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ABSTRACT The  joint  e q u i h b r m m  dis t r ibut ion  of queue sizes in a network of queues  conta in ing  N 
service centers  and R classes of cus tomers  m derived The  equi l ibr ium s ta te  probabil lUes have the  
general  form P(S)  = Cd(S) fl(xl)f2(x2) . fN(x~), where S is the  s t a t e  of the  sys t em,  x, is the  con- 
f iguration of cus tomers  at  the  ~th service center ,  d(S) is a funct ion  of the  s t a t e  of the  model ,  f ,  is 
a funct ion  t h a t  depends  on the  type  of the  zth service center ,  and C is a normalizing cons t an t  I t  is 
a s sumed  t ha t  the  e q m h b r l u m  probabfl~tles exmt and  are unique  Four  types  of service centers  to 
model  central  processors,  da t a  channels ,  te rminals ,  and rou t ing  delays  are considered The  queuemg  
dlSclphnes associa ted wi th  these  service centers  include f irs t-come-first-served,  processor shar ing ,  
no queueing,  and las t -come-f i rs t -served E ach  cus tomer  belongs to a single class of cus tomers  while 
awai t ing or receiving serwce at a service center,  bu t  m a y  change classes  and  service centers  according 
to fixed p robabd i tms  at  the  complet ion of a service reques t  For  open networks ,  s t a t e  dependen t  
arr ival  processes  are considered Closed networks  are those  wi th  no exogenous arrivals  A ne twork  
m a y  be closed with respect  to some classes of cus tomers  and  open with respect  to o ther  classes of 
cus tomers  At  three  of the  four types  of serwce centers ,  the  service t imes  of cus tomers  are governed 
by p robab lh ty  dmtr lbu t ions  h a w n g  ra tmnM Laplace t rans forms ,  different classes of cus tomers  h a w n g  
different d is t r ibu t ions  At  f i rs t -come-f i rs t -served-type service centers ,  the  service t ime d is t r ibu t ion  
m u s t  be identical  and  exponentml  for all classes of cus tomers .  Examples  show how different classes of 
cus tomers  can affect models  of compute r  sys t ems .  
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1. Introduction 

Networks of queues are important models of multiprogrammed and time-shared computer 
systems. Work on this application in the last several years has produced a variety of mod- 
els meant to capture important aspects of computer systems. The results of this paper 
unify and extend a number of those separate results in a single model. The principal con- 
tribution of the paper is to combine recent results on networks of queues of several differ- 
ent service disciplines and a broad class of service time distributions with earlier results 
on networks of queues containing different classes of customers. We derive the equilibrium 
state probabilities for the general model. The technique of analysis uses Whittle's con- 
cept of independent balance [17, 18]. From the complete equilibrium distribution of states 
of the model, we derive several less complex descriptions of the steady state performance 
of the model. In the case of certain open networks, we obtain some particularly simple 
formulas giving the marginal distribution of customers at a service center of the network. 

The model is motivated by the conception of a computer system as a network of proc- 
essors (CPUs, I /O processors, terminals) and a collection of customers (jobs, tasks). The 
processors are grouped into equivalence classes called service centers and the customers 
may enter the system from the outside, pass from service center to service center compet- 
ing for the processing resources of a service center with the other customers at that center, 
and eventually leave the system. Different service centers may have different scheduling 
capabilities and different processing resources. Different customers may have different 
routes through the network and make different demands at a given service center. Cus- 
tomers may change from one class to another when changing service centers. Such a model 
can represent several levels of detail in the operation of computer systems, from the job 
submissions or user logons, through the requests of jobs for individual I /O transfers or 
computing bursts, to the requests of processors for cycles of a shared memory. We present 
two examples at the middle level of detail. 

Several special cases of the model we consider have been studied in the literature. A 
good survey of the analysis of queueing networks in general and queueing models of com- 
puter systems in particular is given by Buzen [3]. Jackson [11] and Gordon and Newell [10] 
develop the equilibrium distribution of states of a class of general networks. In particular, 
Gordon and Newell make clear the product form of the solution of the balance equations 
describing the steady state of the model. Our solution has this product form. In these mod- 
els the service centers can be connected in any arbitrary fashion. A customer leaving a 
service center simply chooses the next service center according to a fixed set of branching 
probabilities for the center being left. Jackson's model also allows for the arrival and de- 
parture of customers from outside the system. These networks suffer from two principal 
limitations as models of computer systems: (1) all the customers are identical; they all 
follow the same rules of behavior, and (2) all the service time distributions are exponen- 
tial. These limitations have been attacked by a number of authors. We summarize their 
results in the remainder of this Introduction. The body of the paper presents the general 
model for which the models discussed below are special cases. 

Special cases of the results presented here have been developed by Ferdinand [9], Posner 
and Bernholtz [15], Baskett [1], Baskett and Palacios [2], and Chandy et al. [6]. Sakata et 
al. [16] developed a related result on processor sharing. Whittle [17, 18] describes the "in- 
dependent balance equations" technique that simplifies the problem of finding steady 
state solutions for these networks. Chandy [5] also describes this technique and calls it 
the principle of local balance. 

Section 2 describes the model and the four types of service centers, distributions with 
rational Laplace transforms, and the notation used to indicate the state of the model. Sec- 
tion 3 is a discussion of independent balance, the derivation of the relative frequency with 
which each class of customers visits each service center, and the functional form of the 
equilibrium state probabilities for the model. This gives a steady state description of the 
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mode]L in more detail  than we normally need. Section 4 develops equilibrium probabilit ies 
for composite states of the model. For  open models, we obtain a closed form expression for 
the normalizing constant in the solution and some especially simple formulas for the mar- 
ginal ,distribution of customers at  each service center. Section 5 discusses state dependent  
service rates. Section 6 presents two examples to indicate the significance of different 
classes of customers. 

2. The Model 

2.1. S~RvIc~ CENTERS. The class of systems under consideration contains an arbi- 
t ra ry  bu t  finite number N of service centers. There is an arbi t rary  bu t  finite number R of 
different classes of customers. Customers travel  through the network and change class ac- 
cording to transit ion probabilities. Thus a customer of class r who completes service at  
serviee center z will next require service at  center 3 in class s with a certain probabi l i ty  de- 
noted P~,r, ~,,. The transit ion matrix P = [P,,r,j,,] can be considered as defining a Markov  
chain whose states are labeled b y  the pairs (~, r) .  The Markov  chain is assumed to be 
decomposable into m ergodic subchains. Let  E~, E~, • • . ,  E~  be the sets of states in each 
of these subchains. The possible states of a network model are described in Section 2.3. 
Let  n~ be the number of customers of class r at  service center ~ in state S of the  network 
model. Let  M(S/E~) = ~(~.~)~ n,,. Then a closed system is characterized by  M(S /  
E~) = constant,  1 < j < m. 

In  an open system customers may arrive to the network from an external source. Two 
general types of s tate dependent  arrival  processes are considered. In  the first case the  to ta l  
arrival  rate to the network is Poisson with mean rate dependent  on the total  number of 
customers in the network. Thus for a s ta te  S of the network model let M(S)  be the total  
number  of customers in the  network, i.e. M(S)  = ~ M(S/E3), and let  ~,(M(S)) be 
the instantaneous mean arrival rate.  An arrival enters service stat ion ~ in class r with a 
fixed probabi l i ty  (not s tate dependent)  given by  q~. 

In  the second type  of arrival process there are m Poisson arrival  streams corresponding 
to the m subchains defined above. The instantaneous mean arrival rate  for the j t h  s tream 
is assumed to be a function of M(S/E~), k~(M(S/E3) ). An arrival in the j t h  s tream has 
probabi l i ty  q,~ of entering service stat ion i in class r if (~, r) ~ E~ and ~(,,~)eE~ q,~ = 1. 
In  an open network a customer of class r who completes service at  center ~ may leave the  
system. This occurs with probabi l i ty  1 --  ~ < j < N ,  ~_<,_<R p.,,, j,,. 

A service center will be referred to as type  1, 2, 3, or 4 according to which condition i t  
satisfies. 

Condztion 1. The service discipline is first-come-first-served ( F C F S ) ;  all customers 
have the same service t ime distr ibution at  this service center, and the service t ime distri- 
but ion is a negative exponential. The service rate  can be state dependent where ~ ( j )  will 
denote the service rate  with j customers at  the center. 

Condition 2. There is a single server a t  a service center, the service discipline is proc- 
essor sharing (i.e. when there are n customers in the service center each is receiving service 
at  a rate of 1/n sec/see),  and each class of customer may have a dist inct  service t ime dis- 
tr ibution.  The service t ime distr ibutions have rational Laplace transforms. 

Condztwn 3. The number of servers in the service center is greater than or equal to the  
maximum number of customers tha t  can be queued at  this center in a feasible state, and 
each class of customer may have a dist inct  service t ime distribution. The service time dis- 
tr ibutions have rational Laplace transforms. 

Conditwn 4. There is a single server a t  a service center, the queuing discipline is pre- 
emptive-resume last-come-first-served (LCFS) ,  and each class of customer may have a 
dist inct  service t ime distribution. The service t ime distributions have rat ional  Laplace 
transforms. 

Note. An exponential F C F S  single job class service center with more than  one server 
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is equivalent to a similar service center with one server and suitably chosen service rates 
depending on the number of customers at the server. 

2.2. REPRESENTATION OF SERVICE TIME DISTRIBUTIONS WITH RATIONAL LAPLACE 

TRANSFORMS. The requirement that  a service time distribution have a rational Laplace 
transform is not very restrictive. Exponential, hyperexponential, and hypoexponential 
distributions all have rational Laplace transforms. Cox [7] has shown that  any such distri- 
bution can be represented by a network of exponential stages of the form shown in Figure 
1. For convenience, we have eliminated the case in which there is a nonzero probability 
of a zero length service time. 

In  Figure 1, b~ is the probability that  the customer leaves after the ith stage and a, 
( = 1 - b~) is the probability that  the customer goes to the next stage, Given that  a cus- 
tomer reaches the ith stage, the service time in this stage has a negative exponential dis- 
tribution with mean 1 /# ,  Since the service time distribution for a stage is exponential, 
when describing the state of the network of service stations it is not necessary to know the 
exact amount of service a customer has received at a service center; the stage of service is 
sufficient. 

2.3. THE STATES OF THE MODEL. The state of the model is represented by a vector 
(xl, x~, . . . ,  x~) where x, represents the conditions prevailing at service center ~. The in- 
terpretation of x, depends on the type of service center 4. 

If  service center i is of type 1, then x, = (x~l, x~2, . . . ,  x,,,), where n, is the number of 
customers at center i and x ,  (1 ~ j _~ n,, 1 ~ x ,  ~ R) is the class of customer who is 
3th in FCFS order. The first customer is served while the remainder are waiting for ser- 
vice. 

If  service center i is of type 2 or 3, then x, = (v,1, v,2, . - . ,  v~R), where v,~ is a vector 
(m1,, m2,, • • ", m ... .  ). T h e / t h  component of v~, is the number of customers of class r in 
center i and in the lth stage of service, u,~ is the number of stages for a class r customer at 
service center i. 

If  service center ~ is of type 4, then x, = ((rl, ml), (r2, m2), . . - ,  (r,,, m~,)), where n, 
is the number of customers at center i and (re, m~) is a pair describing the j th  customer 
in LCFS order, re is the class of this customer and m~ is the stage of service this customer 
is in. 

For any network of reasonable size, the expression for a state of the network is long 
and tedious to write. Writing expressions for the balance equations to find the equilibrium 
state probabilities is an arduous task. 

Even to check that  a given solution is correct is time consuming. The solution for the 
class of networks described here was arrived at by using the technique of independent 
balance. This technique is briefly described in Section 3. 

3. The Equd¢briur~ State Probabilities 

3.1. 'Ik-I~ BALANCE EQUATIONS. A. solution for the equilibrium state probabilities 
must satisfy the balance equations for the system. That  is, 

W states, S~, ~ P(Se)[rate of flow from Se to S,] = P(S,) [ ra te  of flow out of S,]. 
all states 

$7 

Chandy [5] terms these the global balance equations. Whittle [17, 18] describes another 
type of balance equations which he calls the i~wlependent balance equations. Informally, an 

FiG. 1. Representation of service time distributions by the method of stages 
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independent balance equation equates the rate of flow into a state by a customer enter- 
ing a ;stage of service to the flow out of that  state due to a customer leaving that  stage 
of service. We associate a customer with a stage of service in the following ways. If  the 
customer is in service at a service center, then he is in one of the stages of his service 
time distribution at tha t  service center. If  the customer is queued at a service center, 
then he is in the stage of his service time distribution he will enter when next given ser- 
vice. For FCFS this will be stage 1, and for LCFS this will be the stage the customer was 
in when last preempted. 

From this description of the independent balance equations it is easily seen that  each 
g|oba! balance equation is a sum of independent balance equations. Therefore, the inde- 
pendent balance equations are sufficient conditions for global balance (but they are not 
necessary). 

To illustrate the technique of independent balance we consider the relatively simple 
network model shown in Figure 2. 

This is a closed network with two classes of customers (which we refer to as class 1 
and class 2). There are N1 class 1 customers and N2 class 2 customers in the networks. 
All service times are exponentially distributed and 1/tt,r (i = 1, 2, r = 1, 2) is the mean 
service time for a class r customer at service center i. 

In  this example, pL2.2,2 = p2.%1.2 = p2.1.1a = 1, pm.la + pL1.2a = 1. 
Let net be the number of class r customers at service center i. For convenience we 

write the global and independent balance equations only for the states in which n,r > 0, 
i = 1,2,  r = 1,2. 

Global Balance Equation: 

P(nat - 1 ,  nm, n21 "~ 1, n~2)((n2x + 1)/(n~l + n=2 + 1))~21 
-{- P ( n n  + 1, n12, n21 -- 1, n22)(nn + 1)~npla.2a 
• 4- P ( n n ,  nm, n21, n22)n11#npla,l.1 
-I'- P(nlz, nm + 1, n~l, n~2 - -  1)(nm + 1)pro 
+ P ( n n ,  nm -- i, n21, n22 + 1)((n22 + 1)/(n21 + n22 + 1))ttm 

= P (nn, nl~, re1, ~2) [nnttn "1- n12t~m "Jr (n21/(re1 -t- n22) ) #21 "4- (n22/(n21 -t- n22) ) ~2~]. 

Independent Balance Equations: 

P ( n n  - 1, nm, ~1 "1- 1, nm)((rel -t- 1)/(n21 "t- n22 --t- 1))#21 
+ P ( n n ,  nm, n21, n22)nnttnpla.la 

= P(nll ,  n12, n=l, n=2)nn#n (1.1) 

P(n]l,  n12 -- 1, n21, n~2 -,{- 1)((n22 + 1)/(n2~ + n~ + 1))it22 
= P ( n n ,  n~=, n2~, n22)n12ft12 (1.2) 

P ( n u  + 1, n12, n2~ - 1, n2~)(n~ + 1)ttnpLL2a 
= P ( n n ,  nm, n2~, n~2)(n2~/(n21 + n2~))tt21 (2.1) 

P2,2, 1,2 

P1,1, 1,1 

Fzo. 2 

Type 2 
servlee center 2 

P1, 2,2, 2 

Type 3 
servzce center i 

Example network model 
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P(nu ,  nl~ + 1, n~l, n2~ - 1)(nl~ T 1)#12 
= P(nn ,  n12, ml, n22)(n22/(nal -b n22))~22. (2.2) 

Since all the  service t ime distributions in this example are exponential, the current 
stage of service of a customer is uniquely defined by  the customer's class and the current 
service center. Independent  balance equation (i.r) for i = 1, 2,. r = 1, 2 equates the 
rate of flow out of state (nil, nl~, nn21, n~2) due to a class r customer leaving service center 
i with the rate  of flow into state (nu, n12, n~, n~2) due to a class r customer entering 
service center i. 

As in this example, i t  is generally true tha t  each global balance equation is the sum of 
a subset of the independent balance equations. Thus a solution for the independent 
balance equations is automatical ly a solution to the global balance equations. In  many 
cases the independent balance equations are inconsistent and therefore have no solution. 
For  example, if there is FCFS scheduling at  a service center and different .classes of 
customers have different service t ime distributions, the independent balance equations 
are inconsistent. 

The value of the independent balance technique is tha t  (1) i t  leads to a simpler and 
more organized search for solutions for equilibrium state probabilities and (2) i t  works 
for a large number of cases (in fact for vir tual ly all of the closed form solutions known 
for general classes of networks of queues--al though many interesting cases do not  have 
known solutions). 

3.2. PRODUCT FORM SOLUTION. Before presenting the solution to the class of net- 
works described, we define a set of terms tha t  appear in the solution. 

For  each ergodic subchain Ek we define the following set of equations: 

e,rp,.r.~., -b q ,  = e , ,  (3, s) E Ek. 
(~,r) E sk 

The value of q ,  is determined by  the rate of exogenous arrivals of class s customers to 
service center j .  If  q ,  = 0 V(3, s) E Ek, then the network is closed with respect to Ek. 
In  this case the e,r are determined to within a multiplicative constant,  e~, can be inter- 
preted as the relative arrival rate of class r customers to service center i. I f  not  all of the 
q ,  = 0 for (3, s) E Ek, then we assume a unique solution for the  e~. I n  this case e~, is 
the absolute arrival rate  of class r customers to service center ~. 

Note tha t  a system may be "open" with respect to some classes of customers and 
"closed" with respect to other classes of customers. Our solution applies to this class of 
system. 

One further definition is required. If  at  the  i th  service center the r th  class of customers 
has a service time distr ibution tha t  is represented as a network of stages, then this is 
represented as shown in Figure 3. 

The first subscript on a, b, and ~ denotes the service center; the second subscript de- 
notes the class of customer; and the third subscript denotes the stage. 

Let  A~z = H~ffil a~,j. 
THEOREM. For a network of serwce stations which is open, closed, or m~xed in whzch 

each servzce center is of type 1, 2, 3, or 4, the equilibrium state probabilities are gwen by 

P ( S  = x,, z2, . . . ,  x~) = Cd(S)fl(xl)f2(x2) . . .  fN(x~),  

where C is a normalizing constant chosen to make the equzlibrium state probabilities sum to 

FIG. 3. 

air1 air 2 air3 

Representation of the service time dlstmbution of a class r customer at service center 
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1, d( S) is a function of the number of customers in the system, and each f,  is a function that 
depends on the type of service center i. 

n ,  n z I f  service center i is of type 1, then f,(x,) = ( 1 / ~ )  H ~ - i  [e,~,]. 

If  service center i is of type 2, then f~(x,) = n,!IIff_~ II~_'i{[e,~A,,d~,,~lm"'(1/m,~)}. 

If  service center i is of type 3, then f , (x,)  I~,~.l ~I~21 A ~"~ = {[e . . . .  z / ~ , a ]  ( l / r e , a ! ) } .  

I f  service center i is of type 4, then f,(x,) = II~- ' l  [e,~,A,~,~ (I/~,~,,~)]. 

If  the arrivals to the system depend on the total number of customers in the system 
M ( S )  and the arrivals are of class r and for center ~ according to fixed probabilities p,~, 
then d(S)  = II~,(o s)-~ k( i ) .  

if  we have the second type of state dependent arrival process, then d(S)  = 
II , : ,  II, J: 
If  the network is closed, then d(S )  = 1. 

The theorem is proved by checking that  the independent balance equations are satis- 
fie:[. In  every case for which these results apply, the independent balance equations 
reduce to the defining equations for the {e,,}. 

4. Marginal Distmbutions 

The solutions presented in Section 3 for equilibrium state probabilities are in terms of 
states which contain more information than is usually required. For example, the order- 
ing of customers in type 1 and type 4 service centers is part  of the specification of a 
state. The more detailed states are necessary to derive the equilibrium state probabilities. 
In  this section we exhibit some marginal distributions obtained by aggregating states. 
These marginal distributions are of interest because they lead to computationaUy more 
efficient means of calculating the normalization constant for closed networks and because 
of their implications. 

4.1. MARGINAL DISTRIBUTIONS AND THEIR IMPLICATIONS. We define an aggregate 
system state as the number of customers of each class in each service center. More for- 
mally, an aggregate state S of the system is given by (yl, y2, "" ", y~), where y, = 
(n,1, n,2, . . . ,  n,R) and n,~ is the number of customers of class r in service center i. Let 
n, be the total number of customers at service center i and let 1/~,r be the mean service 
time of a class r customer at service center i. Then the equilibrium state probabilities are 
given by 

P ( S  = (y~, y2, " " ,  y•) ) = Cd(S)g~(y,)g,(y2) . . .  gN(y2¢), 

where 

if service center i is of type 1, then g,(y,) = n,!{ I ~ - i  (1/n,r!)[e,r] ~''} (1/~,)~';  

if service center ~ is of type 2 or 4, then g,(y,) = nd I I ~ l  (1/n,~!)[e,~/~,~]~"; 

if ;service center i is of type 3, then g,(y,) = II~.1 (1/n,,!)[e,,/~,~]'". 

In  each case the expression for g,(y,) is derived by summing f,(x,) over all x, with 
n,L, n,2, • •.,  n,k fixed. That  this is the correct definition of the g, follows from the product 
form of the solution given in the theorem. If  the service rate at center i is the same for 
each class of jobs but  depends on the number of customers at the center, then the factor 
II,R--I (1/~,~) ~'" is replaced by IIY-'l(~/~,(J)), where #,( j)  is the service rate at  service 
cen te r ,  when there are j customers at this service center. Modifications to the solutions 
required by service rates tha t  depend on the number of customers at a center are dis- 
cussed in Section 5. 

The implications of this result are clear. Although we began with almost general ser- 
vice time distributions for type 2, 3, and 4 service centers, only the mean service times 
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appear in P ( S  = (yl, y~, • . ' ,  y~)). Thus for the aggregate states and within the bounds 
of the assumptions of the model, any service time distributions for the different classes 
of customers yield the same results as exponential service time distributions. I t  is im- 
portant to note that while only the means of the service time distribution appear in the 
results, the effects of the different classes of customers is still present, i.e. the means 
{1/~,rl appear in the solution. 

We note also that the normalization constant C can be more efficiently calculated from 
the aggregate states since there are fewer of the aggregate states. 

4.2. MARGINAl DISTRIBUTIONS FOR OPEN SYSTEMS. A further simplification is 
possible if the network is open and the arrival process does not depend on the state of the 
model. The following paragraphs develop this simplification. 

If an aggregate state of the system is to be simply the total number of customers in each 
service station, i.e. S = (nl, n2, . . . ,  n~), then P ( S )  = Cd(S)h~(nl)h~(n2) . . .  hN(n~). 
Let R, = {r : class r customers may require service center i}. 

If  service center i is of type 1, then h,(n,) = (~reR,  e,r)"'(1/~,) ~'. 

If  service center i is of type 2 or 4, then h,(n~) = ( ~ e R ,  (e ,~/~))" ' .  

If  service center i is of type 3, then h,(n~) = (1/n , ! ) (~reR,  (e,,/~',~))"'. 

The evaluation of the normalizing constant requires summing the given expression for 
the equilibrium state probabilities over all feasible states. The simple recursive tech- 
nique used by Buzen [4] extends to general networks with one class of customers. We 
now show a closed form solution for C for an open network. 

For open systems it is possible to obtain a closed form solution for the normalization 
constant when the arrival process is of the first type and N ( M ( S ) )  = k = constant. 
Since the system is open, any number of customers is feasible at a service center. There- 
fore 

C -~ ~ ~ ~ ( f i x  h , (n , ) )  or 
nl=O n2~O nhr=O ~=1 

Also, 
( 1 - -  ~-~ N(e,~/~,))-I if service cen te r / i s  type 1; 

I 

h=(n,) = ] (1  -- ~ X(e,~/#,~)) -~ if service center i is type 2 or 4; 
n~--0 ~ rERt 

[ ~ ,  X(e,~/,,~)] if service center i is type 3. Uxp 

Note that the normalization constant factors into terms where each term involves 
only the parameters for a single service center. I t  follows that the equilibrium state 
probabilities factor into terms where each term involves only the parameters for a single 
service center. From this it is easily seen that the number of customers in each service 
center are independent random variables. 

Let P,(n , )  be the equilibrium probability that there are n~ customers at service center 
i. 

n~ =0 

Using the expression for C, we reduce this to P=(n,) ~- X " ' h , ( n , ) / ~ _ o  k~h~(m). 

Let p, = ~ e R ,  X(e,~/#,) if service center i is type 1; 

p, = ~ c ~ ,  X(e,~/~,~) if service center i is type 2, 3, or 4. 
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Then P=(n,) = (1 - p~) p~' if service center i is type  1, 2, or 4; 

P , (n , )  = e-P~(p~'/n~!) if service center i is type  3. 

These results provide a convenient way of examining the equilibrium distribution a t  a 
service center. For  type 1, 2, or 4 service centers the marginal distribution is the same 
as the distr ibution of the number of customers in an M/M~1 queue with a sui tably 
chosen utilization p~. For  the equilibrium solution to exist, each p~ is required to be less 
than  1. 

The marginal distr ibution for a type  3 service center is the same as the equilibrium 
distr ibution for the number of customers for an M / G / ~  system with p~ = k/# .  This 
certainly appears to be reasonable since for an open system there must  be an infinite 
number of servers a t  center i if i t  is to be of type  3. 

5. State Dependent Service Rates 

Various forms of state dependent service rates can easily be incorporated into the  net- 
work models The most straightforward case is when the service rate  a t  a service center 
depends on the total  number of customers at  tha t  service center. 

LeE x~(n,) be an arb l ta ry  bu t  positive function of the number of customers n, a t  the 
i th  service center, x~(n~) is the rate  of service at  the zth service center when there are 
n, customers at  tha t  service center relatwe to the service rate when n, = 1. (Thus x,(nl) = 
1.) With  this type of s tate dependent service rate at  service center i, f , (x , )  becomes 
f~(x~)(1/II:£l x,(a)). This form of state dependent  service rate  is useful, for example, 
when the ~th service center contains multiple servers. If  there are k~ servers then we 
might let  

~n,, 1 ~ n~ < k, 
x,(n,) = (k, n= > k. 

A case of multiple servers where the  x,(n,) function might be chosen differently occurs 
when the servers are central processors. To approximate the  effect of memory interfer- 
ence, x~(n,) would be less than  n~ even when n~ ~ k. 

Another  form of state dependent  service rates occurs when the service rate  of a class 
r customer at  service center ~ depends on the number n,~ of class r customers at  service 
center ~. This form of state dependent  service rate  cannot be modeled for type  1 service 
centers! Let  y,~(n~) be an arbi t rary  positive function of n~ which is the  service rate  of 

F i o  4. 

SERVICE CENTER 

P1,1.5.1 = 30 
5 

P1,2, 5,2 = 0 0  

P1,1,4,1 = 35 4 
P1, 2, 4,2 = 0 0  

FCFS 

P1.1.3,1 = 35 3 
P1, 2.3, 2 = 0 0  

P1,1,2,1 = 0 0  
2 

P1,2,2,2 = 1 0  

1 } PROCESSOR 
SHARING 

Example network model 
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class r customers at service center i relative to the service rate when there is one class r 
customer at service e enter i. In  this case f, ( x, ) is replaced by ffi (x,) H ~=l II~£1 ( 1/y,~ ( a ) ). 

A third form of state dependent service rates involves the number of customers in 
several service centers. Let I = {/1, /2, " . ,  ira} be a subset of the service centers. Let 
nz = ~ , e l  n, and let Zz(n,) be an arbitrary positive function which is the relative rate 
of service to customers in the subset I of service centers relative to the service rates 
when nz is one. In  this case II ,e~ f,(x,) becomes II,~x f,(x,) I~.~1 (1/Z~(a)). 

Finally, we note that  these various forms of state dependent service rates can be com- 
bined. For example, consider a subset I of service centers where the service rate at each 
service center i E I is a function of the number of customers n~ and n,. I n  this case 
~ , e l  f,(x,) becomes 

X,) H (1/x,(a ~ (1/Z,(b)). 

6. Examples 

In  this section we give simple examples that  illustrate some of the results of the paper. 

Example 1. Consider the system shown in Figure 4. This is a closed system with two 
classes of customers. Service centers 2, 3, 4, and 5 are type 1 centers and service center 
1 is a type 2 center. This is a model of a multiprogrammed computer system in which 
service center 1 represents the CPU and the other service centers represent I /O  devices. 

Figure 5(a) gives the utilizations of the service centers with a varying number of class 
1 customers and with one class 2 customer in the system. In  Figure 5(b) the utilizations 
of the service centers are given for the same network of service centers but  with the two 
classes of customers replaced by one class of "equivalent" customers. The parameters 
for these equivalent customers are calculated by first solving for the equilibrium state 
probabilities of the two customer class model. From these one can solve for rl, the rate 
at  which class 1 customers leave service center 1, and r2, the rate at which class 2 cus- 
tomers leave service center 1. 

Now the equivalent customers have parameters given by 

1/#1 = rl/ (rl + r2)l/gu + (r~/rl "t- r~))(1/p12); 

p,., = (rx/(rl Jr r2))PLl.,.1 + (r2/(r, -k r2))pl.2.,.2, i = 2, 3, 4, 5. 

UTI LIZATIONS UTI LIZATIONS TRANSITION 
OF SERVICE CENTERS OF SERVICE CENTERS PROBABILITIES 

N1 = 0 600 ,400 0 0 0 0 0 0 600 400 O O 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

N1 = 1 678 .371 384 .256 165 588 322 333 222 143 336 232 232 199 2 439 

N1 = 2 720 352 606 404 260 631 308 532 354 228 233 268 268 230 3 139 

N 1 = 3  744 339 743 495 318 665 303 664 442 284 193 282 282 242 3536  

N 1 = 4  7 5 9 '  330 831 554 356 689 300 754 503 323 173 290 290 248 3780  

N1 = 5 769 324 888 592 381 708 299 818 545 350 161 294 294 252 3 934 

I 
N 1 = 6  7 7 5 1 3 2 1  926 617 397 722 299 863 575 370 154 2 9 6 2 9 6  254 4034  

N1 = 7 779 I 318 951 : 634 407 ! 734 300 896 597 384 149 29S I 298 255 4 100 

(a) (b) 

FIG. 5. (a) Two classes of customers; n2 = number of class 2 customers = 1. (b) Same 
system with one class of equivalent customers, number of customers = nl + n2 
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The rationale for these definitions is quite simple. If measurements were taken on the 
system without distinguishing between classes of customers, these would be the param- 
eters measured. 

Figure 6 shows the results of Figure 5 graphically. The service center utilizations for 
the model with different customers are indicated by a line through the values with the 
service center number above the line. For the model with "equivalent" customers, the 
service center number carries a prime and is below the line. The utilizations predicted 
by the model with equivalent customers are always smaller than those of the model 
with distinct customers. In fact, the utilization of service center 1 (the CPU) goes down 
initially as the number of equivalent customers increases from 1 to 2, and the difference 
for this server is substantial (between 4.5 and 9%). The structure of the model with 
different customers is such that the class 2 customer never has to queue for any I /O 
serw~r. In the model with equivalent customers, all customers suffer queueing delays at 
I /O servers when the system contains two or more customers. 

Example 2. The customer class change concept can also be used to capture some com- 
plex sequencing properties of the system being modeled. For example, one of Moore's 
[13] models of a time-sharing system included a swapping drum. A simplified model is 
s h o ~  in Figure 7. 

If a customer at the swapping drum has just come from the terminals, then it is being 
swapped into main memory and should next move to the CPU. If the customer has iust 
come from the CPU, then it is being swapped out and should next move to the terminals. 

1 0  

0 8  

0 b  

0 4  

0 2  
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0 

Fzo. 6. 

I I I I I ] 

1 
o .......... o ~ o ,,,o ° o 

o / o ...,......... o ~ o ~  

• o /  O / I '  

2' 

I I I { I I 
1 2 3 4 5 6 

N1 
(a) 

10 
I I I I I I . . , . . . . -  q 

3 O .,....--." ° .,_..,.... ¢ 

O / o  ~ °  
o s o / o ~  - / 3' 

^ ~ 0  4 ^ q 
0 6 , , ~ /  .......- o - . - - - ' ~ _ . . - - ~  

/ . ,o o ~ o ° ~ O - - 7  " 

04 '° / 1 . %  ...,........... oO ~ $ ~ 8 ~ -  1 
5, 

o 2  

o ,  I I I I I L 
0 1 2 3 4 5 6 

N1 

(b) 

Utilization of service centers versus number of customers for (a) different customers 
and (b) equivalent customers 

Fro. 7. 

SERVICE CENTER 

1 

2 

3 

4 

A time-sharing system model with a swapping drum 
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However, without the concept of class changes, we can only define transition probabilities 
from the swapping drum to the CPU and from the swapping drum to the terminals. The 
natural selection would be to assign the value ½ to each of these transition probabilities. 
I t  is easy to see that this is not an accurate model of the sequencing pattern. Moore did 
not have solutions available which allowed class changes and therefore used an approxi- 
mation. In this approximation a customer made only one visit to the swapping drum 
between visits to the terminals, and the swapping drum service time was doubled. Using 
class changes we can model the actual sequencing. Customers can be in class 1 or class 2. 
Customers at the terminals are in class 1 and remain in class 1 when they move to the 
swapping drum. Class 1 customers move to the CPU from the swapping drum with 
probability 1 and remain in class 1. When leaving the CPU there is a probability of going 
to the I /O device or to the swapping drum. The transition from the CPU to the swapping 
drum is defined to be a change from class 1 to class 2 also. Class 2 customers leaving 
the drum have probability 1 of visiting the terminals next. The transition probabilities 
are more formally described as 

pi ,1 ,2 ,1  = I ,  p2,1,4,1 = 1 ,  p4,1.3,1 "Jr p4,1,~,2 = I ,  pZ,I,4,1 ~- I ,  p2,2,1,I  ~-  l -  

The class of models in [12] also allows representation of complex sequencing properties. 

7. Conclusions 

We have derived the equilibrium distribution of states of a model containing four differ- 
ent types of service centers and R different classes of customers. From this steady state 
distribution one can compute the moments of the queue sizes for different classes of 
customers at different service centers, the utilizations of the service centers, the "cycle 
time" or response time for different classes of customers, the "throughput" of different 
classes of customers, and other measures of system performance. 

These results unify and extend a number of separate results on networks of queues. 
The general model can have four types of service centers. Three of those types allow 
different service time distributions with rational Laplace transforms for different classes 
of customers. The model allows different classes of customers to have different arrival 
rates and different routing probabilities. For open networks with state independent 
arrivals, some very simple formulas give the marginal distribution of customers at the 
service centers of the network. 

The analysis is motivated by the desire to model computer systems. Type 1 service 
centers (FCFS scheduling) are appropriate models of secondary storage I /O devices be- 
cause preemptive scheduling is usually not possible or efficient for such devices. Type 2 
and type 4 service centers (processor-sharing scheduling and LCFS) are appropriate mod- 
els for CPUs since LCFS is an efficient preemptive scheduling method and round robin 
scheduling approaches processor sharing; both have been found to improve the perform- 
ance of CPUs. Type 3 service centers (no queueing) are appropriate models for terminals 
and for routing delays in the network. Allowing different classes of customers should 
answer one of the frequent objections to queueing models as models of computer sys- 
tems. The examples given indicate how significant different classes of customers can be in 
the utilization levels predicted by model analysis and in the systems captured by models. 

There are many additional complications yet to be analyzed, but the general model 
presented here represents a substantial increase in the ability to build and solve analyti- 
cal models of complex computer systems. 
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