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 PRODUCT-FORM QUEUEING NETWORKS WITH NEGATIVE
 AND POSITIVE CUSTOMERS

 EROL GELENBE,* Ecole des Hautes Etudes en Informatique

 Abstract

 We introduce a new class of queueing networks in which customers are either
 'negative' or 'positive'. A negative customer arriving to a queue reduces the total
 customer count in that queue by 1 if the queue length is positive; it has no effect at all
 if the queue length is empty. Negative customers do not receive service. Customers
 leaving a queue for another one can either become negative or remain positive.
 Positive customers behave as ordinary queueing network customers and receive
 service. We show that this model with exponential service times, Poisson external
 arrivals, with the usual independence assumptions for service times, and Markovian
 customer movements between queues, has product form. It is quasi-reversible in the
 usual sense, but not in a broader sense which includes all destructions of customers
 in the set of departures. The existence and uniqueness of the solutions to the (non-
 linear) customer flow equations, and hence of the product form solution, is dis-
 cussed.

 WORK CANCELLATION; NEGATIVE CUSTOMERS

 1. Introduction

 Consider an open network of queues with n servers which have mutually independent,
 and i.i.d. exonential service times of rates r(1), - - , r(n). Two types of customers
 circulate in the network: 'positive' and 'negative' customers. External arrivals to the
 network can either be positive customers which arrive to the ith queue according to a
 Poisson process of rate A(i), or negative customers which constitute a Poisson arrival
 process of rate A(i) to the ith queue. A customer which leaves queue i (after finishing
 service) heads for queue j with probability p (i, j) as a positive (or normal) customer,
 or as a negative customer with probability p-(i, j), or it will depart from the network

 with probability d(i). Let p(i,j)= p+(i,j) + p-(i,j); it is the transition probability
 of a Markov chain representing the movement of customers between servers. Clearly

 we shall have 1 p(i,j)+ d(i)= 1 for l i < n. Positive and negative customers
 have different roles in the network. A negative customer reduces by 1 the length of the
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 queue to which it arrives (i.e. it 'cancels' an existing customer) or has no effect on the
 queue length if the queue is empty, while a positive or 'normal' customer adds I to the
 queue length. Thus negative customers do not require service. The queue length is
 constituted only by positive customers and their service is carried out in the usual
 manner.

 The model is equivalent to the following queueing network with FCFS service centers.

 Service times are exponential of rate (A(i) + r(i)) at queue i. A customer which finishes
 service at queue i leaves the network by itself with probability (r(i)d(i) + A(i))/
 (A(i) + r(i)), or it leaves the network together with a customer from queue j with
 probability r(i)p-(j, i)/(A(i) + r(i)), or it joins queue j with probability r(i)p+(j, i)/
 (A (i) + r(i)). External (normal) customer arrivals occur according to a Poisson process of
 rate A(i) at queue i.
 The model we introduce is a new generalisation of standard [3], [4] queueing

 network models widely used in computer and communication system performance
 modeling and in operations research, which have only 'positive' customers. We show
 that it has a specific kind of product form: for the open network the stationary
 probability distribution of its state can be written as the product of the marginal
 probabilities of the state of each queue. Positive customers can be considered to be
 resource requests, while negative customers can correspond to decisions to cancel
 requests for resources. Our study has been motivated by the analogy to neural networks
 where each queue represents a neuron. Positive customers moving from one queue to
 another represent excitation signals, while negative customers going from one queue to

 another represent inhibition signals.

 2. Results

 Theorem 1. Let

 (1) q (i)/[r(i) +

 where the )A +(i), A-(i) for i = 1,..., n satisfy the following system of non-linear
 simultaneous equations:

 (2) A+(i)= J, qr(j)p+(j, i) + A(i), A-(i) = qr(j)p-(j, i) + A(i).
 J I

 Let k(t) be the vector of queue lengths at time t, and k = (k, ..., kJ) be a particular
 value of the vector; let p(k) denote the stationary probability distribution p(k)=
 lim1,, Pr[k(t) = k].
 If a unique non-negative solution {( (i), )-(i)} exists to Equations (2) such that each

 qi < 1, then

 (3) p(k)= H0 [1- q,]q,. i-i

 We omit the proof, which follows standard techniques [3], [4]. Since (k(t): t - 0} is a continuous-time Markov chain it satisfies the usual Chapman-Kolmogorov equations;
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 658 EROL GELENBE

 thus in steady state it can be seen that p(k) satisfies the following global balance
 equations:

 p(k) , [A(i) + (A(i) + r(i))1[k, > 0]]

 = p [p(k1+ )r(i)d(i) + p(k1- )A(i)1[k; > 0] + p(k1+ )A(i)

 (4+ p(k+. -)r(i)p +(i, j)l[kj > 0] + p(kj3f+ )r(i)p -(i, j))
 + p(k+ )r(i)p -(i, j)l[kj = 0]}]

 where the vectors used in (4) are defined as follows:

 k,+ = (k1, ... , k, + 1,... , kn),

 ki- = (kl, o " , k; - 1, g , kn),

 kio+- =(k, ., k - + 1,. , kj- 1, . , k),

 kij+ = (k,,...9, k, + 1,...* , kj + 1,. .., kn),
 and 1[X] is the usual characteristic function which takes the value 1 if X is true and 0
 otherwise. Theorem 1 is proved by showing that (3) satisfies this system of equations.

 Remark 1. Consider a closed network for which P = { p(i, j)}l i,jS is the transition probability matrix of an ergodic Markov chain. Then if there exists some p -(u, v) > 0,

 it follows that p(k) = 0 for all vectors k except for the null vector: p(0) = 1. This
 statement is obvious, since in the long run the network will be empty. Indeed, let

 K(t) = i k,(t); if there exists a p -(u, v) > 0, then P[K(t + r) < K(t)] > 0 for each z > 0,
 so that lim, P[K(t) = 0] = 1. As a consequence, we see that the only closed networks
 which are of interest are those for which either all p -(u, v) = 0, so that they reduce to
 standard closed Jackson networks, or those for which P is not ergodic so that positive

 customers may remain in one part of the network.

 2.1. Feedforward networks. Let us now turn to the existence and uniqueness of the

 solutions A2 (i), 2-(i), 1 5 i 5 n to Equations (1) and (2) which represent the average
 arrival rate of positive and negative customers to each queue for the open model, and the

 average number of visits of a customer to each queue for the closed system. An
 important class of models is covered by the following result concerning feedforward

 networks. A network is said to befeedforward if for any sequence il,, - - -, is,, g ., i,, ? . ., i,
 of queues, i, = i, for some r > s implies that

 m-I

 I' p(iv, iv+ l) = 0.

 Theorem 2. If the network is feedforward, then the solutions )+(i), ).-(i) to
 Equations (1) and (2) exist and are unique.
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 Product-form queuing networks with negative and positive customers 659

 Proof. For any feedforward network, we may construct an isomorphic network by
 renumbering the queues so that queue 1 has no predecessors (i.e. p(i, 1) = 0 for any i),
 queue n has no successors (i.e. p(n, i) = 0 for any i) and for any i we have p(i, j) = 0 if
 j < i. Thus in the isomorphic network, a customer can possibly (but not necessarily) go
 directly from queue i to queue j only ifj is larger than i. For such a network, the A + (i) and

 A -(i) can be calculated recursively as follows:
 * first compute A+ (1) = A(1), A -7(1) = A (2).

 * then each successive value of i such that A ?+(i), ;-(i) have not yet been calculated
 proceed as follows: since the qj for each j < i are known, we compute

 A+(i)= qE qjr(j)p+(j, i) + A(i), A-(i) = Eqjr(j)p-(j, i) + A(i).
 j<i j<i

 This completes the proof since we have provided a procedure for calculating in a unique

 manner the solution to (1) and (2) for a feedforward network.

 2.2. Balanced networks. We now consider a special class of networks, with feedback,

 whose customer flow equations have an unique solution. We shall say that a network with

 negative and positive customers is balanced if the ratio

 (5) Er qjr(j)p+(j, i) + A(i)] qr/[ (j) p - (j, i) + (i) + r(i)

 is identical for any i = 1,. - ., n. This in effect means that all the q, are identical.

 Theorem 3. The customer flow equations (1) and (2) have an unique solution if the
 network is balanced.

 Proof. From (1) and (2) we write

 (6) q, = qjr(j)p+(j, i) + A(i) qjr(j)p-(j, i)+ A(i)+ r(i)].

 If the system is balanced, qi = qj for all i, j. From (10) we then have that the common
 q = q, satisfies the quadratic equation:

 (7) q2R -(i) + q[A)(i) + r(i) - R + (i)] - A(i) = 0

 where R -(i) = Zj r(j) p-(j, i), R +(i) = Zj r(j) p+(j, i). The positive root of this quadra-
 tic equation, which will be independent of i, is the solution of interest:

 q = {(R+(i) - A(i) - r(i)) + [(R+(i) - 2(i) - r(i))2 + 4R-(i)A(i)]"/2}/2R-.

 2.3. Quasi-reversibility. The usual definition of quasi-reversibility (QR) [6] is the
 following. Let QA, QD be subsets of the set of state transition rates q(k, k') (i.e. of the
 elements of the infinitesimal generator Q of the network): Q = (q(k, k'): k, k' state
 vectors of the network}, such that q(k, k') E QA iffthe transition from k to k' occurs when
 a positive customer arrives to the network. Similarly q(k, k') E Q, if the transition from k
 to k' occurs with a customer's real departure, i.e. a positive customer leaving the network
 from one of the servers towards the outside. Following [6], but with slightly different
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 660 EROL GELENBE

 notation adapted to our problem, we shall say that a network is QR iff for some positive

 real numbers A, t the following two conditions are satisfied:

 (i) k', q(k, k')1[q(k, k')E QA] = A, for all k;
 (ii) Zk p(k)q(k, k')l[q(k, k')e QD] = tp(k') for all k'.
 Theorem 4. The queueing network with negative and positive customers is QR, if
 there exists an unique solution to (1) and (2) with q, < 1.

 Proof. The property of the arrival instant transitions of positive customers is

 obvious, and 2 is merely 1i A(i). For the real departure transitions D, write for any k'

 E p(k)q(k, k')l[q(k, k')E QD]/p(k') = q, r(i)d(i)
 k

 which establishes the result.

 The definition given above of QR is not intuitively satisfactory for our model, since

 'departures' now result also from the arrivals of negative customers to a queue.
 Unfortunately our network is not QR in the more general sense given below.

 Denote by D' the set of all state transitions with destruction ofpositive customers plus

 departures: D' = {(k +, k), (ki+, k) for all i, j} and let QD, be the corresponding subset
 of the state transition rates. We shall say that a network with negative and positive

 customers is QR in the sense of (a), (b) iff there exist positive real numbers 2, g such that:

 (a) ,k' q(k, k')l[q(k, k')E QA] = A, for all k;
 (b) 2k I1 k - k' 11 p(k)q(k, k')l[q(k, k')E QD,] = pp(k') for all k', where II k - k' 11 is

 the difference between the total number of customers in k' and k.

 Note that in (b) we take into account the fact that transitions from some state kif + to

 some other state k are caused by the departure of two customers, i.e. 11 k+ + - k || = 2.
 We call this quasi-reversibility 'QR in the sense of (a), (b)'.

 We may also choose to define quasi-reversibility by identifying all departure instants,
 without counting the number of departures; (a) will not change, but (b) will be replaced

 simply by:

 (c) Zk p(k)q(k, k')1[(k, k')ED'] = jp(k') for all k',
 which we call 'QR in the sense of (a) and (c)'.

 Remark 2. The class of queueing networks with positive and negative customers is
 not QR in the sense of (a) and (b), or in the sense of (a) and (c).

 Proof. It will suffice to show that (b) and (c) are not satisfied for the two-queue
 network with p+(1, 2) = p+(2, 1) = d(1) = d(2) = 0. Dividing both sides of(b) by p(k'),
 we have that for any k' = (k1, k2), the left-hand side of the resulting equation can be
 written as:

 , p(k)q(k, k')l[(k, k')E D']/p(k') k

 = 2q9q2[r(1) + r(2)], if kl > 0, ki > 0,

 = 2qq2[r(1) + r(2)] + q9,r(1), if kf > 0, ki = 0,

 = 2q1q2[r(1) + r(2)] + q2r(2), if k= = 0, k2 > 0,

 = 2q1q2[r(1) + r(2)] + qr(1) + q2r(2), if k = 0, ki = 0,
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 where q, = A(1)/[r(1) + q2r(2)], q2 = A(2)/[r(2) + qlr(1)]. Obviously each of these terms
 will be different as long as both qr(1) and q2r(2) are non-zero, which can easily be shown.

 Hence (b) cannot be satisfied. The same can be written and shown for (c).

 Remark 3. The class of feedforward queueing networks with positive and negative
 customers is not QR in the sense of (a) and (b) or (a) and (c).

 Proof. Consider now the two-queue feedforward network with p-(1, 2)= 1,
 P +(2, 1) = p -(2, 1) = 0, d(1) = 0, d(2) = 1. In order to verify (b) write

 E p(k)q(k, k')l[(k, k')ED']l/p(k')
 k

 = 2qq2r(1), if ki > 0, k2 > 0,

 = 2qq2[r(1) + r(2)] + qr(1), if kj > 0, k2 = 0,

 = 2qjq2[r(1) + r(2)] + q2r(2), if ki = 0, k2 > 0,

 =2qq2[r(1) + r(2)] + q1r(1) + q2r(2), if k1 = 0, k1 = 0.

 2.4. Existence and uniqueness of the network solution. We now address the issue of
 uniqueness of the product-form solution of the network, whenever it can be shown to

 exist. Then existence will be shown for the class of 'hyperstable' networks.

 Remark 4. If the 0 < q, < 1 solutions to (1), (2) exist for i = 1,. ? , n, then it is the
 unique solution.

 Indeed, since (k(t): t h 0) is an irreducible and aperiodic Markov chain, if a positive
 stationary solution p(k) exists, then it is unique. By Theorem 1, if the 0 < q, < 1 solution

 to (1), (2) exists for i = 1,. ? ., n, then p(k) is given by (3) and is clearly positive for all k.
 Suppose now that for some i there are two different q,, qf satisfying (1), (2). But this
 implies that for all ki, lim,,. P[k,(t) = 0] has two different values [1 - q,] and [1 - qf],
 which contradicts the uniqueness of p(k); hence the result.

 We shall say that a network is hyperstable if the following property holds:

 (8) O<r(i)+A(i)>A(i)+ r(j)p+(j,i), foralli = 1, ... , n.

 Theorem 5. If the network is hyperstable then the customer flow equations (1) and
 (2) always have a unique solution with qi < 1.

 Proof. The proof is based on a method for proof of existence of non-linear equili-
 brium equations. It uses the n-dimensional vector homotopy [2] function H(q, x) for a

 real number 0 _ x < 1. Let us define the following n-vectors:

 q = (q1, .., qn), F(q) = (F1(q), *., F (q))
 where
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 662 EROL GELENBE

 F,(q) = qr(j)p (j, i)A(i)+][i qjr)p-, i) +A (i) +r(i).

 The equation we are interested in is q = F(q), which is identical to (1) and (2). Let

 D = [0, 1]", and D = DO U JD where JD stands for the boundary of D, and Do is the set
 of interior points. We shall prove that q = F(q) has a solution in DO when the network is
 hyperstable.

 We shall use Theorem 22.5.1 of [2] which states the following. If F: D -R" is
 continuous, and D is the closure of an open bounded set, then F has a fixed point
 F(q*) = q*, q* E D, if the function

 H(q, x) = (1 - x)(q - y) + x(q - F(q))

 for some y E D is boundary-free, i.e. the solution of H(q, x)= 0 never touches the

 boundary JD as x varies from 0 to 1.
 Notice that each Fi(q) is the ratio of two first-degree polynomials, with non-negative

 coefficients, in the elements of q; [A(i) + r(i)] > 0, so its denominator does not have any
 zeros in D. Clearly F(q) is continuous. Since D is the closure of an open bounded set, the

 conditions of the theorem are satisfied if we can show that H(q, x) is boundary-free.
 Choose y = (y, ... , y,) where

 Y = [r(j)p + ( i) + A(i)] [A(i) + r(i)].

 By assumption 0 < y < 1 for all i = 1,. ., n, since the network is hyperstable. Clearly
 H(q, 0) = q - y and H(q, 1) = q - F(q). Now consider

 H-' = (q: qE D, H(q, x)= O and 0 5 x< 1).

 We can show that H-' and JD have an empty intersection, i.e. as x is varied from 0
 towards 1 the solution of H(q, x) if it exists does not touch the boundary of D. To do this
 assume the contrary; this implies that for some x = x* there exists some q = q* for which

 H(q*, x*) = 0 and such that q* = 0 or 1. If q* = 0 we can write

 - (1 - x*)yi - x*Fi(q*)= 0, or x*/(1 -x*) = - yl/F,(q*)<O,

 which contradicts the assumption about x. If on the other hand q* = 1, then we can write

 (1 - x*)(1 - y,) + x*(1 - Fi(q*)) = 0,
 or

 x*/(1 - x*)= - (1 - y)/(l - F(q*)) <o0

 because (1 - y) > 0 and 0 < F,(q*) < yi so that (1 - F,(q*))> 0, contradicting again the
 assumption about x. Thus H(q, x) = 0 cannot have a solution on the boundary JD for

 any 0 _ x < 1. Thus we have established (ii), and proved the existence, and hence the uniqueness, of the stationary solution of a hyperstable network.
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 3. Conclusions

 We conjecture that within the framework of the model studied in this paper, the
 customer flow equations (2) have an unique solution, under appropriate stability
 conditions, even for the most general case with feedback. However, this is not simple to
 establish in a direct manner and perhaps requires a more abstract approach. Extensions

 of this model to the usual state-dependent service disciplines, multiple classes, and
 general service time distributions with specific service disciplines [1] should be studied;

 they are not obvious because of the non-linear nature of the customer flow equations.
 Variants of this model for a single-server queue with general service times are discussed

 in [5].
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