup relationships of this section still allow node 6 to reach
node 0 over paths 6 3 2 0, 6 4 1 0, or 6 4 3 2 0. We will call backup
paths to usable paths that are not primary. Backup strategies
have been presented in [30] and formulated in algebraic terms
in our previous work [18]. Those strategies permit valleys, if
they contain peer links. A valley is a path that starts with a cus-
tomer link and ends with a provider link, implying that customer
nodes may provide transit service between their providers. For
example, the backup strategies of [30] would allow paths 3 0 1
4 and 4 1 0 3 in the network of Fig. 5, meaning that nodes 0 and
1 would provide transit service to their respective providers 3
and 4. In this section, we present alternative backup strategies
satisfying the following requirements:

• primary paths are always preferred to backup paths;
• valleys are not allowed;
• backup paths without provider links are always preferred

to those that have them;
• the preference of a backup path decreases with every peer

link that it contains.
We have

, and . The
pairs of are lexicographically ordered based on the order .
In labels, the letters , and , again identify customer, peer,
and provider links, respectively. The value of in a label of the
form is positive and corresponds to the contribution of a
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peer link to the avoidance level of a backup path. The avoidance
level of a path is such that the lower its value the “better.” In sig-
natures, the letters , and identify customer, provider, and
peer paths, respectively, and the accented letters and identify
backup paths without and with provider links, respectively. The
value of in signatures of the form and indicates
the avoidance level of a backup path. Every trivial path has sig-
nature .

The binary operation operation is given next (the column
for signature equals that for signature and is omitted).

For example, means that a path
containing provider links can never be extended by a customer
link, thereby implying that valleys are not allowed. The equality

means that a backup path with
provider links sees its avoidance level increase as it is extended
by a peer link. The function is given by

For instance, any of the weights ,
and is lexicographically smaller than
both and , meaning that
primary paths are preferred to backup paths.

The algebra is monotone, it is not isotone, and its free cycles
are the same as those of Section IX-B: cycles where all links
have label or all links have label should not be present.

E. Route Reflection

Refs. [16] and [17] present examples of internal AS route
reflection configurations for which IBGP does not converge. In
this section, we apply the algebraic framework to arrive at a
sufficient condition that ensures IBGP convergence in ASes that
use route reflection. We assume a given destination outside the
AS which can be reached through a number of border routers
inside the AS at the same level of external preference. Each
router in the AS has a unique integer identifier.

We have
, and .

The pairs of are lexicographically ordered based on the order
. The second component in the label of each link is always the

identifier of the node at the head of the link. A link that joins a
route reflector to a client has for first label component; a link
that joins a route reflector to another route reflector has for
first label component; and a link with a client at its head has
for first label component. The last component in the signature
of a path is always the identity of its border router. Trivial paths,
those consisting of a border router alone, have signatures of the
form ; non-trivial paths with origin at a client have sig-
natures of the form ; non-trivial paths with origin at a
route reflector have signatures either of the form or of
the form , where is the identity of the route reflector.
Fig. 6 depicts an AS that uses route reflection, and where the

Fig. 6. AS with three clusters. Clusters are enclosed in ovals. Route reflectors
are represented with diamonds, clients are represented with circles, and border
routers (leading to an unspecified destination outside the AS) are shaded.

border routers, for an unspecified destination outside the AS,
are shaded. Path 0 is a trivial path and has signature ; path
6 7 2 0 has signature ; path 2 0 has signature ;
path 4 2 0 has signature ; and path 7 4 2 0 is not usable.

The binary operation is given next.

We look into some examples: means that a
route reflector does not export paths learned from route reflec-
tors to other route reflectors; means
that route reflector exports to route reflector paths learned
from its client border , and the resulting path keeps the iden-
tity of the border router but sees the origin of the path updated
from to . The function is given next.

where is the IGP path distance from router to router
. Forcing the algebra to be monotone leads to a sufficient con-

dition for IBGP convergence. Monotonicity clearly holds when
a trivial path is extended to any router and when any path is
extended to a client. The interesting case is when a path con-
sisting of a route reflector followed by a client border router
is extended to another route reflector. The weight of the orig-
inal path is , where is the identity of the route
reflector and is the identity of its client border router. The
weight of the extended path is , where is the
identity of the route reflector to which the original path has been
extended. Therefore, for monotonicity to hold, we must have

. Moreover, if this condition is satisfied,
then no free cycle is realizable in the AS because border routers
have unique identifiers.
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We can then conclude with generality that IBGP converges if
for every client and every route reflector we have

where is the identity of the route reflector that be-
longs to the same cluster as client . In words, client must
not be farther from its route reflector than from any
other route reflector, in terms of IGP path distances.

X. CONCLUSION

We have brought non-classic algebraic concepts to dynamic,
distributed network routing, establishing fundamental results on
the convergence of routing protocols and uniting in a common
framework various routing strategies currently found in the In-
ternet. Freeness is a property of labeled networks that implies
convergence of routing protocols. Monotonicity and isotonicity
are two algebraic properties that strengthen the convergence
properties of the protocols. Monotonicity implies protocol con-
vergence in every network and isotonicity implies convergence
onto optimal paths.

The theory has been applied to both intra- and inter-domain
routing, but it is to the latter routing paradigm that it is deemed
more useful in the short-term. An algebra for routing is a concise
and precise mathematical object for the specification, design,
and verification of routing policies.

Two standing problems in inter-domain routing deserve fur-
ther study, to which the algebraic theory may be useful. One is
the use of the MED attribute of BGP, which prevents the set of
available routes at a router from being totally ordered by pref-
erence [31]. The other is the forwarding correctness of IBGP:
guarantying IBGP convergence may not be enough to prevent
packet loops [16].

Looking still further ahead, we envisage that the algebraic
theory may also be expanded to incorporate traffic-aware
routing and traffic engineering. By formulating non-linear
routing problems with abstract algebras, we may arrive at
algorithmic solutions which parallel those of linear problems
[21]. In short, this paper is but a first step toward an algebraic
theory of network routing.

APPENDIX

PROOF OF CONVERGENCE

Suppose that we are given a network and a finite set of
usable couplets all with the same destination. The couplets di-
graph associated with and has the couplets of for vertices
and there is an edge from couplet to couplet if any
one of the next two conditions is verified:

• is an extension of by some link in the network, that
is, for some link ;

• and have the same origin, and either weighs
less than or, their weights being equal, is
preferred to , that is, .

The top part of Fig. 7 shows the network of Fig. 5, annotated at
each node by a list of couplets. Each list contains all couplets of
the form , where is a usable path in the network with
origin at the node by the list and destination at node 0, ordered
by . The higher a couplet in a list the smaller it is with respect

Fig. 7. Example couplets digraph for the customer-provider and peer-peer
algebra of Section IX-B, network of Fig. 5, and couplets listed in the top part
of the figure.

to the order . The bottom part of the figure shows the couplets
digraph associated with the network and the couplets depicted
on the top part of the figure.

Lemma 1: Any couplets digraph associated with a free net-
work is acyclic.

Proof: We are given a couplets digraph associated with a
free network. We will prove by contradiction that the digraph is
acyclic. Suppose otherwise, and let

with , be a cycle with a minimal number
of vertices. Let be the origin of , for . By
definition, if , then and

; otherwise, if , then
, implying .

First, we show that any two couplets in cycle with the same
origin must appear consecutively. Suppose otherwise. Then,
there are integers and such that , and

. If , then the sequence

is a cycle in the couplets digraph with
vertices, contradicting the minimality of . On the other hand,
if , then the sequence

is a cycle in the couplets digraph with
vertices, again contradicting the minimality of .
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TABLE I
RANKING FOR THE COUPLETS DIGRAPH OF FIG. 7

Second and last, we show that the sequence of nodes obtained
from by skipping over repeated nodes is a
network cycle which is non-free. Formally, let be the number
of distinct nodes in the sequence , and define
the function from to as follows:

The sequence is a cycle in the net-
work. If , with , then

otherwise, if , with , then
, and

The previous equalities and inequalities mean that cycle
is not free, contradicting the hy-

pothesis of the lemma.
Any acyclic digraph can have its vertices ranked such that if

there is an edge from vertex A to vertex B, then A is ranked
higher than B [19]. To be concrete, we define the rank of cou-
plet in an acyclic couplets digraph to be the number of
vertices in a longest path in the digraph from to a couplet
without out-neighbors. These ranks could be determined recur-
sively, noting that the couplets of rank are those that have no
out-neighbors in the restriction of the digraph obtained by with-
drawing all couplets with rank less than . Table I shows the
ranking of the couplets of Fig. 7. In an acyclic couplets digraph,
if either or ,
then is ranked higher than .

Theorem 6 (Liveness): The path-vector protocol always con-
verges in a free network.

Proof: We are told that at a given time the links inter-
connecting the nodes form a free network and that none of those
links fail nor are new links added thereafter. We want to show
that there is a subsequent instant of time when no signaling
routing messages are to be found in transit in the network. The
protocol will have converged at that time.

We fix an arbitrary destination and prove convergence of the
protocol for that destination. Observing the state of the protocol
at time , we find usable couplets stored at the pairs of variables

, with a network node and an out-

neighbor of , and announced in signaling routing messages,
which are in transit in the network. Let be the set of all such
couplets. We assume that is finite. This is a mild assumption
that holds if, for instance, the number of events—link failures,
link additions, and receptions of signaling routing messages—is
finite up to time . Any usable couplet that can possibly be found
in the state of the protocol after time has to be of the form

, where is a path in the network and is in
. Let be the set of all such couplets. Set is finite, because
is finite and so is the set of all paths in the network. Since

the network is acyclic, the couplets of are ranked. Let be
the maximum rank assigned to a couplet of . By definition,
couplet is assigned rank .

We now present a function from the state of the protocol
to the well-founded set of tuples of non-negative inte-
gers ordered lexicographically. We show that the value assumed
by decreases lexicographically with the reception of every
signaling routing message, and this is sufficient to prove con-
vergence of the protocol [24], [25]. At any given time, the value
assumed by the th coordinate of the function is denoted by

and is defined as:

number of signaling routing messages announcing
a couplet of rank , in transit in the network, plus number
of nodes that have chosen a couplet of rank .

Assume that a signaling routing message announcing couplet
, of rank , arrives at node coming from its out-neighbor

. Let , a couplet of rank , be the chosen couplet at node
before the routing message is received, and let , a cou-

plet of rank , be the chosen couplet at node after the routing
message is received. Four cases are distinguished.

1) : The coordinate decreases by one. The
function decreases.

2) and :
The coordinate decreases by one, the coordinate
decreases by one, and the coordinate increases. Because

, we have and,
therefore, the function decreases.

3) and : The coordi-
nate may decrease by one, the coordinate decreases
by one, and the coordinate may increase. Because

and , we have ,
and the function decreases.

4) and and
: The coordinate decreases by one,

the coordinate decreases by one, and the coordinate
increases. Because , cou-
plet was available for selection at node before
the signaling routing message was received. Since, in ad-
dition, and couplet was the cou-
plet chosen by before the signaling routing message is
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received, we have . Hence, and the
function decreases.

Theorem 7 (Safety): If the network is free and the path-vector
protocol has converged, it has converged onto local-optimal
in-trees.

Proof: Once the protocol has converged there are no more
signaling routing messages in transit in the network. Because
signaling routing messages are never lost and are delivered ac-
cording to a first-in-first-out discipline, we have, for every link

in the network:

• if is not a node of and ,
then

;
• otherwise, if either is a node of or

, then
.

Fix an arbitrary destination . Using freeness of the network,
it can readily be shown that the union of the paths over
all network nodes such that is an in-tree
rooted at destination , with the signatures of the in-tree paths
given by . We need to show that this
in-tree is local-optimal.

Consider first a node outside the in-tree, and let be any
out-neighbor of in the in-tree. Path does not con-
tain because, otherwise, , meaning that
node would belong to the in-tree. Then, we must have

, meaning that
is not a usable path from to .

Second, consider nodes and in the in-tree, with any
out-neighbor of . If path does not contain , then
directly from the path-vector protocol code, we know that

On the other hand, if path contains , then we can
write , with
and . The sequence is a cycle in the
network which must, by our hypothesis, be free. Define

for . Hence,
for . Freeness then implies

Therefore, path weighs less than walk ,
thereby concluding the proof.
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