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ABSTRACT
A major challenge in the design of wireless networks is the
need for distributed scheduling algorithms that will efficiently
share the common spectrum. Recently, a few distributed al-
gorithms for networks in which a node can converse with
at most a single neighbor at a time have been presented.
These algorithms guarantee 50% of the maximum possi-
ble throughput. We present the first distributed scheduling
framework that guarantees maximum throughput. It is based
on a combination of a distributed matching algorithm and
an algorithm that compares and merges successive matching
solutions. The comparison can be done by a deterministic
algorithm or by randomized gossip algorithms. In the latter
case, the comparison may be inaccurate. Yet, we show that
if the matching and gossip algorithms satisfy simple con-
ditions related to their performance and to the inaccuracy
of the comparison (respectively), the framework attains the
desired throughput. It is shown that the complexities of our
algorithms, that achieve nearly 100% throughput, are com-
parable to those of the algorithms that achieve 50% through-
put. Finally, we discuss extensions to general interference
models. Even for such models, the framework provides a
simple distributed throughput optimal algorithm.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]:Network Architecture and De-
sign — Wireless communication; G.3 [Mathematics of Com-
puting]:Probability and Statistics — Probabilistic algorithms

General Terms: Algorithms, Performance, Design

Keywords: Scheduling, Stability, Distributed algorithms,
Gossip algorithms, Wireless networks, Matching

1. INTRODUCTION
One of the major challenges in the design and operation of

wireless networks is to schedule transmissions to efficiently
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share the common spectrum among links in the same geo-
graphic area. A centralized scheduling policy that achieves
the maximum attainable throughput region has been pre-
sented in the seminal paper by Tassiulas and Ephremides
[23]. However, the lack of central control in wireless net-
works calls for the design of distributed scheduling algo-
rithms. Such algorithms should achieve the maximum throu-
ghput or at least a guaranteed fraction of the maximum
throughput. In this paper we present a distributed schedul-
ing framework that guarantees maximum throughput. The
framework is based on randomized algorithms that gener-
ate feasible schedules and on algorithms that compare and
merge possible schedules in a distributed manner. Due to
the distributed operation, the merge procedure may some-
times result in an inferior schedule. Despite that fact, we
show that the framework achieves the desired throughput.

Different wireless technologies pose different constraints
on the set of transmissions that can take place simultane-
ously. In this paper, we demonstrate our approach by focus-
ing on primary interference constraints. These constraints
imply that each station can converse with at most a single
neighbor at a time (i.e. the set of active links at any point of
time constitutes a matching1). Networks operating accord-
ing to these constraints are also known as node-exclusive
spectrum sharing networks and have been studied in [3, 5,
6, 10, 24, 27].

One of the first attempts to deal with primary interference
constraints was by Hajek and Sasaki [10] who proposed cen-
tralized algorithms for finding minimum length schedule to
satisfy given traffic requirements. As mentioned above, the
first attempt to deal with stochastic arrivals was in [23]. The
results presented in [23] are applicable to general constrained
resource allocation problems including scheduling in wireless
networks with primary interference constraints. The routing
and link activation policy presented there guarantees to sta-
bilize the network (i.e. provide 100% throughput) whenever
the arrival rates are within the stability region.

The results of [23] have been extended to various settings
of wireless networks. For example, Neely et al. [20] recently
developed a throughput optimal joint routing, scheduling,
and power allocation algorithm for wireless networks with
time-varying channel conditions and stochastic traffic. The
set of transmission constraints in input-queue switches is
very similar to primary-interference constraints in wireless
networks. The main difference is that in a wireless network

1A set of links is a matching, if no two links are incident to
the same node.



the network graph is not necessarily bipartite and there is
no central authority controlling the system. Scheduling in
input queue switches has been extensively studied in the
past (e.g. [18]).

The optimal algorithms developed in [18, 20, 23] require
solving a global optimization problem, taking into account
the queue backlog information for every link in the network.
For example, for primary interference constraints a maxi-
mum weight matching problem has to be solved in every slot.
Obtaining a centralized solution to this problem in a wireless
network does not seem to be feasible, due to the communica-
tion overhead associated with collecting the network topol-
ogy and queue backlog information, and due to the limited
processing capability available to the nodes. This motivates
us to study distributed scheduling algorithms, where by a
distributed algorithm we mean the following:

(i) Each node can communicate only with its neighbors.

(ii) The computation at any node cannot utilize the global
topological information. This disallows nodes to gather
information about every network parameter and then
perform computation locally.

The design of distributed scheduling algorithms has at-
tracted a lot of attention recently. Lin and Shroff [17] stud-
ied the impact of imperfect scheduling on cross-layer rate
control. Regarding primary interference constraints, they
showed that using a distributed maximal matching algo-
rithm along with a rate control algorithm may achieve 50%
throughput. Similar results for different settings were also
obtained in [6, 26]. Finally, Chaporkar et al. [5] study the
problem from a different point of view. They characterize
the stability region of a maximal scheduling policy under
arbitrary topologies and interference models2. We will elab-
orate more on [5, 6, 17, 26] in Section 7.

Despite these recent efforts, the effects of using imper-
fect or approximate distributed scheduling algorithms on the
network throughput are still not fully understood. In partic-
ular, there are two key questions in this context. The first is
what performance in terms of network stability results from
using such algorithms. This question can be rephrased as:
can a distributed algorithm achieve 100% throughput? The
second is what are the tradeoffs between the decentralization
costs (e.g. communication complexity and local computation
complexity) and the network throughput. In this paper we
try to answer these questions for a relatively simple network
model. Thus, we deliberately do not consider in this paper
issues of cross-layer design.

We consider a slotted multihop wireless network with a
stochastic packet arrival process in which a node can con-
verse with at most a single neighbor at a time. Our approach
for designing distributed scheduling algorithms builds upon
the ideas presented by Tassiulas [22] and Giaccone et al.
[9]. The approach presented in [22] works as follows. In
each time slot, a feasible solution to the maximum weighted
matching problem is obtained. If the value of the new solu-
tion is higher than the value of the current solution, they are
replaced. Using this approach guarantees achieving 100%
throughput under certain conditions on the way in which
the matching is obtained (see more details in Section 3). In

2For the node-exclusive spectrum sharing model, maximal
scheduling reduces to maximal matching.

the context of input-queue switches, [9] proposed enhance-
ments to this method which reduce the queueing delay. It
was shown in [9] that merging the current and new match-
ings by selecting heavy edges from both of them still results
in 100% throughput.

One of our main contributions is the extension of the
frameworks of [9, 22] to a situation where exact comparison
between different matchings is impossible. This is especially
relevant in wireless networks where distributed algorithms
should be used for the comparison. We show that if the
difference between the preferable matching and the selected
matching is bounded with high probability, the system is
stable for any set of rates (1 − α − β)Λ∗, where Λ∗ is the
stability region under a perfect scheduler. α and β are small
constants that depend on the allowed difference between the
preferable and selected matchings and on the probability
that a maximum weight matching will be selected.

Another key observation is that feasible matchings can be
compared and merged in a distributed manner by collecting
only semi-local information. Namely, nodes may need infor-
mation from a few hops away but in general no node will
need to obtain information originating at all the nodes in
the network.

Based on these observations, we propose a distributed
framework that iteratively finds feasible solutions to the
maximum weight matching problem and merges consecu-
tive solutions. As mentioned above, the merge operation
does not always need to select the preferable matching. The
first phase of this combined framework is to obtain a solution
to the maximal matching problem (i.e a feasible solution to
the maximum weight matching problem) by a randomized
distributed algorithm. We consider a number of options for
such an algorithm and discuss their performance.

The second phase is to compare and merge successive so-
lutions. We propose three alternatives for collecting the in-
formation required for the comparison. The first approach
is based on deterministically collecting information within
local components of the network. This approach provides
100% throughput at time and communication complexities
that are comparable to those of the algorithms proposed re-
cently. The second approach is based on a gossip algorithm3

that disseminates information in a randomized manner in or-
der to compute the difference between the values of the new
solution and the old solution. One of the advantages of the
gossip algorithm is that it does not require any infrastruc-
ture (such as unique addresses). We show that despite the
randomized and perhaps inaccurate operation of the gossip
algorithm, the stability region can be as close as desired to
Λ∗. The third approach is based on a novel gossip algo-
rithm. It computes estimates of the difference between the
new and old solutions by distributedly computing minimum
values of exponential random variables. The complexity of
this approach is significantly lower than of the second ap-
proach and it can achieve the same stability region.

Finally, we note that in [5] it has been shown that us-
ing maximal-scheduling in networks with certain secondary
interference constraints may reduce the stability region to
Λ∗/8. Moreover, under general interference constraints, achi-
eving 100% throughput (even in a centralized manner) re-
quires to solve an NP-Complete problem (e.g. maximum
weight independent set). Hence, generalizing our approach

3for more information on gossip algorithms see [4, 15] and
references therein.



to other interference constraints may provide a significant
improvement. We conclude by briefly discussing the re-
quired modifications to the scheduling and gossip algorithms
that will allow them to distributedly achieve maximum thro-
ughput under general interference constraints.

The main contribution of this paper is the design of ran-
domized distributed algorithms that attain 100% through-
put with decentralization costs that are comparable to those
of the maximal matching algorithms proposed recently. Re-
call that those algorithms may attain as low as 50% through-
put. To the best of our knowledge, this paper is the first
attempt to design distributed algorithms that achieve 100%
throughput in a wireless network and to systematically quan-
tify the complexities of such algorithms.

This paper is organized as follows. In Section 2 we present
the network model and formulate the problem. In Section 3
we present the framework for obtaining maximum through-
put in a distributed manner. Sections 4 and 5 present algo-
rithms for obtaining the matching and for merging consecu-
tive solutions. Implementation considerations and possible
enhancements are discussed in Section 6. In Section 7 we
evaluate and compare the performance of the different algo-
rithms. Extensions to other interference models are briefly
discussed in Section 8. We summarize the results and dis-
cuss future research directions in Section 9.

2. MODEL AND PROBLEM
FORMULATION

We consider a wireless network modeled by a directed
graph G = (V, E), where V = {1, . . . , n} is the set of nodes
and E = {(i, j) : i, j ∈ V } is the set of directed links. We
assume that the time is slotted, denoted by m, and that the
packet length is normalized so as to be transmittable in a
unit time slot.

At this stage we consider single-hop traffic4. Let Aij(m)
denote the number of packets arriving at node i that wish to
be transmitted to a neighboring node j at the end of time-
slot m. In this paper, we consider Aij(·) to be Bernoulli
i.i.d. process5 with arrival rate λij , that is Pr(Aij(0) =
1) = λij . The vector of arrivals at time m is denoted by
A(m) = [Aij(m), (i, j) ∈ E]T and the arrival rate vector is
denoted by Λ = [λij , (i, j) ∈ E]T .

Let Qij(m) denote the number of packets destined to node
j and queued at node i at the beginning of time-slot m. Let
Q(m) = [Qij(m), (i, j) ∈ E]T denote the queue-size vector.
For transmissions, a node needs to satisfy certain wireless-
interference constraints. We consider primary interference
constraints, also known as node-exclusive spectrum sharing
(see [3, 5, 6, 10, 24, 27] for a similar setup). Under these
constraints, each node can communicate with at most a sin-
gle neighbor at a time (a node cannot transmit and receive
simultaneously). Thus, the set of simultaneously active links
form a matching in the graph G. Let Π(G) denote the set
of all feasible matchings (not necessarily maximal) in the
graph G. In particular, let π = [πij , (i, j) ∈ E]T ∈ Π(G) be
a 0 − 1 vector representing a matching.

4The results of the paper should be extendible to multi-hop
case using the “back-pressure” mechanism [23] for obtaining
edge weights and applying our distributed framework.
5Using fluid model techniques, it is not hard to extend the
results for any arrival process satisfying the strong law of
large numbers.

The scheduling decision must be made such that the sched-
ule is a matching at each time. To this end, let Sij(m) ∈
{0, 1} be indicator variable of whether link (i, j) is active
or not at time m. We assume that transmissions happen
in the middle of a time slot (possibly utilizing information
about Q(m)). Let vector S(m) = [Sij(m), (i, j) ∈ E]T de-
note the scheduling decision vector. Then, S(m) ∈ Π(G).
A scheduling algorithm, in this paper, selects S(m) based
on the queue-sizes, Q(k), k ≤ m, and arrivals A(k), k ≤ m.
Thus, the dynamics of the system can be described as

Q(m + 1) = A(m) + [Q(m) − S(m)]+

= A(m) + Q(m) − D(m), (1)

where Dij(m) = 1Qij (m)>0Sij(m) and D(m) = [Dij(m)]T .

Definition 1 (Admissible rate-vector). An arrival
rate vector Λ is called admissible, if there exists a collection
of matchings, πj , 1 ≤ j ≤ K such that

Λ ≤
KX

j=1

αjπj , αj ≥ 0,
KX

j=1

αj < 1.

Definition 2 (Stability). A scheduling algorithm is
called stable if for any admissible Λ, the average queue-size
is bounded, that is, lim supm E[Qij(m)] < ∞, (i, j) ∈ E.

Definition 3 (Stability Region). The set of all ad-
missible rate vectors Λ is called the stability region and is
denoted by Λ∗.

Tassiulas and Ephremides [23] established the existence of
a stable scheduling algorithm. In particular, the algorithm
that schedules according to S∗(m) where

S∗(m) = arg max
π∈Π(G)

QT (m)π, (2)

is a stable algorithm. In the context of switch scheduling
and node-exclusive spectrum sharing networks, this algo-
rithm has to schedule the edges of the Maximum Weight
Matching at each time slot, where the edge weights are the
queue sizes. The maximum weight matching in any graph
can be found in O(n3) computation time, using a central-
ized algorithm [16]. However, in wireless networks (unlike a
router) implementing a centralized algorithm is not feasible.
For bipartite graphs, distributed scheduling algorithms for
finding a maximum weight matching are known [1, 2]. To
the best of our knowledge, for arbitrary networks, no dis-
tributed algorithm for finding maximum weight matching is
known. This motivates our goal: Design a stable distributed
scheduling algorithm for the wireless scheduling problem.

Since such an algorithm has to be implemented in a dis-
tributed manner, we define the following standard perfor-
mance measures [21]. We define the Communication Com-
plexity as the number of messages sent over all links during
the execution of the algorithm. The Time Complexity is
defined as the number of time slots required, if the local
computation time is negligible (significantly shorter than a
slot) and if during each time slot a node can exchange er-
rorless control messages with all its neighbors. Note that
although this is a standard definition of the time complexity
in a distributed algorithm, it does not adhere to the specific
characteristics of networks with primary interference con-
straints. Yet, we use this standard model as a framework
for comparing the performance of the different algorithms.



We will discuss this definition in more detail in Section 7.
In some specific cases, we will also be interested in the Local
Computation Complexity (it will become significant only for
a distributed version of the centralized algorithm).

3. DISTRIBUTED SCHEDULING
ALGORITHM

In this section, we describe a general framework for ob-
taining maximum throughput in a distributed manner. We
present a generic algorithm, referred to as Gen-Algo, and
prove its throughput properties. In the following sections,
we will elaborate on the distributed implementation of this
algorithm. As mentioned in Section 1, this algorithm is mo-
tivated by the results of [9, 22].

Gen-Algo

(1) Let S(m) denote the schedule at time m.

(2) Let R(m+1) be a new schedule obtained by a distrib-
uted procedure New-Sch.

(3) The schedule at time m + 1, S(m + 1), is obtained by
a distributed procedure Mix using inputs S(m) and
R(m + 1).

We state and prove the following property for Gen-Algo.
The proof methodology is similar to that of [9, 22].

Theorem 1. Let the procedures New-Sch and Mix sat-
isfy the following properties.

P1. For any time m, define X(m) = 1R(m)=S∗(m), where
S∗(m) is a Maximum Weight Matching at time m. Let
X(m) be independent random variables with Pr(X(m) =
1) ≥ δ, for some δ > 0, for all m. Here the probability
is with respect to randomness of New-Sch.

P2. For any time m, with respect to the randomness of
the Mix, Q(m)T S(m) ≥ (1 − γ)max{Q(m)T S(m −
1), Q(m)T R(m)}, with probability at least 1− δ1, such
that δ1 ≪ δ.

Then, the algorithm is stable for any arrival rate vector Λ
such that

Λ ≤
KX

j=1

αjπj , αj ≥ 0,
X

j

αj < 1 − γ − 2

r
δ1

δ
. (3)

Before we prove the Theorem 1, we note that a system
satisfying P1 and P2 is stable for any set of rates (1 − γ −

2
p

δ1/δ)Λ∗, where Λ∗ is the stability region under a perfect
(centralized) scheduler. Notice that the main difference from
[9, 22] is the addition of property P2 and the identification
of the tradeoff between γ, δ1, δ, and the obtained through-
put. Property P2 allows changing the schedule according to
inaccurate estimations of the difference between the weights
of S(m) and R(m + 1). This opens the possibility for im-
plementing the comparison mechanism in a distributed and
possibly approximate manner.

Thus, if we manage to develop distributed algorithms New-
Sch and Mix that satisfy properties P1 and P2 with small
enough γ and δ1, then the corresponding Gen-Algo algo-
rithm will provide throughput which is almost the maximum

possible. In the following sections, we will discuss the trade-
off between the loss in throughput in terms of γ and δ1 and
the time and communication complexity. We will first ex-
hibit distributed algorithms New-Sch and Mix such that
γ = 0 and δ1 = 0, thereby obtaining 100% throughput. In
that case the Mix algorithm requires some coordination be-
tween the nodes. Therefore, we will present algorithms that
require minimal coordination in which the corresponding γ
and δ1 can be made as small as required (by running the
algorithms long enough).

Proof Of Theorem 1. We will use the standard Fos-
ter’s criteria for proving stability of an algorithm. For this
purpose, we will use standard quadratic Lyapunov function.

L(Q(m)) = Q(m)T Q(m) =
X

(i,j)∈E

Q2
ij(m).

Initially, we assume that Q(0) = [0]. We will study the drift
in L(·) at every T th time-slot for some large enough finite T .
To this end, define mk = kT, k ≥ 0. From Foster’s criteria
it will suffice to establish that for some constant Φ > 0,

E[L(Q(mk+1)) − L(Q(mk))|Q(mk)] ≤ −ǫ‖Q(mk)‖1

+Φ, (4)

to prove

lim sup
k

E[Q(mk)] < ∞. (5)

We note that the above expectation is with respect to the
randomness of the whole Markovian system, conditioned on
state Q(mk). This includes the randomness in future ar-
rivals and algorithms.

Since, each queue-size can increase by at most T packets
between any mk and mk+1, (5) will imply stability of the
system. Next, we proceed to prove (4).

Given Q(mk) = Q(kT ), lets consider the change in L(·)
over m ∈ (kT, (k + 1)T ]. Let A(m) denote the vector of
arrivals and S(m) denote the vector of schedules at time
m ∈ [kT, (k + 1)T ]. Now, using (1)

L(Q(m + 1)) − L(Q(m)) (6)

= Q(m + 1)T Q(m + 1) − Q(m)T Q(m)

=
X

(i,j)∈E

(Qij(m + 1) − Qij(m)) (Qij(m + 1) + Qij(m))

=
X

(i,j)∈E

(Aij(m) − Dij(m)) (2Qij(m) + Aij(m) − Dij(m))

= 2
X

(i,j)∈E

Qij(m)(Aij (m) − Sij(m)) + (Aij(m) − Dij(m))2.

The last equality uses the fact that

Qij(m)Dij(m) = Qij(m)Sij(m).

Note that, for any m, (Aij(m) − Dij(m))2 ≤ 1. Using this
bound along with summation of (6) for m + 1, . . . , m + T ,
we obtain

L(Q(m + T )) − L(Q(m)) (7)

≤ 2

T−1X
k=1

Q(m + k)T (A(m + k) − S(m + k)) + 2(T − 1)E,

where E = |E|. Now, the arrival process is Bernoulli i.i.d.
and hence taking conditional expectation with respect to



Q(m) of (7) yields,

E[L(Q(m + T )) − L(Q(m))|Q(m)] (8)

≤ 2

T−1X
k=1

E[Q(m + k)T (Λ − S(m + k))|Q(m)] + 2(T − 1)E,

Now, Λ is an admissible rate vector, that is for some πj ∈
Π(G), 1 ≤ j ≤ K,

Λ =

KX
j=1

αjπj , αj ≥ 0,
X

j

αj < 1. (9)

Let ρ =
P

j αj < 1. Also, let S∗(m+k) denote the maximum
weight schedule at time m + k, that is

S∗(m + k) = arg max
π∈Π(G)

QT (m + k)π. (10)

For simplicity, denote W ∗(m) = QT (m)S∗(m). For algo-
rithm Gen-Algo, denote

∆(m) = QT (m)S∗(m) − QT (m)S(m). (11)

Putting (7)-(11) together, we obtain

E[L(Q(m + T )) − L(Q(m))|Q(m)] ≤ (12)

−(1 − ρ)
PT

k=1 E[W ∗(m + k) + ∆(m + k)|Q(m)] +

2(T − 1)E ≤ −T (1 − ρ)(W ∗(m) − nT ) +PT
k=1 E[∆(m + k)|Q(m)] + 2TE.

To obtain (12), we have used the fact that the weight of
the maximum weight matching can be reduced by at most
n per time-slot in the worst case. That is, W ∗(m + k) ≥
W ∗(m) − nk, unconditionally.

Next, we will use properties P1 and P2 of algorithms
New-Sch and Mix to obtain the desired result. Motivated
by P1, define Z = infk≥1{R(m + k) = S∗(m + k)}, and

Z1 = inf
k≥0

{P2 fails at timem + Z + k} . (13)

Now property P1 immediately imply that

E[Z|Q(m)] = E[Z] ≤ 1/δ.

Hence,

E[min{Z, T}] ≤ E[Z] ≤ 1/δ. (14)

By property P2, it is easy to see that for Z ≤ k ≤ min{T, Z1},

∆(m + k) ≤ 2(k − Z)n + γW ∗(m + Z)

≤ γW ∗(m) + 2Tn. (15)

Further, it trivially follows that for k ≤ Z,

∆(m + k) ≤ W ∗(m) + 2Tn. (16)

Using (14)-(16), we obtain

TX
k=1

∆(m + k) (17)

≤ W ∗(m)(min{Z, T} + T̂ ) + γW ∗(m)T + 2T 2n,

where T̂ = T −min{T, Z1}. Now, by P2 and simple union-
bound it is easy to see that Z1 ≥ T with probability at least
1 − δ1T . Hence,

E[T̂ ] ≤ δ1T
2. (18)

From (17)-(18) and (12), we obtain

E[L(Q(mk+1)) − L(Q(mk))|Q(mk)] (19)

≤ −T (1 − ρ − γ − (δT )−1 − δ1T )W ∗(mk) + 2T (E + nT ).

Now, if δ1 = 0, then for any ρ < 1 − γ, we can find large
enough finite T the term 1−γ−(δT )−1 > 0. For 0 < δ1 ≪ δ,

choose T =
p

1/(δδ1). Then, (19) becomes

E[L(Q(mk+1)) − L(Q(mk))|Q(mk)] (20)

≤ −T

 
1 − ρ − γ − 2

r
δ1

δ

!
W ∗(mk) + 2T (E + nT ),

with T =
p

1/(δδ1). Since the W ∗(mk) is the weight of
maximum weight matching, for any G it is easy to see that

W ∗(mk) ≥

P
(i,j)∈E Qij(mk)

E
. (21)

From (20) and (21), we obtain that for ρ < 1 − γ − 2
q

δ1
δ

,

the desired Foster’s criteria is satisfied, i.e.

E[L(Q(mk+1)) − L(Q(mk))|Q(mk)] ≤ −ǫ‖Q(mk)‖1 + Φ,

for some ǫ > 0 and constant Φ.

4. DISTRIBUTED NEW-SCH
This section describes a New-Sch algorithm that has

property P1, described in Theorem 1. We will show that
it is enough to run this algorithm for a constant number of
iterations in order to satisfy this property. In Section 6.2
we will discuss other possibilities for designing New-Sch
algorithms that satisfy this property.

Note that Gen-Algo as defined in Section 3 may change
the schedule every time slot. However, the running time of
the New-Sch and the Mix algorithms may be a few time
slots. For the ease of presentation, in this section and in
Section 5, we assume that the running time of the algorithms
is shorter than the slot used for data transmission (perhaps
by using mini-slots for control information). In Section 6
we will show that this assumption can be easily relaxed and
that Theorem 1 holds even if the decision regarding a new
schedule is made every several time slots.

Consider the following distributed randomized matching
algorithm, that is described in [14].

Rand-Match

(1) Initially, all n nodes of G are unmatched.

(2) While there are unmatched nodes with unmatched neigh-
bors, do the following:

(i) Each unmatched node having at least one un-
matched neighbor decides to be left or right with
probability 1/2 independently.

(ii) If a node, say vl, becomes left, it sends a request
to one of its unmatched neighbor uniformly at
random.

(iii) If a node, say vr, becomes right, on receiving re-
quests from one or more left neighbors, it chooses
one of them uniformly at random, say u. The
nodes vr and u are set as matched and they in-
form all of their unmatched neighbors about it.
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Figure 1: An example of the connected components
composing the graph G1.

Theorem 2 (Jung and Shah, 2006 [14]). For any
graph G, the Rand-Match algorithm finds a maximal match-
ing in O(log2 n) iterations with probability at least 1− 1/n4.

Before discussing other properties of the algorithm, we note
that its applicability to directed graphs is almost immedi-
ate. Namely, once an edge is selected, we define its direction
from the left node to the right node. Although the time com-
plexity is O(log2 n), the following lemma shows that when
Rand-Match is used as part of Gen-Algo, there is no need
to wait until it finds a maximal matching.

Lemma 1. For any maximal matching, π ∈ Π(G), the
algorithm Rand-Match finds it with probability at least
(2n)−n at the end of the first iteration.

Proof. Consider π ∈ Π(G). Consider a particular pair
of nodes u and v that are matched in π by a directed edge
(u, v). Then, the probability that they will be matched by
(u, v) at the end of the first iteration is 2−2(du)−1d−1

v , where
du and dv are the degrees of nodes u and v. These are less
than n and hence the probability is at least 2−2n−2. Now,
using the same argument for the remaining (at most) n/2
node pairs and using independence of each node’s decision,
we obtain that the probability that all the node pairs in
π are matched at the end of the first iteration is at least
2−nn−n.

From Theorem 1 and Lemma 1, we see that it is sufficient
to use Rand-Match for a finite number of iterations, which
is not a function of the network size. However, since the
corresponding δ = (2n)−n is extremely small, we will need
a Mix algorithm such that δ1 is very small or preferably 0.

5. DISTRIBUTED MIX
We will describe three mechanisms to obtain a distributed

Mix algorithm. Given two matchings S(m) and R(m + 1),
consider graph G1 that contains edges only from S(m) and
R(m + 1). The graph G1 is composed of connected com-
ponents denoted by C1, . . . , Ck. The connected components
of G1 are either: (i) even length cycles with alternate edges
belonging to S(m) and R(m + 1) or (ii) odd or even length
paths again with alternate edges belonging to S(m) and
R(m + 1). Figure 1 illustrates a network graph and the
graph G1 composed of edges in S(m) and R(m + 1).

The three proposed mechanisms merge matchings S(m)
and R(m+1) to obtain S(m+1) by using the Merge proce-
dure, described below. In the context of wireless networks,
focusing on connected components is advantageous, since
generally there is no need for global information regarding
the total weight of S(m) and R(m + 1).

Merge(S(m),R(m + 1))

(1) For each component Ci, 1 ≤ i ≤ k, do the following:

(i) Consider a node v ∈ Ci. Let edge ev
S(m) and

ev
R(m+1) be the edges containing this node v. As-

sign weights Wv(S(m)) = Qev
S(m)

(m), and

Wv(R(m + 1)) = Qev
R(m+1)

(m).

(ii) Obtain the sums of node weights of Ci,
W (S(m)) =

P
v∈Ci

Wv(S(m)),

W (R(m + 1)) =
P

v∈Ci
Wv(R(m + 1))

(iii) If W (S(m))−W (R(m+1)) > 0, then retain edges
of S(m) in Ci to obtain edges in S(m + 1). Else,
replace edges of S(m) in Ci by edges of R(m+1)
to obtain edges of S(m + 1).

In order to simplify the notation, in the rest of this section
we will refer to S(m) and R(m+1) as S and R, respectively.

We note that if a connected component of G1 is a path, a
node v at the end of the path will be connected to either ev

S

or ev
R. Therefore, in that case in step 1.i, it will be assigned

either Wv(S) or Wv(R). Notice also that the sum of node
weights is exactly twice the sum of edge weights.

From above, it is clear that to implement Merge in a
distributed manner, all we need is a distributed algorithm
that obtains the sum over a connected component. The de-
scription of Merge implies that if we can find the sums of
node-weights in each connected component precisely, then
the schedule S(m+1) will satisfy property P2 of Theorem 1
with γ = δ1 = 0. We first describe a straightforward summa-
tion mechanism that finds the sums precisely. This requires
coordination as well as some form of unique node identities.
To make the algorithm totally free of any infrastructure, we
will describe two randomized distributed (i.e. gossip) algo-
rithms that find estimates of the sums within certain preci-
sion with certain confidence.

Similarly to Section 4, we assume that the running time of
the algorithms is shorter than the slot used for data trans-
mission. In addition, we assume that all nodes make the
decision in Step 1.iii of Merge simultaneously. In Section
6 we will show that these assumptions can be relaxed.

5.1 Summation Mechanism
Each node has its weight as assigned in the algorithm

Merge. In order to make the decision in Step 1.iii, the
Merge algorithm can find the sums W (S) and W (R), and
then compute the difference or compute the difference di-
rectly. To this end, in the summation mechanism the differ-
ence between the sum of the edge weights is computed by
passing messages along one direction in the path or cycle.

Specifically, a node, say v, sends a message with its unique
signature to one of its neighbors in Ci. The message con-
tains a variable Dv which is initially set to 0. If the message
is sent along an edge from S, Dv is increased by Wv(S). If
the message is sent along an edge from R, Dv is decreased
by Wv(R). The receiving neighbor, say u, sends the up-
dated message further along. Before sending the message,
it increases Dv by Wu(S) (if it is sent on an edge from S)
or decreases it by Wu(R) (otherwise). If the component is a
cycle, then the message comes back to node v with the dif-
ference of between the sums of the edge weights on the whole



cycle. We note that a similar process should be initialized
by every node along the cycle.

If the component is a path, then the node which is at the
end of the path, say v, generates a special message indicating
the end of the path. This message also includes the variable
Dv = Wv(S) (if it sent along an edge of S) or Dv = −Wv(R)
(otherwise). Every node along the path adds or subtracts
the weight of the edge on which it forwards the message.
Once such a message is received at the other end of the path,
the difference between the sum of weights is sent back to the
nodes along the path which use it to make their decision. All
other messages received at the end of the path (i.e. messages
generated by nodes within the path that are not aware of
this fact) are discarded.

Such a mechanism requires unique identities and some
coordination. For a cycle of length L (L = |Ci|), the time
complexity (number of iterations) is L and for a path of
length L, the time complexity is 2L. For both cases, the
communication complexity is O(L2), since at each iteration
L messages are sent simultaneously. Since L ≤ n, the time
complexity is O(n) and communication complexity is O(n2).
The average message size is proportional to LWv, since it
carries the sum of weights. In such setup, the result of the
Merge algorithm is exact with probability 1 (i.e. in each
component it always selects the heaviest matching). Hence,
δ1 = 0 and γ = 0. This yields a distributed stable algorithm.

5.2 Gossip Mechanism
We first describe a gossip algorithm that finds, using only

local information, an estimate of the sums required at step
1.ii of Merge. It operates at each connected component,
it does not require any form of global information, does not
require any infrastructure (e.g. node identities), and it can
find an average to any precision. This algorithm is required
mostly due to existence of cycles and in case one wishes to
avoid coordination within these cycles. We will show that
the time complexity of the algorithm is relatively high. Yet,
it provides the basis and the intuition for the enhanced gossip
algorithm that will be presented in Section 5.3.

For each connected component, instead of computing the
sums W (S) and W (R), the algorithm computes the aver-
age of the weights at the nodes (e.g.

P
v∈Ci

Wv(S)/|Ci| for

S). As can be seen from the description of Merge, the
average is sufficient for the comparison operation. We now
describe the algorithm for S (the algorithm for R is exactly
the same). For the ease of presentation, in the description
of the algorithm we focus on cycles. Very minor changes are
required in order to tailor the description to paths.

Gosp-Algo I

(1) Initially, each node v has weight xv(0) = Wv(S). Let
xv(i) denote the value of node v in iteration i.

(2) For iteration i = 1, . . . , I do the following

(i) Each node, say v, decides to contact one of its two
neighbors in G1 with probability 1/2 and with
probability 1/2 decides not to contact anyone. If
it decides to contact a neighbor, it will contact
either of the two neighbors with equal probability.

(ii) If a node, say u, is contacted by node v then fol-
lowing happens:

(a) if u has decided not to contact any neighbor,
then it accepts v with probability 1/2 and
they average their current values, that is,

xu(i) = xv(i) =
xv(i − 1) + xu(i − 1)

2
.

(b) Else, if node u has decided to contact node v,
then they average.

(c) Otherwise, node u ignores node v and nothing
happens for v.

(3) Stop at the end of large enough iteration, say I , and
use xv(I) as an estimate of node average.

The above algorithm is an adaptation of gossip algorithm
of [4]. It is essentially averaging over a path or a cycle, say
of length L using natural random walk whose spectral gap
is Θ

�
L−2

�
. Given initial values x(0) = [xv(0)]1≤v≤L for a

cycle of length L, we define xave =
P

v xv(0)/L. We now
restate the following result.

Theorem 3 (Boyd et al., 2005 [4]). The value at
any node v at the end of iteration I(L) of Gosp-Algo I is
such that

Pr

 pP
v[xv(I(L)) − xave]2pP

v(xv(0))2
≤ ǫ

!
≥ 1 − δ2,

where

I(L) = Θ
�
L2 [− log δ2 − log ǫ]

�
. (22)

We define ǫ̂ = nǫ. We also define Ŵ (S) = xv(I(L)) and
W̄ (S) = xave, when averaging over the weights of S. Simi-

larly, Ŵ (R) = xv(I(L)) and W̄ (R) = xave, when averaging
over the weights of R. We use Theorem 3 to prove the fol-
lowing lemma.

Lemma 2. Under Gosp-Algo I at the end of iteration
I(L) (defined in (22)),

Pr (xave(1 − ǫ̂) ≤ xv(I(L)) ≤ xave(1 + ǫ̂); for all v) ≥ 1−δ2.

Proof. According to Theorem 1

Pr

0�sX
v

[xv(I(L)) − xave]2 ≤ ǫ

sX
v

(xv(0))2

1A ≥ 1 − δ2.

Now, for all v

|xv(I(L)) − xave| ≤

sX
v

(xv(I(L)) − xave)2

Also,
P

v(xv(0))
2 ≤

�P
v xv(0)

�2
. Hence,

Pr

 
|xv(I(L)) − xave| ≤ ǫ

X
v

xv(0); for all v

!
≥ 1 − δ2.

Therefore, Pr (xv(I(L)) ∈ (xave(1 ± ǫ̂)); for all v) ≥ 1 − δ2.

Lemma 2 implies that after I(L) iterations, Gosp-Algo I
(at each node in the component) finds a good estimate of

the average of the weights of S (Ŵ (S)) with probability
at least 1 − δ2. Similarly, it finds a good estimate of the



weights of R. Yet, the values at different nodes in a com-
ponent may differ. At the extreme case, some of the nodes
will decide that Ŵ (S) − Ŵ (R) is positive, while others will
decide that it is negative. In that case, in step 1.iii of the
Merge algorithm, nodes in the same component may make
contradicting decisions. We describe the following simple
algorithm that should be initiated following Gosp-Algo I
in every connected component in order to take care of this
case. The main idea is that if one node in a component Ci

makes a different decision than the other nodes, then at least
one node estimates that Ŵ (S) − Ŵ (R) > 0, and therefore,
all the nodes in Ci retain the previous matching (S).

Agree

(1) Initially, each node v has a positive or negative differ-

ence between the estimates of weights Ŵ (S) − Ŵ (R).

(2) Each node, say v, contacts its two neighbors in Ci, u
and w. If the signs of their estimates differ, v and u
send a cancel change message to their other neighbors.

(3) Upon receipt of the first cancel change message on an
edge of Ci

(a) The node forwards it on the other edge of Ci.

(b) The node retains the edge of S in Ci to obtain
the edge in S(m + 1).

(c) A node will discard any cancel change message
received after the first one.

(4) If after L time slots a node does not send or receive
a cancel change message, it will decide between S and
R according to the value of Ŵ (S) − Ŵ (R).

It is clear that the time complexity of the Agree algo-
rithm is O(L). The communication complexity is also O(L),
since at most one cancel change message will be forwarded
by each node.

Once the Agree algorithm halts in all the components, all
the nodes completed step 1.iii of Merge. We now show that
following the execution of Agree, the nodes select a prefer-
able schedule with high probability. We define the event
that no cancel message is sent during the Agree algorithm
as AGR. We state the following result.

Lemma 3. If W̄ (S) < 1−ǫ̂
1+ǫ̂

W̄ (R), then

Pr(AGR) ≥ 1 − 2δ2.

Proof. Assume that

W̄ (S) <
1 − ǫ̂

1 + ǫ̂
W̄ (R). (23)

Assume that a cancel message is sent during the Agree
algorithm. This means that there exists a node such that
Ŵ (R) < Ŵ (S). From Lemma 2,

Pr
�
Ŵ (R) ≥ (1 − ǫ̂)W̄ (R)

�
≥ 1 − δ2,

Pr
�
Ŵ (S) ≤ (1 + ǫ̂)W̄ (S)

�
≥ 1 − δ2.

Putting these together, we obtain that if Ŵ (R) < Ŵ (S) to
be true, then with probability at least 1 − 2δ2,

W̄ (S) >
1 − ǫ̂

1 + ǫ̂
W̄ (R). (24)

This contradicts the hypothesis of the Lemma. That is,
with probability at least 1 − 2δ2, no cancel message is sent
in algorithm Agree when (23) holds.

Gosp-Algo I runs for I(L) iterations (recall that L ≤ n)
and the Agree algorithm runs for L iterations, which are
negligible in comparison to I(L). Recall that

I(L) = Θ
�
L2[− log ǫ − log δ2]

�
.

The stability region is affected by ǫ and δ2 (δ1 = 2δ2 and
γ = 2nǫ). Using Gosp-Algo I along with Rand-Match
requires that δ1 will be significantly smaller than (2n)−n.
We can, for example, set δ2 = β2(2n)−n/8 and ǫ = α/(2n),
for some small constants α > 0 and β > 0. In that case
the system will be stable for (1 − α − β)Λ∗, where Λ∗ is
the stability region under a perfect scheduler. The time
complexity of Gosp Algo I with these parameters is I(L) =
O(L2n log n). Notice that although the constants α and
β may affect the number of iterations, they do not affect
the worst case time complexity. Since in every iteration
O(L) messages are sent, the communication complexity is
O(L3n log n). The message size during Gosp Algo I is
proportional to Wv.

At first glance the time complexity seems relatively high.
However, we note that in every round, the nodes perform
simple local computation and transmit small messages. As
will be shown in Section 7, this is considerably better than
collecting all the topology and backlog information and per-
forming an O(n3) local computation. In the next section,
we describe an improved gossip algorithm with significantly
lower time complexity. In that algorithm reaching an agree-
ment within a connected component is an inherent part.

5.3 Enhanced Gossip Mechanism
In this section we describe an alternative gossip algorithm

(we refer to this algorithm as Gosp-Algo II). This algo-
rithm is randomized and is based on the following well-
known fact.

Lemma 4. Let X1, . . . , Xk be independent random vari-
ables distributed according to exponential distribution of rates
r1, . . . , rk respectively. Then, X∗ = mini Xi is distributed as
exponential variable with rate

P
i ri.

We will also use the following fact that follows from a simple
large deviation estimation, such as Cramer’s Theorem [8].

Lemma 5. Let X1, . . . , Xk be i.i.d. exponential variables
of rate r. Let Sk =

Pk
i=1 Xi/k. Then, for small enough

γ1 > 0,

Pr
�
Sk /∈

�
(1 − γ1)r

−1, (1 + γ1)r
−1�� ≤ 2 exp

�
−γ2

1k/2
�
.

The above facts, Lemmas 4 and 5, can be used to com-
pute the weights corresponding to R and S along a cycle
(or a path) of length L as follows. Compute weights of R
and S separately. Consider R. Each node v, as described
in Merge, assigns itself weight Wv equal to the weight of
edge incident on v under R. Then, each node v draws an
exponential random variable of rate Wv. Denote this by Xv.
Then, all the nodes along the cycle (or path) compute the
minimum of these random variables. We denote this mini-
mum by X∗. Repeat this process k times. Let the minimum
values computed in these k times be X∗(1), . . . , X∗(k).

We define, Sk =
Pk

i=1 X∗(i)/k. Then, 1/Sk is a good
estimate of the sum of weights along the cycle, which we



wanted to compute. Precisely, we state the following result
which is a direct implication of Lemmas 4 and 5.

Theorem 4. Let Zk = 1/Sk be the estimate of the weights
W =

P
v Wv. Then, for small γ1 > 0,

Pr
�
|Zk − W | /∈

�
W (1 + γ1)

−1, W (1 − γ1)
−1�� ≤ 2e−

γ2
1k

2 .

The above result and Theorem 1 imply that by choosing
γ = γ1 = α and k = Θ((n log n − log β)/α2), for very small
α > 0 and β > 0 we obtain stability for any arrival rate in
(1 − α − β)Λ∗.

In order to compute Sk, each node has to compute the
minimum of Xv (v = 1, . . . , L) and this should be done k
times. Practically, each of the L nodes can send a vector
with k values of Xv to its neighbors. Computing the min-
imum of these k values takes O(L) iterations. During each
iteration O(L) messages are sent, and therefore, the overall
communication complexity is O(L2). Each message contains
a vector with k values of Wv. Thus, in the example above
the message size is O(n log nWv). Although α and β affect
the exact message size, they do not affect the worst case.

We note that Gosp-Algo II is extremely efficient as the
time complexity is O(L), whereas in Gosp-Algo I it is
O(L2n log n). In addition, even the product of the commu-
nication complexity and the message size is O(L) less than
in Gosp-Algo I. Further, we do not need to run any Agree
mechanism, since all the nodes have exactly the same esti-
mate. The Gosp-Algo II algorithm does not require any
form of centralized coordination or infrastructure. Finally,
Gosp-Algo II enables the application of our framework to
networks with general interference constraints (see Section
8).

6. IMPLEMENTATION ISSUES AND
ENHANCEMENTS

For the simplicity of presentation, in sections 4 and 5 we
assumed that (i) the running time of the New-Sch and the
Mix algorithms is shorter than the slot used for data trans-
mission and (ii) all nodes make the decision in Step 1.iii of
the Merge algorithm simultaneously. In this section, we
show that these simplifying assumptions can be easily re-
laxed and obtain a framework which is more amendable to
distributed implementation. In addition, we discuss the ap-
plicability of a few distributed matching algorithms to the
New-Sch procedure. Finally, we present enhancements to
the algorithms used in the Mix phase. These enhancements
may improve the average case performance.

6.1 Frames
We now assume that transmitting a control message of

each of the various algorithms, discussed above, requires a
time slot (identical to the time slot required for data trans-
mission). In such a case, Gen-Algo, using distributed al-
gorithms for New-Sch and Mix, will not be able to find a
new schedule every time slot and to mix subsequent sched-
ules immediately. Thus, we define a frame as the period
required for running New-Sch and Mix in a distributed
manner. The frame is divided into two time periods with
predetermined lengths (tnew and tmix). A version of Gen-
Algo implemented using frames is described below.

Gen-Algo-Imp.

(1) Let S(m) denote the schedule at time m (beginning of
the frame).

(2) At time m initiate the distributed procedure New-
Sch at all nodes simultaneously. Run it for a constant
number of slots tnew using the queue sizes at time m
(Q(m)) as input. Let R(m+tnew) be the new schedule.

(3) At time m + tnew initiate procedure Mix at all nodes
simultaneously. Run it for a given number of slots tmix

using S(m), R(m + tnew), and the queue sizes at time
m (Q(m)) as inputs to obtain S(m + tnew + tmix).

The nodes should be aware in advance of tnew and tmix

in order to simultaneously start New-Sch and Mix. tnew

can be any positive constant. For the summation algorithm
tmix should be set as tmix = O(n2). Thus, the nodes need
an estimate of n. At the network initialization (or whenever
required if topology changes), a distributed algorithm such
as Gosp Algo II (with weights Wv = 1 for all v) can be
used to obtain n. For Gosp-Algo I, I(L) iterations are
required (I(L) is defined in (22) as a function of ǫ and δ2 that
are set according to the required throughput). Then, for
Agree, L additional iterations are required. Since L ≤ n,
the nodes should set tmix = O(I(n) + n). For Gosp-Algo
II, tmix = O(n).

At this stage, we still assume that all the nodes make
the decision in Step 1.iii of the Merge algorithm simulta-
neously. Namely, all the nodes move to the next schedule
at time m + tnew + tmix. In Theorem 1, we assumed that
the computation of a new schedule happens in the same
time slot. However, the stability of Gen-Algo-Imp will
still be implied by Theorem 1 as long as we have bounded
tnew + tmix. This is due to the fact that the weight of any
schedule changes by at most finite amount in the finite time.
Hence, the drift in the appropriate Lyapunov function only
gets less negative by an additive constant (i.e. in eq. (4) in
the proof of Theorem 1). Hence, we obtain the following
Lemma.

Lemma 6. Let the procedures New-Sch and Mix, per-
formed during Gen-Algo-Imp, satisfy properties P1 and
P2, described in Theorem 1. Then, Gen-Algo-Imp is stable
for any arrival rate vector Λ satisfying (3).

We now relax the assumption that all the nodes change
their schedule at the same time. Alternatively, we assume
that during the Merge procedure, once a decision is made
within a connected component Ci (probably before m +
tnew + tmix), the nodes in Ci change their schedule. This
change improves the performance, since some of the compo-
nents may be able to move to an improved schedule long be-
fore the summation or gossip mechanisms converge through-
out the network6. For exactly the same reasons as for Lemma
6, the following holds.

Lemma 7. Let the procedures New-Sch and Mix, per-
formed during Gen-Algo-Imp, satisfy properties P1 and
P2, described in Theorem 1. The Mix procedure is per-
formed such that once a decision is made within a connected

6This is especially applicable to paths (see more comments
in Section 6.3) and to summation in cycles.



component Ci, the nodes in Ci change their schedule. Then,
Gen-Algo-Imp is stable for any arrival rate vector Λ satis-
fying (3).

6.2 Other Alternatives for New-Sch
In Section 4, a New-Sch procedure that satisfies property

P1, indicated in Theorem 1, has been presented. Actually,
any matching algorithm that satisfies P1 can be used for
New-Sch. Preferably, such an algorithm will yield a rel-
atively large δ. A few distributed algorithms for finding a
maximal matching have been proposed in the past (e.g. [12,
14]). In addition, two distributed approximation algorithms
for the maximum weight matching problem have been re-
cently proposed [11, 25].

This section describes two additional distributed New-
Sch algorithms that have property P1, described in Theo-
rem 1. We will show that it is enough to run these algorithms
for a constant number of iterations in order to satisfy this
property. The following algorithm is an adaptation of the
Serena algorithm of [9].

Arr-Match

(1) At time m, create a graph Gm = (V, Em) as follows:
edge (i, j) ∈ Em if and only if Aij(m) = 1.

(2) Use Rand-Match for constant number of iterations
to obtain a matching on the graph Gm.

We state the following straightforward result about the
Arr-Match algorithm.

Lemma 8. Arr-Match finds a matching π ∈ Π(G) with
probability at least 2−nΓ(π) at the end of first iteration of
Rand-Match on Gm, where

Γ(π) =
Y

(i,j)∈π

λij

Y
i/∈π

(1 −
X

j

λij),

with notation i /∈ π means that node i is not matched to any
other node under matching π.

Proof. Γ(π) is the probability with which the arrivals in
time m are only to edges of π and there are no arrivals to
other edge in E. The algorithm Rand-Match matches all
of the nodes in the first iteration with probability at least
2−n.

We now present a similar result regarding the random-
ized algorithm presented by Israeli and Itai [12] whose time
complexity is O(log n) (due to space constraints, we do not
restate their algorithm here).

Lemma 9. For any maximal matching, π ∈ Π(G), the
matching algorithm of Israeli and Itai [12] finds it with prob-
ability at least n−n at the end of the first iteration.

Proof. Consider π ∈ Π(G). Consider a particular pair
of nodes that are matched in π, say u and v. Then, the
probability that they will be connected at the end of stage
1.1 is d−1

u d−1
v , where du and dv are the degrees of nodes u

and v. These are less than n and hence the probability is at
least n−2. We can use the same argument for the remaining
(at most) n/2 node pairs. We obtain that the probability
that only edges from π remain in the graph at the end of
stage 1.1 is at least n−n. In that case these edges will be

matched in stage 2.1. Since the algorithm has a few other
stages in which edges can be matched, n−n is a lower bound
on the probability that all the nodes that are matched in π
are matched at the end of the first iteration.

The main disadvantage of any randomized maximal match-
ing algorithm is that δ ≈ O(1/n!) ≈ O(n−n). This requires
a Mix algorithm with a very small δ1 or δ1 = 0. Such a
requirement substantially increases the time and communi-
cation complexity of the Mix algorithms. Hence, it is desir-
able to develop a distributed approximation algorithm for
the maximum weight matching problem that satisfies prop-
erty P1 with relatively large δ. However, since the current
available approximation algorithms [11, 25] do not satisfy
P1, this remains an open problem.

From a practical point of view, it might be desirable to run
the New-Sch algorithm for a relatively long period (e.g. set
tnew = C log n, where C is a constant). Such a period is still
negligible related to the time required for the Mix algorithm
and it would allow selecting between better schedules. This
will not change the stability region but it might provide
better local solutions.

6.3 Enhancements for Paths
In the summation algorithm presented in Section 5.1, if

a connected component of G1 is a path, the two nodes at
both ends of the path will indicate it in the messages they
send. Thus, there are two types of messages: (i) messages
originating from the end of the path and (ii) messages origi-
nating within the path. Essentially, there is no need for the
second type. However, since the nodes along a path are not
aware of the fact that they are not part of a cycle, they will
still send their messages. We propose the following simple
enhancement. After receiving a message originating from
the end of the path, a node within the path will discard all
messages from the second type. This will reduce the number
of transmitted messages. Yet, it will not reduce the worst
case time and communication complexities

The gossip algorithms presented in Sections 5.2 and 5.3
can operate well without special messages initiated by nodes
at the ends of a path. However, the performance will be im-
proved if all the nodes start using gossip and stop, if they
find out that they are not part of a cycle. In such a case, the
nodes will always make the correct decision (i.e. for paths
δ1 = 0 and γ = 0). Moreover, the time complexity along
paths will be O(L) and the amount of control information
will be reduced. Finally, the paths will change to a better
schedule faster.

7. PERFORMANCE EVALUATION
In this section we evaluate and compare the performance

of algorithms that can be used in the framework of Gen-
Algo as well as other algorithms. First, we discuss the
performance of a method that collects information from all
the nodes and computes a solution to the maximum weight
matching problem locally in each of the nodes. Then, we dis-
cuss the performance of our algorithms. Finally, we discuss
the performance of the distributed algorithms, recently pro-
posed in [5, 6, 17, 26]. The performance measures are time
complexity, communication complexity, message size, local
computation complexity, the need for unique addresses, and
the stability region. The results are summarized in Table 1.



Table 1: Time complexity, communication complexity, local computation complexity, message size, addressing
requirement, and stability region of the various algorithms (α and β are small constants)

Algorithm Time Communication Local Message Addressing Stability
Complexity Complexity Comp. Size Requirement Region

“Distributed” Centralized Solution O(n) O(n|E|) O(n3) O(nWv) Yes Λ∗

Rand-Match+Summation O(n) O(n2) O(1) O(nWv) Yes Λ∗

Rand-Match+Gosp-Alog I+Agree O(n3 log n) O(n4 log n) O(1) O(Wv) No (1 − α − β)Λ∗

Rand-Match+Gosp-Algo II O(n) O(n2) O(1) O(n log nWv) No (1 − α − β)Λ∗

[6],[17] (using [11]) O(n) O(|E|) O(n) O(1) No 0.5Λ∗

[5],[17],[26] (using [12]) O(log n) O(|E|) O(1) O(1) No 0.5Λ∗

A distributed version of the centralized solution requires
to repeatedly collect queue backlog information from all the
nodes. After each collection, there is a need to solve a maxi-
mum weight matching problem. Since in a wireless network
there is usually no central authority responsible for network
optimization, we assume that this is done by all the nodes.
In Table 1 we refer to this algorithm as the “Distributed”
Centralized Solution. Using such an algorithm, the network
will be stable for all rates within the stability region Λ∗. The
time to collect the required information is bounded by the
network diameter, thereby, in the worst case it is O(n). The
communication complexity is O(n|E|). The message size is
bounded by O(nWv) (since a node may need to send the
weight of n links). Finally, the most problematic part is the
local computation that has to be performed after each col-
lection phase. The complexity of the computation is O(n3),
which may not be feasible in wireless nodes with limited
computation capabilities.

In Table 1 we present the different performance mea-
sures for the summation algorithm. The combination of the
Rand-Match and the summation algorithms will result in
a network which is stable for all rates within the stability
region Λ∗. The only disadvantage is that the summation
algorithm requires unique addresses and some coordination
between the nodes. The time and communication complex-
ity of Gosp-Algo I and of Gosp-Algo II depend on the
selected constants (γ and δ1). However, some selected con-
stants enable to approach Λ∗ without increasing the com-
plexity. In Table 1 we present the performance measures
for both algorithms, where α and β are very small con-
stants. We note that when any of the Mix algorithms is
implemented along with Rand-Match, the complexities of
Rand-Match are negligible.

As mentioned in Section 1, the design of distributed algo-
rithms has attracted a lot of attention recently. The impact
of imperfect scheduling on cross-layer rate control has been
studied in [6, 17]. The stability region of a maximal schedul-
ing policy under arbitrary topologies and interference mod-
els has been studied in [5]. In [6, 17] it has been shown
that for the node-exclusive spectrum sharing model, using a
maximal matching algorithm to schedule the transmissions
allows to obtain at least 0.5 of the stability region. In [17]
such an algorithm (termed Greedy Maximal Matching) se-
lects the edges according to the queue lengths. In [6] the
distributed algorithm of Hoepman [11] is applied in order
to obtain a maximal matching which is a 2-approximation
to the maximum weighted matching. The communication
complexity is O(|E|), and the message size is O(1). Under

our model, the time complexity of this algorithm is O(n).
Assuming that each node sorts the edges in a preprocess-
ing phase, the local computation complexity of this phase is
O(n). Maximal-matching-based algorithms that do not need
to take into account the exact queue lengths are discussed in
[5, 17, 26] and it is shown that they also attain 0.5 of the sta-
bility region. The complexities are not explicitly discussed
in [5, 17, 26]. Yet, the algorithms can be implemented using
the maximal matching algorithm of [12]. Therefore, their
time complexity is O(log n), the communication complexity
is O(|E|), and the message size is O(1).

Finally, notice that for all the algorithms discussed above,
the time complexities were obtained assuming that at each
time slot, every node can send a single control message to
all of its neighbors. Although this is a standard definition
used for comparing the performance of different distributed
algorithms, it does not adhere to the specific characteristics
of networks with primary interference constraints. Taking
the transmission constraints into account will increase all
the time complexities by O(n).

8. GENERAL INTERFERENCE
CONSTRAINTS

In the previous sections, we demonstrated our approach
by focusing on primary interference constraints. In this
section, we briefly discuss the immediate extension to gen-
eral interference constraints. In many cases, an interference
graph (also known as a conflict graph) GI can be defined
based on the network graph G [13]. Every link in G is rep-
resented by a node in the interference graph GI . Nodes
in GI are connected, if the links that they represent inter-
fere. In such a case, Π(G) represents the set of all indepen-
dent sets on the interference graph GI and the optimization
problem in (2) reduces to finding the maximum weight in-
dependent set in the interference graph GI . This problem is
NP-Complete, hard to approximate, and clearly cannot be
solved distributedly every time slot or every frame.

Yet, the framework presented in Section 3 (Gen-Algo)
can be applied to general interference constraints. Specifi-
cally, the first required component is a distributed New-Sch
algorithm that selects an independent set in the interference
graph, such that the probability of selecting the maximum
weight independent set is positive. Such an algorithm can
be designed in a similar manner to the Rand-Match or
Arr-Match algorithms described above. The second com-
ponent is an algorithm for comparing the obtained solution
(R(m + 1)) to the current solution (S(m)). A simple struc-
ture that divides the comparison into components does not



seem to exist under general interference constraints. There-
fore, the overall solutions have to be compared. Accordingly,
all the nodes should obtain an estimate of the new solution.
This can be done efficiently by a gossip algorithm such as
Gosp-Algo II. Using such an algorithm, all the nodes will
have the same estimate, thereby enabling them to make the
same decision.

9. CONCLUSIONS
This paper presents the first distributed scheduling algo-

rithms for wireless networks that obtain 100% throughput.
We have used a framework that generates random matchings
and merges consecutive matchings by selecting heavy edges.
We have shown that even if the merge procedure sometimes
results in an inferior matching, under certain conditions the
throughput will still be nearly 100%. Based on this frame-
work and on the observation that the required information
can be collected within local components, we have devel-
oped a few distributed algorithms including a very efficient
gossip algorithm. We have discussed the performance of the
algorithms and shown that they provide a significant im-
provement over the simple maximal matching algorithms.
The presented framework can be extended to general inter-
ference constraints.

This work is the first approach towards distributed maxi-
mum throughput algorithms for wireless networks. Although
we have made a theoretical contribution and have taken
implementation constraints into account, much work is re-
quired in order to develop truly implementable algorithms.
Some of the key issues in that context are: (i) how should the
control messages be transmitted in a node-exclusive spec-
trum sharing model, (ii) what are the tradeoffs between
throughput, delay, and decentralization costs, and (iii) how
can the algorithms deal with an asynchronous network.

Separately, there are interesting algorithmic questions that
remain unresolved such as improving the quality of the match-
ing chosen by a random sampler. We note that arrival infor-
mation based schemes (e.g. Arr-Match and the schemes in
[9]) seem to perform extremely well (in terms of simulation),
and therefore, are a subject for further research. Alterna-
tively, we would like to develop a matching algorithm that
will select the next matching in a clever way, based on some
information regarding the current matching (e.g. [7]). Fi-
nally, since some of the results regarding max-min fairness
in wireless networks (e.g. [24]) were obtained using the sta-
bility of a related system, we intend to explore the possibility
to obtain max-min fair rates in a distributed manner.
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