
INTERVAL CONSENSUS: FROM QUANTIZED GOSSIP TO VOTING

Florence Bénézit, Patrick Thiran, Martin Vetterli.

EPFL, School of IC, CH-1015 Lausanne, Switzerland

ABSTRACT

We design distributed and quantized average consensus al-
gorithms on arbitrary connected networks. By construction,
quantized algorithms cannot produce a real, analog average.
Instead, our algorithm reaches consensus on the quantized in-
terval that contains the average. We prove that this consensus
in reached in finite time almost surely. As a byproduct of this
convergence result, we show that the majority voting problem
is solvable with only 2 bits of memory per agent.

Index Terms— Consensus, quantization, gossip, voting.

1. INTRODUCTION

Distributed average consensus algorithms have been designed
to solve distributed coordination problems in networks. Most
of them, however, rely on the exchange of analog values and
on infinitely precise memory at each node. Kashyap, Başar
and Srikant suggested in [1] an average consensus algorithm
over integers, which is a quantized version of pairwise gos-
sip [2]. In their setting, nodes initially measure some inte-
ger values, and the two integers framing the average of these
values are denoted by L and L + 1. When convergence is
reached, some nodes have state L, the remaining nodes have
state L + 1, and the overall average is preserved. This quasi-
consensus was called “quantized consensus”.
Kar and Moura [3] and Aysal, Coates and Rabbat [4] de-

signed probabilistic algorithms that are able to reach a true
consensus. In [4], it is shown that if nodes use probabilistic
quantization at each iteration, then all the states converge to
a common but random quantization level. These probabilistic
algorithms compute an unbiased estimate of the average of the
initial data, but with a non zero variance, hence the precision
of the results is not guaranteed.
On the contrary, in the first algorithm we mentioned [1],

if a node reaches state L, it concludes that the average lies in
[L − 1, L + 1]. A node with state L + 1 outputs the interval
[L, L + 2]. Both conclusions are correct, but the nodes did
not reach an interval consensus. This absence of consensus
may lead the nodes to take two different and uncoordinated
decisions.
Our work focuses on constructing quantized distributed

averaging algorithms that reach interval consensus. One par-
ticular instance of this problem, called the voting problem, ap-

peared several decades ago, and no simple and exact solution
has been found so far. The problem is simple: nodes initially
vote for Yes (1) or No (0), and they want to know the major-
ity opinion. The number n of nodes is chosen odd in order to
always have a strict majority. The voting problem has numer-
ous applications in distributed computing, system-level diag-
nosis, distributed database management, fault-local mending,
etc [5]. It was shown in [6], that the problem (with an extra
synchronization constraint) has no solution if nodes have 1 bit
memory states. There is an obvious link between the averag-
ing problem and the voting problem. If one is able to compute
the average of the initial votes (0’s and 1’s), then comparing
the average to 0.5 is sufficient to deduce the majority vote.
Note that the algorithm of Kashyap et. al [1] solves the voting
problem if the quantization step is smaller than 1/(2n + 1),
which requires to code states on order O(log n) bits. The in-
teresting question now is whether the voting problem has a
solution with states of size O(1), indeed larger than 1 bit, yet
smaller than O(log n) bits. As a direct consequence of our
work, we show that 2 bits are sufficient to solve the voting
problem.
The remainder of this paper is organized as follows: Sec-

tion 2 states the interval consensus problem. We describe our
algorithm in Section 3, and we prove that it converges cor-
rectly in finite time in Section 4. Finally, Sections 5 and 6 list
some further work and conclusions.

2. PROBLEM STATEMENT

At time t = 0, n nodes measure some quantized values
(x1[0], x2[0], . . . , xn[0]), where R has been uniformly quan-
tized with step Δ. We denote by xave the average of the n
measurements:

xave =
1

n

n∑
i=1

xi[0].

The nodes can communicate through a connected network
G and we are given an ordered subset of quantization lev-
els Θ1 < Θ2 < . . . < Θr called thresholds. The goal is
to design a quantized distributed algorithm such that nodes
can tell whether the average xave is smaller than Θ1, or be-
tween Θ1 and Θ2, or between Θ2 and Θ3, or . . ., or larger
than Θr. At each step of the algorithm, nodes can store a
limited number of bits as their current state, and neighboring

3661978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

nodes can exchange their states. Based on their final state, all
the nodes should reach a consensus on the interval [Θi, Θi+1]
which contains xave. To simplify, we assume that xave can
not be threshold level (xave �= Θ). The case xave = Θ will
be briefly discussed in Section 5.
Throughout the paper, we will discuss three examples

where nodes initially vote for 0 or 1. For each of these
problems, we specify how the parameters should be chosen:

1. The voting problem. Are there more 0’s or 1’s? Pa-
rameters: Δ = 0.5, Θ = 0.5, 3 quantization levels:
{0, 0.5, 1}, n odd.

2. The large majority voting problem. Is there a large
majority winner? A large majority winner gets more
than 2/3 of the votes. Parameters: Δ = 1/3, Θ1 =
1/3,Θ2 = 2/3, 4 quantization levels: {0, 1/3, 2/3, 1},
n/3 /∈ N.

3. The quorum checking problem. Have at least 2/3 of the
nodes voted for 1? Parameters: Δ = 1/3, Θ = 2/3, 4
quantization levels {0, 1/3, 2/3, 1}, n/3 /∈ N.

3. OUR QUANTIZED CONSENSUS ALGORITHM

3.1. A gossip based algorithm

Just as in [1], our algorithm is a quantized version of the
pairwise gossip algorithm. Similarly to gossip, at the begin-
ning of every round of our algorithm, an undirected edge of
the communication network is randomly selected and its two
end-nodes exchange their states. We denote by pe the prob-
ability that edge e is chosen. The most common way of se-
lecting edges is to assign a random exponential clock to each
node. When their clock activates, nodes wake up and choose
a neighbor uniformly at random among their neighbors. In
that setting, if i and j are neighbors, edge e = (i, j) is chosen
with positive probability pe = (1/ndi) + (1/ndj), where di

and dj are the degrees of nodes i and j.
In pairwise gossip, nodes update their states to the average

of the two states. By iterating this update rule over the suc-
cessively chosen edges, all the states progressively converge
to the average of the initial states. Our goal is to modify this
simple averaging rule so that the states are quantized and so
that the nodes reach an interval consensus.

3.2. Threshold values are split into two states

In order to achieve our goal, we assign two states to each
threshold level Θ while all the other quantization levels are
represented by one state only. An ordinary state will be de-
noted by its quantization value. The two states with thresh-
old value Θ are distinguished by Θ− and Θ+. We order the
set of states: if the quantization level of state x is smaller
than the quantization level of state y, we write x ≺ y. Also,
for any threshold levelΘ, we adopt the following convention:

Θ− ≺ Θ+. As a result, for example, the voting problem func-
tions with 4 states, coded by the two bits we announced. The
four states are ordered: 0 ≺ 0.5− ≺ 0.5+ ≺ 1. We adopt all
the natural ordering vocabulary, which we adapt to ≺: min,
max, =, �, �, �. In particular the notion of consecutive
states is crucial. In previous example, 0 and 0.5− are consec-
utive states. So are 0.5− and 0.5+. But 0 and 0.5+ are not
consecutive states.

Definition 1 (Convergence) A quantized gossip algorithm
has converged iff all the nodes have either equal or consecu-
tive states.

In other words, an algorithm has converged when there are
two consecutive states x and y such that every state in the
network is equal to x or y. Suppose that we have run a con-
verging algorithm that preserves average, and that the aver-
age xave is in [Θ1, Θ2], then necessarily, the two converging
states are Θ+

1 , Θ
−
2 or quantized levels between these two. In-

dividually, each node knows in which interval xave is. Even
a node with state Θ+

1 makes the correct decision, because the
+ sign tells it that xave ≥ Θ1. Thanks to the threshold state
splitting, we are able to locally decide common intervals.

3.3. Properties of our algorithm

In this section, we list the desirable properties of our algo-
rithm. They are sufficient for the algorithm to converge, but
not necessary. If nodes i and j are activated at time t:

• Conservation property The average should be pre-
served: xi[t + 1] + xj [t + 1] = xi[t] + xj [t].

• Contraction property xi[t + 1] and xj [t + 1] should
be either equal or consecutive states. Furthermore, if
xi[t] = xj [t] then xi[t+1] = xj [t+1] = xi[t] = xj [t].

• Mixing property If xi[t] � xj [t], then xi[t + 1] �
xj [t+1]. In particular, if xi[t] and xj [t] are consecutive
states, then states are swapped: xi[t + 1] = xj [t] and
xj [t + 1] = xi[t].

The algorithm in [1] has similar properties, which we have
adapted to our setting. Our three properties imply two other
properties we will use in Section 4:
Consequence 1: The conservation property together with

the contraction property imply that:

min(xi[t], xj [t]) � xi[t + 1] � max(xi[t], xj [t]). (1)

Consequence 2: The mixing property admits a converse,
which we call the swapping property: if two states are
swapped, then they are equal or consecutive. Indeed, other-
wise they would contract.

3662

3.4. Explicit formulation of our algorithm

To simplify, we consider that quantization levels are centered
at 0, i.e. they can be written kΔ, with k integer. At time t,
an edge is randomly chosen. We denote by i the activated
node with smaller state and by j the other activated node:
xi[t] � xj [t]. Nodes i and j update their states according to
the following rules:

xi[t + 1] =

⌈
xi[t] + xj [t]

2Δ

⌉
Δ.

xj [t + 1] =

⌊
xi[t] + xj [t]

2Δ

⌋
Δ.

When xi[t + 1] or xj [t + 1] is equal to a threshold value
Θ, we need to specify whether they are equal to Θ+ or Θ−.
There are four cases:

• If xi[t] = xj [t], then xi[t + 1] = xj [t + 1] = xi[t].

• If xi[t] �= xj [t] and xi[t + 1] = xj [t + 1] = Θ, then
xi[t + 1] = Θ+ and xj [t + 1] = Θ−.

• If only xi[t + 1] = Θ, then xi[t + 1] = Θ−.

• If only xj [t + 1] = Θ, then xj [t + 1] = Θ+.

It is easy to check that the three properties hold for this al-
gorithm. In Fig.1, we show the update rules for the example
problems of Section 2. By the conservation property, if the
algorithm converges, then the network reaches consensus on
the interval containing xave (as in Fig. 2, where a 2 bits voter
simulation converges). In next section, we prove that our al-
gorithm converges in finite time with probability 1.

4. CONVERGENCE THEOREM

Theorem 1 Let T be the first time the algorithm has con-
verged. If the updating rules follow all the properties of Sec-
tion 3.3, then P[T < ∞] = 1.

Proof : Let x[t] = maxi xi[t] and x[t] = mini xi[t]. Equation
(1) implies that {x[t]}t≥0 is an integer non increasing se-
quence and {x[t]}t≥0 is an integer non decreasing sequence.
The first sequence being larger than the second, both se-
quences are bounded so that they admit limits in finite time,
which we denote by x∞ and x∞. Let t0 be the smallest
iteration at which all the states in the network are larger than
or equal to x∞ and smaller than or equal to x∞. For any
t ≥ t0, letM[t] (respectively,M[t]) be the set of nodes with
state x∞ (respectively, x∞) at time t. Both sets have a non
increasing number of elements. Therefore there is a time t1
after which their cardinalities remain constant.
Let m[t1] be a node inM[t1], andm[t1] be another node

inM[t1]. We are now going to construct recursively two se-
quences of nodes {m[t]}t≥t1 and {m[t]}t≥t1 . For any t ≥ t1,

m[t+1] =

{
i[t] ifm[t] and i[t] communicate at time t.
m[t] ifm[t] does not communicate at time t.

0.5−

0

1

0.5+

(a) 2 bits voter
1

0

1/3
+

1/3
−

2/3
−

2/3
+

(b) 2/3 large majority voter
1

0

1/3

2/3
−

2/3
+

(c) 2/3 quorum checker

Fig. 1. Update rules for the simple voter, the 2/3 large ma-
jority voter and the 2/3 quorum checker. The figures show
all the different pairwise updates possible. Easy consecutive
states swaps are not shown in (b) and (c). For example, Fig (a)
reads as follows: (0, 1) is updated to (0.5+, 0.5−), (1, 0.5−)
is updated to (0.5+, 1), etc.

m[t+1] =

{
i[t] ifm[t] and i[t] communicate at time t.
m[t] ifm[t] does not communicate at time t.

We prove recursively that node m[t] has state x∞ at time t
for every t ≥ t1. It is true at time t1 by construction of node
m[t1]. Suppose that it is true until time t. Then, if m[t] com-
municates with a node i[t] at time t, the two nodes will update
their states. In order to keep the number of nodes inM[t] con-
stant, one of the two nodes should update its state to x∞. By
the Mixing property, we know that i[t] = m[t + 1] has a state
larger than the state ofm[t] at time t + 1. Thereforem[t + 1]
has state x∞ at time t + 1. If m[t] does not communicate at
time t, then its state does not change and m[t + 1] has state
x∞ at time t + 1. For the same reasons, for any t ≥ t1, node
m[t] has state x∞ at time t.
Let Tmeet be the first time at whichm andm are the two

end-nodes of the randomly chosen edge, or in other words the

3663

first time whenm andm communicate with each other:

Tmeet = min{t : m[t] andm[t] communicate at time t.}

By definition of the sequence {m[t]}t≥t1 and {m[t]}t≥t1 ,
m[Tmeet] and m[Tmeet] swap states at time Tmeet. By the
swapping property, we conclude that, at time Tmeet, x∞ and
x∞ are either equal or consecutive states, which implies that
the algorithm has converged. In other words, the convergence
time T is smaller than Tmeet: T ≤ Tmeet. The last step of
the proof is to show that P[Tmeet < ∞] = 1, which implies
that P[T <∞] = 1.
We consider the joint process {m[t], m[t]}t≥t1 . Note that

for any t, m[t] �= m[t]. This process is a Markov chain over
the state space E (here the states are pair of nodes in the net-
work):

E = [1, n]2 \{(1, 1), (2, 2), . . . , (n, n)}.

The communication network being connected, {m[t], m[t]}t≥t1

is irreducible. Noting that E is a finite set, we can conclude
that the Markov chain is positive recurrent. For any pair
e = (i, j) of neighboring nodes in the communication net-
work, the Markov chain {m[t], m[t]}t≥t1 admits a positive
transition probability p = pe from state (i, j) to state (j, i).
The first time such a transition occurs is equal to Tmeet. To
finish the proof, it is sufficient to notice that any transition
with positive probability of an irreducible Markov chain over
a finite state space is used in finite time with probability 1.
This particular point of Markov chain theory is proved in
Appendix. �

5. FURTHERWORK

Further work should investigate the convergence time of these
algorithms, which depends on the number n of nodes, the net-
work topology, the quantization step size and also the average
xave. Another point to study is the behavior of the algorithm
when xave can be equal to a threshold level Θ. If xave = Θ,
convergence states are Θ+ and Θ−. To detect this situation,
a node with state Θ+ should gather neighboring states and
check if there is any Θ− state. If approximatively n/2 nodes
have state Θ−, then a Θ+ node finds a Θ− node with high
probability as long as it gathers O(log n) states. Therefore,
computing the distribution of the repartition of Θ+ and Θ−

among nodes, and showing that it is well concentrated around
n/2 would solve the interval consensus problem, even when
xave is a threshold level.

6. CONCLUSION

We have designed a class of quantized gossip algorithms that
reach interval consensus in finite time. We proved that the
voting problem can be solved with 2 bits states, and that the
large majority voting problem and the quorum checking prob-
lem can be solved with 3 bits states.

nodes

tim
e

20 40 60 80 100 120 140

200

400

600

800

1000

1200

(a) One bit displayed
nodes

tim
e

20 40 60 80 100 120 140

200

400

600

800

1000

1200

(b) Two bits displayed

Fig. 2. The 2 bits voting algorithm. The algorithm was run on
a circular network of 149 nodes, displayed here on a line. The
successive state configurations are shown with time increas-
ing down the page (149 iterations per line). In (a), black pixels
represent states 0 and 0.5−, white pixels represent states 0.5+

and 1. In (b), the four states are distinguished with white (0),
light gray (0.5−), dark gray (0.5+) and black (1). There were
initially 3 more black states than white states.

7. APPENDIX

Theorem 2 Let E be a finite set. Any transition with positive
probability of an irreducible Markov chain over E is used in
finite time with probability 1.

Proof : Let {Xn}n≥0 be an irreducible Markov chain overE.
We consider theMarkov chain {Yn}n≥0 = {(Xn, Xn+1)}n≥0

over the state space of positive transition edges of chain
{Xn}n≥0. {Yn}n≥0 is irreducible as well, and the number of
positive transition edges of chain {Xn}n≥0 is finite. There-
fore {Yn}n≥0 is positive recurrent and it reaches any of its
states in finite time with probability 1.

8. REFERENCES

[1] A. Kashyap, T. Başar, and R. Srikant, “Quantized consen-
sus,” Automatica, vol. 43, no. 7, pp. 1192–1203, 2007.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip
algorithms : Design, analysis and applications,” in Proc.
INFOCOM, 2005.

[3] S. Kar and J. M. F. Moura, “Distributed consensus algo-
rithms in sensor networks: Quantized data,” CoRR, 2007.

[4] T. C. Aysal, M. Coates, and M. Rabbat, “Distributed av-
erage consensus using probabilistic quantization,” Statis-
tical Signal Processing, 2007. IEEE/SP 14th Workshop.

[5] B. Hardekopf et al., “Secure and fault-tolerant voting in
distributed systems,” Proc. IEEE Aerospace Conf., 2001.

[6] M. Land and R. K. Belew, “No perfect two-state cellu-
lar automata for density classification exists,” Phys. Rev.
Lett., vol. 74, no. 25, pp. 5148–5150, Jun 1995.

3664

