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Chapter 1

Introduction

The objective of my research is to develop stochastic models and algorithms for performance
analysis, optimization and control of complex networks. My contributions are on the intersec-
tion of applied probability, operations research, computer science and electrical engineering,
and range from coupling techniques for Markov chains and perfect simulation algorithms,
stochastic networks and probabilistic cellular automata, to reinforcement learning, and opti-
mization and control in power networks.

This manuscript summarizes one part of my research. The focus is on the decision and
control in networks with stochastic demand and supply that have to be balanced by a central
entity, or using a distributed control design. Two different settings are considered: stochastic
matching systems and real-time balancing of stochastic demand and supply in power grids.
The objective is similar, yet the models differ considerably and use techniques from vari-
ous fields including queueing systems and network flows from graph theory for stochastic
matching, and mean-field approximations and control theory for real-time demand-supply
balancing. Both settings use Markov decision processes.

The remaining of the introduction contains an overview of my scientific contributions, the
organization of the manuscript, the list of publications since my PhD defense in 2007, and
my curriculum vitae.

1.1 Scientific contributions

During my PhD, I worked on stochastic comparison of Markov chains. The main focus was
on algorithmic construction of bounds for large Markov chains, with applications in relia-
bility and performance evaluation. One of key properties I was investigating was stochastic
monotonicity, under various stochastic orders (e.g. strong or usual stochastic order, convex,
level-crossing . . . ). My interests in Markov processes evolved over the years in two directions:

• perfect sampling methods based on the coupling arguments for Markov chains,

• Markov reward and decision processes, and lately reinforcement learning.

I am interested in stochastic modeling and analysis of networks, and two particular types of
networks that I focused on the most are stochastic matching systems and power networks.
The overview of my contributions is organized in themes that are chronologically ordered
according to the first time I started working in that area. The list of my publications since

1



2 CHAPTER 1. INTRODUCTION

my PhD defense is given in Section 1.3. The references starting with a letter refer to this
list publications and the letter itself denotes the type of publication (B - book chapter, C -
international conference, J - journal, N - national conference, P - patent, T - tool paper, W -
preprint). The reference that do not start with a letter refer to the reference list at the end
of this manuscript.

1.1.1 Markov (decision) processes

Bounds for Markov chains

I continued research on bounding methods for Markov chains based on stochastic comparison.
I list here only the contributions that were not issued from the work in my PhD thesis. How-
ever, they use similar techniques and are issued from a collaboration with my PhD advisor,
Jean-Michel Fourneau.

We developed stochastic bound algorithms for censored Markov chains in [C62, C59, C52].
Censored Markov chains can be used to study the conditional behavior of a system within
a subset of observed states. They can also provide a theoretical framework to study the
truncation of a discrete-time Markov chain when the generation of the state-space is too hard
or when the number of states is too large [141].

In [C60, T3, J27] we proposed iterative algorithms to compute component-wise bounds
of the steady-state distribution of an irreducible and aperiodic Markov chain. The proposed
bounds are based on very simple properties of (max, +) and (min, +) sequences. Under some
assumptions on the Markov chain, these bounds converge to the exact solution. In that case
we have a clear tradeoff between computation and the tightness of bounds. Furthermore,
at every step we know that the exact solution is within an interval, which provides a more
effective convergence test than usual iterative methods for solving Markov chains.

In [J26] we considered two different applications of stochastic monotonicity in performance
evaluation of networks. In the first one, we assume that a Markov chain of the model depends
on a parameter that can be estimated only up to a certain level and we have only an interval
that contains the exact value of the parameter. Instead of taking an approximated value for
the unknown parameter, we show how we can use the monotonicity properties of the Markov
chain to take into account the measurement error bounds. In the second application, we
consider a well known approximation method: the decomposition into submodels. In such
an approach, models of complex networks are decomposed into submodels whose results are
then used as parameters for the next submodel in an iterative computation. This leads to
a fixed point system which is solved numerically. We use stochastic monotonicity to obtain
the existence proof of the solution of the fixed point system and a convergence proof of the
iterative algorithm.

In [J18], we bound a discrete time Markov chain by a new chain with transition matrix that
has a low rank decomposition. We show how the complexity of the analysis for steady-state
and transient distributions can be simplified when we take into account this decomposition.

Structural properties in Markov decision processes

Right after my PhD, during a summer visit to CMU, I had the opportunity to meet Ingrid
Vliegen, also visiting CMU for the summer. Ingrid was at that time a PhD student at TU/e,
supervised by Geert-Jan van Houtum and Ton de Kok. Ingrid developed several heuristics
for a complex inventory system, that were empirically always a lower and an upper bound.
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Together with Ingrid and with Alan Sheller-Wolf, we developed in [J24] a new comparison
technique for Markov reward processes. Our method constructs bounds for a Markov reward
process by redirecting selected sets of transitions, facilitating an intuitive interpretation of the
modifications on the original system. Redirecting sets of transitions is based on an extension
of precedence relations to sets of states by van Houtum et al. [71], and allows to design more
accurate bounds (e.g. bounds having the same mean behavior). We show that our method
is compatible with strong aggregation of Markov chains; thus we can obtain bounds for the
initial chain by analyzing a much smaller chain. We apply the precedence relations on set
of states combined with aggregation to prove the bounds of order fill rates for an inventory
system with joint demands and returns of items.

Precedence relation method, and our extension to sets of transitions, is closely related to
the techniques based on structural properties of dynamic programming operator for Markov
reward and decision processes, that have been largely used in queuing and inventory systems
to obtain structural results for optimal policies.

Within a master internship of A. Wieczorek, co-supervised by Emmanuel Hyon, we con-
sidered lost sales inventory models with several classes of customers and investigated the
optimality of critical level policies (i.e. policies defined by a set of thresholds) [C58]. We also
studied in [C27, J5] structural properties and threshold-type policies in stochastic matching,
which will be described further in Subsection 1.1.4.

Controlled Markov processes with stationary inputs

Within PhD thesis of Yue Chen, supervised by Sean Meyn, we studied the impact of a
mean-field control on the individual quality of service in power grid applications (detailed
in Subsection 1.1.5). This motivated the following new ergodic theory results for controlled
Markov processes that are driven by a stationary input process [J12]: Consider a stochastic
process X on a finite state space X = {1, . . . , d}, assumed to be conditionally Markov, given
a real-valued ‘input process’ ζ. This input process is assumed to be small, which is modeled
through the scaling,

ζt = εζ1
t , 0 ≤ ε ≤ 1 ,

where ζ1 is a bounded stationary process. Subject to smoothness assumptions on the con-
trolled transition matrix and a mixing condition on ζ:

(i) A stationary version of the process is constructed, that is coupled with a stationary
version of the Markov chain X• obtained with ζ ≡ 0. The triple (X,X•, ζ) is a jointly
stationary process satisfying

P{X(t) 6= X•(t)} = O(ε)

Moreover, a second-order Taylor-series approximation is obtained:

P{X(t) = i} = P{X•(t) = i}+ ε2π(2)(i) + o(ε2), 1 ≤ i ≤ d,
with an explicit formula for the vector π(2) ∈ Rd.

(ii) For any m ≥ 1 and any function f : {1, . . . , d} × R → Rm, the stationary stochastic
process Y (t) = f(X(t), ζ(t)) has a power spectral density Sf that admits a second order
Taylor series expansion: A function S(2)

f : [−π, π]→ Cm×m is constructed such that

Sf (θ) = S•f (θ) + ε2S(2)

f (θ) + o(ε2), θ ∈ [−π, π]

in which the first term is the power spectral density obtained with ε = 0. An explicit formula
for the function S(2)

f is obtained, based in part on the bounds in (i).
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ODE for MDPs

In tracking problems for power grid, described more in detail in Subsection 1.1.5, we encoun-
tered a new computational challenge: how to efficiently solve not one, but an entire family of
Markov decision processes (MDP), parameterized by a scalar ζ that appears in the one-step
reward function? In collaboration with Sean Meyn, we proposed in [J10] a new approach
to computation of optimal policies for parameterized families of average-cost MDPs. For an
MDP with d states, the family of relative value functions {h∗ζ : ζ ∈ R} is the solution to an
ordinary differential equation (ODE),

d
dζh
∗
ζ = V(h∗ζ)

where the vector field V : Rd → Rd has a simple form, based on a matrix inverse.

Two general applications are presented: Brockett’s quadratic-cost MDP model, and a
generalization of the “linearly solvable” MDP framework of Todorov in which the one-step
reward function is defined by Kullback-Leibler divergence. The latter was introduced in
[132], where it was shown under general conditions that the solution to the average-reward
optimality equations reduce to a simple eigenvector problem. Since then many authors have
sought to apply this technique to control problems and models of bounded rationality in
economics. A crucial assumption is that the input process is essentially unconstrained. For
example, if the nominal dynamics include randomness from nature (eg, the impact of wind on
a moving vehicle), then the optimal control solution does not respect the exogenous nature
of this disturbance. In [C33] we introduce a technique to solve a more general class of action-
constrained MDPs.

1.1.2 Perfect simulation of Markov chains

My interests in algorithmic construction of bounding chains lead to a post-doc at Inria Greno-
ble (2007-08) where I had an opportunity to work with Bruno Gaujal and Jean-Marc Vincent
on perfect simulation of Markov chains, a simulation technique that is based on coupling
constructions for Markov chains.

It is well known since the pioneering works of Loynes [93] and then Borovkov [17], that
backwards schemes and specifically strong backwards coupling convergence, can lead to an
explicit construction of the stationary state of the system, within its stability region. One
can then use pathwise representations to compare systems in steady state (see Chapter 4 of
[7] on such comparison results for queues).

Propp and Wilson [116] introduced a coupling-from-the-past algorithm (CFTP) (which
essentially uses backwards coupling convergence), a powerful tool for simulating the steady
state of the system, even whenever the latter distribution is not know in closed form. For
an ergodic Markov chain with finite state space, CFTP provides an unbiased sample from
the stationary distribution in finite expected time. In the general case, the algorithm starts
trajectories from all states at some time in the past until time 0. If the final state is the
same for all trajectories, then the chain has coupled and the final state has the stationary
distribution of the Markov chain. Otherwise, the simulations are started further in the past.
This algorithm is efficient under monotonicity assumptions that allows reducing the number
of trajectories considered in the coupling from the past procedure only to extremal initial
conditions.
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In the non-monotone case, the original CFTP algorithm requires to generate one trajectory
per state of the Markov chain, which limits its application only to chains with a state space
of very small cardinality. Two general ideas of bounding processes, sandwiching all the
trajectories of the original chain, have been proposed in the literature, based on a particular
structure of the process: [84] assumes a partially ordered state space structure, while [75]
constructs bounding chains evolving on the power set of the state space, and it is suitable for
dynamics on graphs with local interactions.

Envelope perfect sampling

Motivated by the general bounding idea in [84], with Bruno Gaujal and Jean-Marc Vincent,
we proposed in [C61] an algorithm to construct envelope bounding chains, for the case of a
Markov chain on a lattice state space. The envelope technique has been implemented in a
software tool PSI2 (Perfect SImulator) [T2].

More precisely, this envelope technique amounts to replace the initial equation Xn+1 =
Φ(Xn, Un+1) by a couple of equations:

M(t+ 1) = sup
m(t)≤x≤M(t)

Φ(x, Ut+1),

m(t+ 1) = inf
m(t)≤x≤M(t)

Φ(x, Ut+1).

Starting from the extreme states in the state space, the couple (m(t),M(t)) always provide
lower and upper bounds on the state X(t). Therefore, whenever m and M meet, all trajecto-
ries of the original chain have coalesced and the algorithm returns a sample from a stationary
distribution.

When the cardinality of the state space makes challenging even storing the state of the
Markov chain, we proposed to combine the ideas of bounding processes and the aggregation of
Markov chains [C55]. We illustrated the proposed approach of aggregated enveloppe bounding
chains on assemble to order systems.

The enveloppe approach has two weak points:

• It requires the computation of the supremum and the infimum of the transition function
Φ over all states in some lattice interval I. These computations should be done in
sublinear time in |I|, in order to gain over the original CFTP.

• The coupling time of the envelope chain is larger than that of the original chain, and
may even be infinite.

The former issue was addressed in [J23] where we showed that the enveloppe approach is
particularly effective when the state space can be partitioned into pieces where envelopes can
be easily computed. Most markovian queueing networks have this property. For the latter
issue, in [C61] we propose a splitting technique: when the number of states contained in the
interval of the enveloppe chain drops below a certain threshold, it is possible to ”split” the
interval into the remaining trajectories that are considered from that point on, until time 0.

Perfect sampling for queueing networks

In [C53,J17], we consider open Jackson queueing networks with mixed finite and infinite
buffers and analyze the efficiency of sampling from their exact stationary distribution. We
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show that perfect sampling is possible even when the underlying Markov chain has infinite
state space. The main idea is to use a Jackson network with infinite buffers (that has a product
form stationary distribution) to bound the number of initial conditions to be considered in
the coupling from the past scheme. We also provide bounds on the sampling time of this new
perfect sampling algorithm under hyper-stability conditions (defined in [J17]) for each queue.
These bounds show that the new algorithm is considerably more efficient than existing perfect
samplers even in the case where all queues are finite.

Within the PhD thesis of Cristelle Rovetta, that I co-advised with Anne Bouillard, our
goal was to propose new efficient perfect sampling algorithms that are not necessarily based
on a notion of a partially ordered state space. Our motivating example was a closed queueing
network. When the queue capacity is finite, the stationary distribution has a product form
only in a very limited number of particular cases and numerical algorithms are intractable
due to the cardinality of the state space. Closed networks do not exhibit any monotonicity
property and the global constraint on the total number of packets in the network prevents
to directly use previously mentioned bounding chain approaches. In [J19], we derived a new
bounding chain for closed queueing networks that is based on a compact representation of
sets of states, reducing the complexity of the one-step transition in the CFTP algorithm to
O(KM2), where K is the number of queues and M the total number of customers (while
the cardinality of the state space is exponential in the number of queues). The coupling
time of the bounding chain is almost surely finite. In [C47] these results are extended to the
multiclass case. CLONES (Closed Queueing Networks Exact Sampling), a Matlab toolbox
for exact sampling of closed queueing networks developed by Christelle Rovetta, received the
best-tool paper award at Valuetools 2015 [T1]. In [J15] we proposed a new representation,
that leads to one-step transition complexity of the CFTP algorithm that is in O(KM).

Besides queueing networks, I used perfect sampling and bounding chains to study proba-
bilistic cellular automata [C57, J20], described more in detail in Subsection 1.1.3.

Acceleration of perfect sampling

Within a master internship of Furcy Pin, co-supervised with Bruno Gaujal, we proposed a
new method to speed up perfect sampling of Markov chains by skipping the passive events,
i.e. an adaptive method for random event generation that considers only the events that can
change the state of the envelope bounding chain. We proved that this can be done without
altering the distribution of the samples [C56]. This technique is particularly efficient for
the simulation of Markov chains with different time scales such as queueing networks where
certain servers are much faster than others. In such cases, the coupling time of the Markov
chain can be arbitrarily large while the runtime of the skipping algorithm remains bounded.

Within the PhD thesis of Rémi Varloot, we used perfect simulation for random generation
of independent sets [C46]. The maximum independent set (MIS) problem is a well-studied
combinatorial optimization problem that naturally arises in many applications, such as wire-
less communication, information theory and statistical mechanics. MIS problem is NP-hard,
thus many results in the literature focus on fast generation of maximal independent sets of
high cardinality. One possibility is to combine Gibbs sampling with CFTP algorithms. This
results in a sampling procedure with time complexity that depends on the mixing time of
the Glauber dynamics Markov chain. We proposed an adaptive method for random event
generation for the Glauber dynamics that considers only the events that are effective in the
CFTP scheme, accelerating the convergence time of the Gibbs sampling algorithm.
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1.1.3 Probabilistic cellular automata

Dynamical systems with local interactions provide theoretical models for problems in dis-
tributed computing: gathering a global information by exchanging only local information.
The challenge is two-fold: first, it is impossible to centralize the information (cells are in-
distinguishable); second, the cells contain only a limited information (represented by a finite
alphabet). There are two natural instantiations of dynamical systems with local interactions:
one with synchronous updates of the cells, and one with asynchronous updates. In the first
case, time is discrete, all cells are updated at each time step, and the model is known as a
Probabilistic Cellular Automaton (PCA) [134] The applications of PCA range from the de-
signing of fault-tolerant computational models [60] to to statistical physics and life sciences.
In the second case, time is continuous, cells are updated at random instants, at most one cell
is updated at any given time, and the model is known as a (finite range) Interacting Parti-
cle System (IPS) [131]. IPS have wide range of applications, including sensor and wireless
networks.

Within the PhD thesis of Irène Marcovici, supervised by Jean Mairesse, we investigated
ergodicity of PCA. I initially joined the project to guide Irène in developing of a perfect
simulation algorithm for PCA. With time, I got interested in the research area itself, so we
continued collaborating during most of Irène’s PhD.

A PCA on Zd can be seen as Markov chains, with uncountable state space. The cells are
updated synchronously and independently, according to a distribution depending on a finite
neighborhood. In [C57, J20], we investigate the ergodicity of this Markov chain. We show
that ergodicity of PCA is undecidable even in one dimensional case with deterministic update
rule. We then propose an efficient perfect sampling algorithm for the invariant measure of an
ergodic PCA. Our algorithm does not assume any monotonicity property of the local rule. It
is based on a bounding process which is shown to be also a PCA.

Most of the results in the Markov chain literature are limited to the ergodic case. In
many problems related to PCA, we are interested exactly in the opposite: in design of fault-
tolerant systems it is important that the automaton keeps the knowledge of certain initial
configurations in spite of the noise (faults) in the dynamics of the model. In [C54, J21], we
address the density classification problem. Consider an infinite graph with nodes initially
labeled by independent Bernoulli random variables of parameter p. Density classification
problem consist in designing a (probabilistic or deterministic) cellular automaton or a finite-
range interacting particle system that evolves on this graph and decides whether p is smaller
or larger than 1/2. Precisely, the trajectories should converge to the uniform configuration
with only 0’s if p < 1/2, and only 1’s if p > 1/2. We present solutions to the problem on the
regular grids of dimension d, for any d > 1, and on the regular infinite trees. For the bi-infinite
line, we propose some candidates that we back up with numerical simulations, using our PCA
perfect sampling algorithm.

1.1.4 Stochastic matching systems

The theory of matching has a long history in economics, mathematics, and computer science,
with applications found in many other fields, such as health, ridesharing, power grid, or
pattern recognition. Most of the research on matching considers the static setting. With
the increased popularity of online advertising, various online bipartite matching models have
been proposed that consider random arrivals of one population, while the other is static. Two
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sided stochastic matching model was first proposed in Caldentey, Kaplan and Weiss [31]. They
introduced FCFM (First Come First Matched) bipartite matching model with two infinite
sequences of “customers” (also called demand in this manuscript) and “servers” (also called
supply), motivated by the Boston area social housing problem and the PhD thesis of Kaplan
[80]. In this bipartite matching formulation customers and servers play completely symmetric
roles. Customers and servers of several types arrive to the system and wait for a compatible
match. Compatibility is determined by a bipartite graph. The system is controlled by a
matching policy that determines which of the available compatible items are matched together.
FCFM policy matches a new arrival to the longest waiting compatible item in the system.
Other systems where two sided models seem appropriate include ride sharing systems, organ
transplants, assigning users to servers in distributed computing systems, assigning questions
to experts in question-and-answer websites, job markets, and online advertising.

I started working on stochastic matching systems during my post-doc at LIAFA with Jean
Mairesse, following our discussion with Gideon Weiss during Stochastic Networks conference
in Paris in spring 2008. The initial idea was to study the FCFM model and show it admits a
product form stationary distribution. This turned out to be a highly non-trivial task.

The first examples, with simple compatibility graphs were analyzed already in [31] where
the authors also conjectured the matching rates, i.e. the fraction of customers of each type
served by each type of server, for any bipartite compatibility graphs. The necessary and
sufficient condition for stability and a product form stationary distribution for the bipartite
matching model were derived by Adan and Weiss in [3]. The product form stationary distri-
bution was derived by partial balance, similar to [137]. This stationary distribution was then
used to derive expressions for the matching rates.

I describe here briefly my contributions on stochastic matching systems. This part will
be covered in more detail in Part I of the manuscript.

FCFM stochastic matching

In a collaboration with Ivo Adan, Jean Mairesse et Gideon Weiss, we studied in depth the
FCFM bipartite matching model in [J11], and developed product form stationary distribution
results for various state descriptions. This also lead to a reversibility result for a well chosen
state description, and thus a fine understanding of the product form results for this type
of models. In addition to the matching rates, another important performance measure was
derived, the distributions of link lags, i.e. the lags between matched customer server pairs.

The extension to the non-bipartite compatibility graphs, called the general stochastic
matching model, was initially proposed by Mairesse and Moyal in [97]: there is a single i.i.d.
sequence of items of several types, and a non-bipartite compatibility graph, and each item in
the sequence is matched to an earlier compatible item if such exists, or it remains unmatched
until it can be matched to a later item in the sequence. In a collaborative work [J7] with
Pascal Moyal and Jean Mairesse we extended the reversibility and product form results from
[J11] to non-bipartite compatibility graphs, under the FCFM policy.

In [C6], we extended this product form result to the case of compatibility graphs with
self-loops. Similar result has been derived in parallel by Begeot et al. in [11] using a different
proof technique.

These reversibility and product form results for FCFM policy greatly simplify the analysis,
and can be also used to guide a system design with target performance properties [C51]. Also,
FCFM policy does not favor any particular class, so it may be considered as fair by the users.



1.1. SCIENTIFIC CONTRIBUTIONS 9

All these are very strong and appealing arguments to use FCFM policy in practice. However,
in [C10] we show that FCFM policy can also exhibit an interesting performance paradox:
increasing the matching possibilities by adding new edges to the compatibility graph may
lead to a larger mean waiting times to find a compatible match. One may see adding an
edge as increasing the flexibility of the system, for example asking a family registering for
social housing to list less requirements in order to be compatible with more housing units.
Therefore it may be natural to think that adding edges to the matching graph will lead to a
decrease of the expected number of items in the system and the waiting time to be matched.
We provide sufficient conditions for this performance paradox. These sufficient conditions are
related to the heavy-traffic assumptions in queueing systems. The intuition behind is that
the performance paradox occurs when the added edge in the compatibility graph disrupts
the draining of a bottleneck, i.e. a set of nodes for which the arrival rates are very close to
the arrival rates of their neighbors in the compatibility graph. This performance paradox is
not fully surprising when analyzing a fixed policy. What is really intriguing is that the same
paradox occurs even if we consider the whole family of greedy policies, i.e. the policies that
always match a new arrival to a waiting item if there are any compatible items waiting in
the system. An example is given in [W2]. In stochastic matching model, greedy matching
policies can be interpreted as selfish behavior of new arrivals, so this performance paradox is
to some extent similar to a Braess paradox observed in transportation networks [20]. Braess
paradox states that, when the agents can take self-interested decisions, the travelling times
of the agents can increase if we add a new road. The idea behind this phenomenon is that
the extension of the network might cause a redistribution of the traffic that increases the
congestion and, as a result, the delay of agents. More precisely, the Braess paradox shows
that the travel time in the Nash equilibrium (the set of strategies such as no agent has incentive
to deviate unilaterally) can increase if we add a shortcut in the network. This result reflects
that the selfish behavior of agents in a network might lead to a situation whose performance is
sub-optimal. The existence of a Braess paradox has been explored in several contexts related
to queueing networks [10, 33, 46, 47, 79].

Stability and Loynes-type constructions

A drawback of FCFM policy is the need to consider the order of arrival of items into the
system, which leads to a state space that consists of all finite words of item classes. In
[J22] we extended the bipartite stochastic matching model to the class of admissible policies
that can be described as markovian greedy policies, i.e. the policies that only depend on
the current state of the system and that always match new arrivals with compatible waiting
items. Also, we extended the arrival process to include possible correlations between demand
and supply items, while the previously mentioned results for FCFM policy always assumed
independence between the arrival supply and demand item sequences. We call this setting
the Extended Bipartite Matching (EBM) model. We considered stability properties of EBM
model under various greedy matching policies, including ML (match the longest), MS (match
the shortest), FCFM (match the oldest), RANDOM (match uniformly), and PRIORITY.
We identified necessary conditions for stability (independent of the matching policy) defining
the maximal possible stability region. For some bipartite graphs, we prove that the stability
region is indeed maximal for any admissible matching policy. For ML policy, we prove that
the stability region is maximal for any bipartite graph. For MS and PRIORITY policies,
we exhibit a bipartite graph with a non-maximal stability region. An extension of these
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stability results to non-bipartite compatibility graphs, called general matching model (GM)
was proposed by Mairesse and Moyal in [97].

In [W7], we propose an explicit construction of the stationary state of EBM model. We
use a Loynes-type backwards scheme, allowing to show the existence and uniqueness of a
bi-infinite perfect matching under various conditions, for a large class of matching policies
and of bipartite matching structures. The key algebraic element of our construction is the
sub-additivity of a suitable stochastic recursive representation of the model, satisfied under
most usual matching policies. By doing so, we also derive stability conditions for the system
under general stationary ergodic assumptions, subsuming the classical markovian settings.
The extension to GM is studied in [W4]. We prove that most common matching policies
(including FCFM, priorities and random) satisfy a particular sub-additive property, which
we exploit to show in many cases, the coupling-from-the-past to the steady state, using a
backwards scheme à la Loynes. We then use these results to explicitly construct perfect bi-
infinite matchings, and to build a perfect simulation algorithm in the case where the buffer
of the system is finite.

Optimization

Within the PhD thesis of Arnaud Cadas, we considered holding costs for the items that are
waiting to be matched. We model this problem as an MDP (Markov decision process) and
study the discounted cost and the average cost case. In [J11], we first consider a model with
two types of supply and two types of demand items with an N -shaped matching graph. For
linear cost function, we prove that an optimal matching policy gives priority to the pendant
edges of the matching graph and is of threshold type for the diagonal edge. In addition, for
the average cost problem, we compute the optimal threshold value. We then show how the
obtained results can be used to characterize the structure of an optimal matching control for
a quasi-complete graph with an arbitrary number of nodes. For arbitrary bipartite graphs,
we show that, when the cost of the pendant edges is larger than the one of the neighbors,
an optimal matching policy prioritizes the items in the pendant edges. We also provide an
example that shows that it is not optimal to prioritize items in the pendant edges when the
cost of the pendant edges is smaller than the one of the neighbors. Conference version [C27]
obtained best paper award at the conference VALUETOOLS 2019.

In a collaborative work with Sean Meyn, in [C45] we considered the infinite-horizon
average-cost optimal control problem and proposed a relaxation of the stochastic control
problem, which is found to be a special case of an inventory model, as treated in the classical
theory of Clark and Scarf [45]. The optimal policy for the relaxation admits a closed-form
expression. Based on the policy for this relaxation, a new h-MaxWeight with threshold policy
is proposed (described more in detail in Section 5.3). For a parameterized family of models
in which the network load approaches capacity, this policy is shown to be approximately
optimal, with bounded regret, even though the average cost grows without bound.

Matching rates

Applying a combination of a graph-theory and linear-algebra approach, in a collaborative
work with Céline Comte and Fabien Mathieu, in [N1,W3] we analyze the efficiency of match-
ing policies, not only in terms of system stability, but also in terms of matching rates between
different classes. The matching model we consider is essentially a GM model, but relaxing
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the assumptions on greedy policies. More precisely, we consider a matching problem in which
items of different classes arrive according to independent Poisson processes. Unmatched items
are stored in a queue, and compatibility constraints are described by a simple graph on the
classes, so that two items can be matched if their classes are neighbors in the graph. Our
results rely on the observation that, under any stable policy, the matching rates satisfy a con-
servation equation that equates the arrival and departure rates of each item class. We first
introduce a mapping between the dimension of the solution set of this conservation equation,
the structure of the compatibility graph, and the existence of a stable policy. In particular,
this allows us to derive a necessary and sufficient stability condition that is verifiable in poly-
nomial time. We describe the convex polytope of non-negative solutions of the conservation
equation. When this polytope is reduced to a single point, we give a closed-form expression
of the solution; in general, we characterize the vertices of this polytope using again the graph
structure. Finally, we study which vectors of the polytope can be achieved by a stable policy.
We show that the set of vectors reached by stable greedy policies is included in the interior
of the polytope, and that the inclusion is strict in general. In contrast, we conjecture that
non-greedy policies can reach any point of the interior of the polytope; whether they can also
reach the boundary of the polytope depends on a simple condition on the vertices.

1.1.5 Optimization and control in power networks

The power system transformation brings new challenges and opportunities due to changes and
uncertainties in electricity consumption and generation. In power networks, it is necessary
that the electricity production is equal to the demand at all times. In addition to ensuring
sufficient electricity production, there is also a need for flexible resources that can quickly
adapt their production / consumption to compensate for demand forecasting errors and ensure
real-time balancing between production and demand. This service is an example of the system
services (also called ancillary services) essential to the proper functioning of power grids.

Matching electricity supply and demand used to be relatively straightforward, with large
and controllable power plants on the one hand, and demand that was relatively easy to
predict on the other. Slowly ramping cheaper generators were committed in advance to
follow the predicted demand. The real time balancing was done by ramping up or down
the most responsive power plants, such as gas turbines or hydro, when available. They were
operating at lower capacity, leaving the possibility to ramp up or down their generation.
This was providing balancing reserves used to correct the forecasting errors and follow the
demand in real time. In recent years, there has been a significant increase in participation
of intermittent renewable generation. Balancing service from traditional power plants is
becoming very expensive due to the need to compensate for the missed opportunity cost
the power plants are facing while operating at a lower set-point to be able to ramp up and
down more aggressively than in the past. At the same time, the rapid development of ”smart
technologies” (e.g. Linky meter and the connected appliances) has opened new possibilities
for innovation on the demand side, as well as new control solutions on the grid level.

Energy storage is one possible solution to facilitate this power network transformation.
Within the PhD thesis of Md Umar Hashmi, we considered energy storage control problems
both at the level of individual consumers minimizing the cost of electricity and at the grid
level for increasing reliability and stability of the power network.

My main contributions in the area of control for power networks is a new distributed
control approach for balancing the power grid using flexible loads. The proposed approach
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relies on new smart technologies allowing for automatic control of devices. The objective is to
control a great amount of devices to provide services to the system (load shaping or ancillary
services) while: i) maintaining the quality of service for the users; ii) minimizing commu-
nications between controllable devices and the central controller. The proposed approach
combines controlled Markov processes and mean-field models. This is a collaborative work
with colleagues from the University of Florida, started during my sabbatical at the University
of Florida in 2014, and then greatly accelerated by the Inria Associate Team PARIS (2015-18)
and Inria International Chair of Sean Meyn (2019-25). Significant part of this research was
done through collaborations involving PhD students:

• Inria: Md Umar Hashmi, Thomas Le Corre;

• University of Florida: Yue Chen, Austin R. Coffman, Joel Mathias, Neil Cammardella.

Electricity markets are also expected to undergo a significant transformation, evolving
from centralized to decentralized structures, driven by digitalization, large-scale integration
of renewable energy sources (RES) and distributed energy resources (DER), and active pro-
sumer engagement. These changes motivate new market models incorporating decentralized
structures, large-scale RES and DER inclusion, and the strategic behavior of prosumers. In
PhD thesis of Ilia Shilov, co-advised by Hélène Le Cadre (Inria Lille), Gonçalo de Almeida
Terça and Anibal Sanjab (VITO, Belgium), we studied peer-to-peer (P2P) electricity markets.

Optimization and control of batteries

Within the PhD thesis of Md Umar Hashmi, we considered energy storage control problems
both at the level of individual consumers minimizing the cost of electricity and at the grid
level for increasing reliability and stability of the power network.

Electricity consumers with local renewable generation, such a rooftop solar, can use a
battery to minimize their electricity bills. We considered storage optimization problems under
time-varying electricity prices with different net-metering policies. Using convex optimization
tools, an optimal storage control policy is developed with threshold-based structure. The
proposed algorithm is computationally efficient with quadratic worst-case complexity with
respect to the horizon length [C38]. The extension of the battery control problem that
considers the health of the battery taking into account its cycle life was studied in [C34].

Due to their high cost, batteries may need to be used for more than one dedicated ap-
plication to be financially viable. In the co-optimization formulations, we considered storage
performing energy arbitrage under net metering along with power factor correction, peak
demand shaving, and energy backup for power outages [C18, C26, J9]. These formulations
are evaluated on case studies using real data for low voltage consumers in Madeira [C19, C28]
and the proposed control policies for batteries are designed taking into account the consumer
contracts proposed by the local utility.

Large-scale storage applications for ancillary services were considered in [C32]. A case
study is provided for energy storage revenue estimation, essential for analyzing financial feasi-
bility of investment in batteries. This case study considers a battery that is used for electricity
price based arbitrage and ancillary services for load balancing in real time. Using PJM’s (a
regional transmission organization in the United States) real data, we estimate short and long
term financial potential for batteries. We take into account battery degradation, based on
the operational cycles of the battery with various depths of discharge (DoD) and the calendar
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life of the battery. A simple control mechanism is proposed to control cycles of operation in
order to increase the long term gains of a battery performing arbitrage and ancillary services,
under this battery degradation model. This case study suggests that participating in ancillary
services is more beneficial for storage owners compared to energy arbitrage.

Control of distributed power demand

Providing new flexibility resources is crucial to integrate renewable energies into the power
grid. There is an enormous flexibility potential in the power consumption of the majority
of electric loads (e.g., thermal loads such as water heaters, air-conditioners and refrigerators;
electric vehicles, etc.). Their power consumption can be shifted in time to some extent without
any significant impact to the consumer needs. This flexibility can be exploited to create
“virtual batteries”. The best example of this is the heating, ventilation, and air conditioning
(HVAC) system of a building: There is no perceptible change to the indoor climate if the
airflow rate is increased by 10% for 20 minutes, and decreased by 10% for the next 20 minutes.
Power consumption deviations follow the airflow deviations closely, but indoor temperature
will be essentially constant.

The major issue lies in the distributed nature of this flexibility resource: piloting the
flexible demand in real time requires a design of (simple) incentives for millions of devices.
Moreover, many residential devices are on-off (e.g. water-heater or air-conditioner). In order
to provide valuable balancing service, the aggregate must provide a predictable response. The
future power grids will contain millions of smart components, which completely prohibits cen-
tralized decision making using standard stochastic optimization techniques, such as stochastic
dynamic programming and Markov decision processes (MDP), as they do not scale well with
the number of different components in the system (both the state space and the control space
of the model grow exponentially with the number of components).

The answer proposed in [C50, J16] is based on probabilistic distributed demand control.
Our approach combines the techniques from the theory of controlled Markov processes, mean-
field theory, and automatic control. The objective is to control the average consumption of
a population of N devices to track the reference signal (Rt), which is progressively revealed
by the grid at discrete time steps t = 1, ..., T (online reference tracking problem). Through
load-level and grid-level control design, high-quality ancillary service for the grid is obtained
without impacting quality of service delivered to the consumer. This approach to grid regu-
lation is called demand dispatch: loads are providing service continuously and automatically,
without consumer interference.

A starting point in our research was the fact that many of the ancillary services needed
today are defined by a power deviation reference signal that has zero mean. Examples are
PJM’s RegD signal, or BPA’s balancing reserves. We have demonstrated in [C44] that loads
can be classified based on the frequency bandwidth of ancillary service that they can offer.
In [C48] we focused on the issue of individual risk and in [C49] on the stability properties
on the grid level for our local control architecture. The survey of the approach can be found
in the book chapter [B2] and will be also summarized in Chapter 6 of this manuscript. Our
patent [P1] has been exploited by an international company working on smart thermostats.

A theoretical contribution that I would like to highlight in particular, and that will be
presented more in detail in Chapter 7, was motivated by the need to extend the initial
distributed control approach to include the randomness that cannot be controlled (e.g. hot
water usage or the weather conditions) [C41]. This lead to a new ODE method for solving
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a parametrized family of Markov Decision Processes [J10]. Besides power applications, this
new technique also has its potential applications in machine learning and robotics [C33].

Four application questions were explored through collaborations involving PhD students:

• Within the PhD thesis of Yue Chen (University of Florida, advisor S. Meyn), we inves-
tigated the QoS aspects for the individual consumers [C43, J14, J13] by developing new
tools for state estimation for the individual and the population in the mean-field control
setting, based on the ergodic theory for controlled Markov chains with stationary inputs
[J12].

• Within the PhD thesis of Austin R. Coffman (University of Florida, advisor P. Barooah),
the main focus was on the application of the distributed control to the Thermostati-
cally Controlled Loads (such as fridges or air-conditioners) and the estimation of their
flexibility capacity under time-varying weather conditions and cycling constraints [C35,
C30, C21, C11, J2].

• Within the PhD thesis of Umar Hashmi an extension of distributed stochastic control is
proposed for a fleet of batteries for tracking fast timescale supply and demand imbalance
[C37].

• Within the PhD thesis of Joel Mathias (University of Florida, advisor S. Meyn), the
extensions of the approach to the heterogeneous population of loads have been proposed
[C42, C40, C31, J3].

Demand dispatch has many advantages:

• minimal communication: a unique control signal is sent from the central entity to the
loads, without the communication from the loads to the centralized entity;

• local control design enables strict guarantees for the quality of service for the users;

• randomized control limits the synchronization of the response of the loads.

However, in this online reference tracking formulation of the problem, the target consump-
tion is revealed in real time (there is no anticipation of the target by probabilistic forecasts).
The fact of not allowing any anticipation of the target consumption does not make it possible
to fully integrate the constraints of the different devices in terms of energy consumed over
a given period. To overcome this limitation, we have proposed an offline reference tracking
approach that takes into account a deterministic forecast of the target consumption over a
period of anticipation (e.g. day ahead) and solves directly the tracking problem at the pop-
ulation level, formalized as a Kullback-Leibler-Quadratic (KLQ) optimal control problem in
discrete [C20], or continuous time [C22]. This new Kullback-Leibler-Quadratic (KLQ) control
approach can be seen as a special case of a finite horizon stochastic optimal control problem
with the objective function that is composed of two terms: quadratic tracking error cost
and a relative entropy control cost that penalizes the deviation from the nominal behavior
of the load. An overview for the discrete time case is provided in Chapter 8. Within the
PhD thesis of Neil Cammardella (University of Florida, advisor S. Meyn), we investigated in
particular the discrete KLQ problem and its implementations based on different information
architectures for the reference tracking problem by a distributed population of flexible loads
[C20]. In [C8, J1] we considered an extension of KLQ to include the randomness that cannot
be controlled (e.g. hot water usage or the weather conditions). Simultaneous allocation and
control problem for distributed energy resources based on KLQ was considered in [C13].
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P2P electricity market design and analysis

Within a PhD thesis of Ilia Shilov, co-advised with Hélène Le Cadre (Inria Lille), Gonçalo de
Almeida Terça and Anibal Sanjab (VITO, Belgium), we consider different designs for peer-to-
peer electricity markets, with main focus on related equilibrium problems and their properties.
The PhD thesis of Ilia started while Hélène was at VITO Belgium. I met Hélène through
PGMO (Gaspard Monge Program for optimization, operations research and their interactions
with data sciences) community, and I invited her in 2016 to participate to my ANR JCJC
PARI project. We planned to collaborate on new market designs that can accommodate
demand dispatch. Due to various circumstances, our collaboration got postponed and finally
started in 2019, on a topic of peer to peer (P2P) electricity markets. Our collaboration
initiated me to game theory. So far, I was only contributing by applying known concepts and
properties to energy network problems. In future, I hope to be able to spend some more time
studying (and hopefully also contribute to) the algorithmic game theory.

In [P5], we consider a financial P2P market in which prosumers optimize their demand,
generation, and bilateral trades in order to minimize their costs subject to local constraints
and bilateral trading reciprocity coupling constraints, leading to Generalized Nash Equilib-
rium Problem (GNEP) formulations. This financial market is further analyzed in [C9], where
this initial model was generalized to include the interaction with the physical level of the
distribution grid, managed by the distribution system operator. We model the interaction
problem between the distribution grid level and the financial level as a noncooperative GNEP.
We compare two designs of the financial level prosumer market: a centralized design and a
peer-to-peer fully distributed design. We prove the Pareto efficiency of the equilibria under
homogeneity of the trading cost preferences. The study demonstrates the Pareto efficiency of
market equilibrium and how the proposed pricing structure limits free-riding behavior on the
financial level.

In [J8], we consider impact of a privacy mechanism in a peer-to-peer electricity market.
The problem is modeled as a noncooperative communication game, which takes the form of a
GNEP where the agents determine their randomized reports to share with the other market
players, while anticipating the form of the peer-to-peer market equilibrium. We characterize
the equilibrium of the game, prove the uniqueness of the variational equilibrium and provide
a closed form expression of the privacy price.

In [W6], we investigate equilibrium problems arising in a decentralized electricity market
involving risk-averse prosumers, having a possibility to hedge their risks through financial
contracts that they can purchase from an insurance company or trade directly with their
peers. We formulate the problem as a Stackelberg game where the insurance company acts
as the leader while the prosumers behave as followers. We show that the Stackelberg game
pessimistic formulation might have no solution. We propose an equivalent reformulation as
a parametrized generalized Nash equilibrium problem, and characterize the set of equilibria.
We prove that the insurance company can design price incentives that guarantee the existence
of a solution of the pessimistic formulation, which is ε-close to the optimistic one. We then
derive economic properties of the Stackelberg equilibria such as fairness, equity, and economic
efficiency. We also quantify the impact of the insurance company incomplete information on
the prosumers’ risk-aversion levels on its individual cost and social cost.

Imprecise forecasts of RES-generation introduce additional uncertainty for the agents,
which impacts their trading in P2P markets, consequently affecting the market’s efficiency.
However, the advent of data markets, which facilitate the exchange of data to improve forecast
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accuracy, can mitigate this issue. In [C5], we explore the potential coupling between fore-
cast and P2P electricity markets to mitigate the uncertainty from imprecise RES-generation
forecasts, allowing agents to acquire a forecast of their RES-based generation. The electricity
market is modeled as a two-stage peer-to-peer market, cast in the form of a GNEP. Condi-
tions for the efficiency of the P2P market are identified, with a key condition being prosumers’
participation in the forecast market. Furthermore, conditions on the probability distributions
of the forecasts that assure this property are discussed.

1.1.6 Reinforcement learning

In spring 2018, I was a long term participant of the Real-time decision making semester at
Simons Institute, UC Berkeley. In this highly vibrant environment, I participated to a reading
group on reinforcement learning (RL) and developed a strong interest in this field, both in
theoretical aspects of RL as well as its applications.

Along with the sharp increase in visibility of the field, the rate at which new RL algorithms
are being proposed is at a new peak. While the surge in activity is creating excitement and
opportunities, there is a gap in understanding of two basic principles that these algorithms
need to satisfy for any successful application. One has to do with guarantees for convergence,
and the other concerns the convergence rate.

Many RL algorithms belong to a class of learning algorithms known as stochastic approx-
imation (SA). SA algorithms are recursive techniques used to obtain the roots of functions
that can be expressed as expectations of a noisy parameterized family of functions. Book
chapter [B1] provides a survey on SA approach to reinforcement learning. I briefly summa-
rize in the following my contributions in this area, with a highlight on algorithm design and
analysis using SA approach.

My main application domain for RL is energy. Two projects I have been working on
recently are wind-farm production optimization and optimal control of a battery for demand
charge minimization.

Stochastic approximation and reinforcement learning

Acceleration is an increasingly common theme in the stochastic optimization literature. The
two most common examples are Nesterov’s method, and Polyak’s momentum technique. In
[C23] two new SA algorithms are introduced: 1) PolSA is a root finding algorithm with spe-
cially designed matrix momentum, and 2) NeSA can be regarded as a variant of Nesterov’s
algorithm, or a simplification of PolSA. The PolSA algorithm is new even in the context of
optimization (when cast as a root finding problem). It is well known that most variants of
TD- and Q-learning may be cast as SA algorithms, and the tools from general SA theory can
be used to investigate convergence and bounds on convergence rate. In particular, the asymp-
totic variance is a common metric of performance for SA algorithms, and is also one among
many metrics used in assessing the performance of stochastic optimization algorithms. There
are two well known SA techniques that are known to have optimal asymptotic variance: the
Ruppert-Polyak averaging technique, and stochastic Newton-Raphson (SNR). The former al-
gorithm can have extremely bad transient performance, and the latter can be computationally
expensive. It is demonstrated here that parameter estimates from the new PolSA algorithm
couple with those of the ideal (but more complex) SNR algorithm. The new algorithm is
thus a third approach to obtain optimal asymptotic covariance. These strong results require
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assumptions on the model. A linearized model is considered, and the noise is assumed to be
a martingale difference sequence. Numerical results are obtained in a non-linear setting: In
PolSA implementations of Q-learning it is observed that coupling occurs with SNR.

Motivated by applications in Markov chain Monte Carlo (MCMC) and RL, in [C14] we
studied error bounds for recursive equations subject to Markovian disturbances. Many of
MCMC and RL algorithms can be interpreted as special cases of SA. It is argued that it is
not possible in general to obtain a Hoeffding bound on the error sequence, even when the
underlying Markov chain is reversible and geometrically ergodic, such as the M/M/1 queue.
This is motivation for the focus on mean square error bounds for parameter estimates. It is
shown that mean square error achieves the optimal rate of O(1/n), subject to conditions on
the step-size sequence. Moreover, the exact constants in the rate are obtained, which is of
great value in algorithm design.

Zap Q-learning [52] is a recent class of reinforcement learning algorithms, motivated pri-
marily as a means to accelerate convergence. It is based on a two time-scale stochastic
approximation algorithm, constructed so that the matrix gain tracks the gain that would
be used in a deterministic Newton-Raphson method. Stability theory was only provided for
the tabular setting. A tutorial on Zap Q-learning can be found in [C29]. In [C16] we prove
the convergence of the Zap-Q-learning algorithm for optimal stopping problem, under the
assumption of linear function approximation setting. We use ODE analysis for the proof, and
the optimal asymptotic variance property of the algorithm is reflected via fast convergence
in a finance example. In [C15], a new framework is proposed for analysis of a broad class
of SA algorithms. A special case of this new class of SA algorithms leads to a significant
generalization of Zap Q-learning, for which convergence theory is obtained even in a nonlin-
ear function approximation setting. The reliability in neural network function approximation
architectures is tested through simulations.

Reinforcement learning for wind farm control

In the PhD thesis of Claire Bizon Monroc, that I co-advise with Donatien Dubuc and Jiamin
Zhu (IFP Energies Nouvelles) within a joint IFPEN - Inria lab project, we investigate the
possibility of using multi-agent RL algorithms for wind farm production optimization.

The power output of a wind farm is influenced by wake effects, a phenomenon in which
upstream turbines facing the wind create sub-optimal conditions for turbines located down-
stream. Misaligning the yaw, defined as the angle between the rotor and the wind direction,
is an efficient strategy to deflect the wake away from downstream turbines. This technique
is known as wake steering, and has been shown to increase total production compared to the
naive greedy strategy where all turbines face the wind [56, 72].

Designing efficient methods to find optimal yaw angles is a challenging task. Several
classical model-based optimization methods have been proposed [85], but they are subject to
model inaccuracies, ignore wake dynamics and lack adaptability. Furthermore, the complexity
of this optimization problem increases with the number of turbines in the wind farm, making
centralized control strategies quickly intractable for real time optimization. Deployment of
any control method for real-time optimization on wind farms requires accounting for the
dynamic propagation of the wind inflow.

This motivated the use of model-free decentralized RL methods. A multi-agent RL ap-
proach was proposed in [85], with static simulations, i.e. without taking into account the
dynamic wake propagation.
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To account for wake propagation times, in [C7] we propose a delay-aware decentralized
Q-learning algorithm for yaw control on wind farms. We build on algorithm proposed in
[85], but introduce a strategy to handle delayed cost collection, and show that our method
significantly increases power production in simulations with realistic wake dynamics, using
mid-fidelity wind farm simulator FAST.Farm [77], developed by National Renewable Energy
Laboratory (NREL).

This tabular algorithm however relies on state and control space discretization. This
comes with an important cost in terms of parameters to learn, and raises issues regarding
the algorithm’s ability to scale to larger wind farms. In [C4] we show that more efficient
learning agents can be designed under the same principles of decentralization and delay-
awareness. We employ actor critic agents learning in parallel with function approximation,
a method that we call Delay-Aware Fourier Actor Critics (DFAC). We test this method
in WFSim, a control-oriented wind farm simulator developed by TUDelft, that takes into
account wake propagation dynamics which has been validated against large eddy simulations
[16]. Numerical experiments on WFSim for wind farms with up to 32 turbines show that this
method has great scaling potential and achieves faster coordination and convergence than the
previous approach, leading to more important increases in energy production.

Reinforcement learning based demand charge minimization

A high peak demand causes high electricity costs for both the utility and end-users. Utilities
have introduced peak-demand charges to encourage customers to reduce their peak demand.
Within PhD thesis of Lucas Weber, co-advised by Jiamin Zhu (IFP Energies Nouvelles), we
considered customers who are equipped with an energy storage device and renewable energy
production. We proposed a reinforcement learning approach to reduce their electricity bills,
which are composed of both energy and demand charges [C3]. We validated our approach on
real data from an office building of IFPEN Solaize site.

1.2 Organization of the manuscript

The manuscript is organized in two parts: Part I covers stochastic matching systems and
Part II balancing of stochastic demand and supply in power grids. The two parts can be read
independently of each other.

Part I is organized in 4 chapters. Chapter 2 introduces stochastic matching models.
Chapter 3 provides an overview of stability results, and it is based on [J22]. Chapter 4 is
devoted to the First Come First Matched discipline, based on [J11, J7, C10]. Chapter 5
summarizes the optimization results for bipartite stochastic matching models, based on [J5,
C45].

Part II is organized in 3 chapters: Chapter 6 introduces the problem of balancing in the
power grid and the need for flexible resources, and introduces our distributed control approach
for demand dispatch, and it is based on [B2]. Chapter 7 summarizes the ODE method for
Markov decision processes, used for demand dispatch in the case of stochastic disturbances
(e.g. weather conditions), based on [C33, J10]. Chapter 8 surveys the new Kullback-Leibler-
Quadratic optimal control problem and its applications to demand dispatch, based on [C8,
J1].
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tems: Analysis of Vélib’. International Journal of Sustainable Transportation, 7(1):85-
106, 2012.

[J26] A. Busic, J.-M. Fourneau. Monotonicity and performance evaluation: applications to
high speed and mobile networks. Cluster Computing, 15(4): 401-414, 2012.

[J27] A. Busic, J.-M. Fourneau. Iterative component-wise bounds for the steady-state distribu-
tion of a Markov chain. Numerical Linear Algebra with Applications, 18(6):1031-1049,
2011.



1.3. LIST OF PUBLICATIONS (SINCE PHD DEFENSE) 21

Book chapters

[B1] A. M. Devraj, A. Busic, S. Meyn. Fundamental Design Principles for Reinforcement
Learning Algorithms. In: Vamvoudakis, K.G., Wan, Y., Lewis, F.L., Cansever, D. (eds)
Handbook of Reinforcement Learning and Control. Studies in Systems, Decision and
Control, vol 325, Springer, Cham. 2021.

[B2] Y. Chen, Md Umar Hashmi, J. Mathias, A. Busic, and S. Meyn. Distributed Control
Design for Balancing the Grid Using Flexible Loads. In: Energy Markets and Responsive
Grids, pp. 383-411. S. Meyn, T. Samad, I. Hiskens, J. Stoustrup (eds). The IMA
Volumes in Mathematics and its Applications, vol 162. Springer, New York, NY. 2018.

International conferences

[C1] A. Busic, J.-M. Fourneau. Stochastic Matching Model with Returning Items. European
Workshop on Performance Engineering (EPEW 2023), 186-200, 2023.

[C2] A. Busic, S. Meyn, N. Cammardella. Learning Optimal Policies in Mean Field Mod-
els with Kullback-Leibler Regularization. The 62nd IEEE Conference on Decision and
Control (CDC 2023), Marina Bay Sands, Singapore, 38-45, 2023.

[C3] L. Weber, A. Busic, J. Zhu. Reinforcement learning based demand charge minimization
using energy storage. The 62nd IEEE Conference on Decision and Control (CDC 2023),
Marina Bay Sands, Singapore, 4351-4357, 2023.

[C4] C. Bizon Monroc, A. Busic, D. Dubuc, J. Zhu. Actor Critic Agents for Wind Farm
Control. The 2023 American Control Conference (ACC), May 31 - June 2, 2023 — San
Diego, CA, USA, 177-183, 2023.

[C5] I. Shilov, H. Le Cadre, A. Busic, A. Sanjab, P. Pinson. Towards Forecast Markets
For Enhanced Peer-to-Peer Electricity Trading. 2023 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids (SmartGrid-
Comm), Glasgow, Scotland, 2023.

[C6] A. Busic, A. Cadas, J. Doncel, J.-M. Fourneau. Product form solution for the steady-
state distribution of a Markov chain associated with a general matching model with self-
loops. EPEW 2022: 18th European Performance Engineering Workshop, Sep 2022,
Santa Pola, Alicante, Spain.

[C7] C. Bizon Monroc, E. Bouba, A. Busic, D. Dubuc, J. Zhu. Delay-Aware Decentralized
Q-learning for Wind Farm Control. 61st IEEE Conference on Decision and Control
(CDC 2022), Cancun, Mexico, pp. 807-813, 2022.

[C8] N. Cammardella, A. Busic and S. Meyn. Kullback-Leibler-Quadratic Optimal Control in
a Stochastic Environment, 60th IEEE Conference on Decision and Control (CDC 2021),
Austin, TX, USA, pp. 158-165, 2021.

[C9] I. Shilov, H. L. Cadre and A. Busic. A Generalized Nash Equilibrium analysis of the
interaction between a peer-to-peer financial market and the distribution grid, 2021 IEEE
International Conference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm), Aachen, Germany, pp. 21-26, 2021.



22 CHAPTER 1. INTRODUCTION

[C10] A Cadas, J. Doncel, J.-M. Fourneau, A. Busic. Flexibility can Hurt Dynamic Matching
System Performance. Short paper at 39th International Symposium on Computer Per-
formance, Modeling, Measurements and Evaluation 2021. Proceedings: SIGMETRICS
Perform. Evaluation Rev. 49(3): 37-42 (2022). Long version: CoRR abs/2009.10009,
https://arxiv.org/abs/2009.10009.

[C11] A. R. Coffman, A. Busic and P. Barooah. Control-oriented modeling of TCLs, 2021
American Control Conference (ACC), New Orleans, LA, USA, pp. 4148-4154, 2021.

[C12] D. Kiedanski, A. Busic, D. Kofman and A. Orda. Efficient distributed solutions for
sharing energy resources at the local level: a cooperative game approach, 2020 59th IEEE
Conference on Decision and Control (CDC), Jeju, Korea (South), pp. 2634-2641, 2020.

[C13] N. Cammardella, A. Busic and S. Meyn. Simultaneous Allocation and Control of Dis-
tributed Energy Resources via Kullback-Leibler-Quadratic Optimal Control, 2020 Amer-
ican Control Conference (ACC), Denver, CO, USA, pp. 514-520, 2020.

[C14] S. Chen, A. M. Devraj, A. Busic, S. Meyn. Explicit Mean-Square Error Bounds for
Monte-Carlo and Linear Stochastic Approximation. The 23rd International Conference
on Artificial Intelligence and Statistics (AISTATS 2020), 4173-4183, 2020.

[C15] S. Chen, A. M. Devraj, F. Lu, A. Busic , Sean P. Meyn. Zap Q-Learning With Nonlinear
Function Approximation. 34th Conference on Neural Information Processing Systems
(NeurIPS 2020), Vancouver, Canada.

[C16] S. Chen, A.M. Devraj, A. Busic, S. Meyn. Zap Q-Learning for optimal stopping. 2020
American Control Conference (ACC 2020), 3920-3925, 2020.

[C17] S. Samain, J. Doncel, A. Busic, J-M. Fourneau. Energy Packet Networks with Finite
Capacity Energy Queues. 13th EAI International Conference on Performance Evaluation
Methodologies and Tools (Valuetools 2020), 142-149, 2020.

[C18] Md U. Hashmi, A. Busic, D. Deka, L. Pereira. Energy Storage Optimization for
Grid Reliability. Proceedings of the Eleventh ACM International Conference on Future
Energy Systems. (e-Energy 2020), 516-522, 2020.

[C19] Md U. Hashmi, J. Cavaleiro, L. Pereira, A. Busic. Sizing and Profitability of Energy
Storage for Prosumers in Madeira, Portugal. IEEE Power & Energy Society Innovative
Smart Grid Technologies Conference (ISGT 2020), Washington DC, USA, February 17-
20, 2020.

[C20] N. Cammardella, A. Busic, Y. Ji, S. P. Meyn. Kullback-Leibler-Quadratic Optimal Con-
trol of Flexible Power Demand. 58th Conference on Decision and Control (CDC 2019).
Nice, France, December 11-13, 2019.

[C21] A.R. Coffman, A. Busic, P. Barooah. Aggregate capacity for TCLs providing virtual
energy storage with cycling constraints. 58th Conference on Decision and Control (CDC
2019). Nice, France, December 11-13, 2019.

[C22] A. Busic, S. P. Meyn. Distributed Control of Thermostatically Controlled Loads: Kullback-
Leibler Optimal Control in Continuous Time. 58th Conference on Decision and Control
(CDC 2019). Nice, France, December 11-13, 2019.



1.3. LIST OF PUBLICATIONS (SINCE PHD DEFENSE) 23

[C23] A. M. Devraj, A. Busic, S. P. Meyn. On Matrix Momentum Stochastic Approximation
and Applications to Q-learning. 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton 2019). Monticello, IL, USA, September 24-27, 2019.

[C24] Md U. Hashmi, A. Mukhopadhyay, A. Busic, J. Elias, D. Kiedanski. Optimal Storage
Arbitrage under Net Metering using Linear Programming. IEEE International Confer-
ence on Communications, Control, and Computing Technologies for Smart Grids (IEEE
SmartGridComm 2019). Beijing, China, 21-23 October, 2019.

[C25] D. Kiedanski, Md U. Hashmi, A. Busic, D. Kofman. Sensitivity to Forecast Errors
in Energy Storage Arbitrage for Residential Consumers. IEEE International Confer-
ence on Communications, Control, and Computing Technologies for Smart Grids (IEEE
SmartGridComm 2019). Beijing, China, 21-23 October, 2019.

[C26] Md U. Hashmi, D. Deka, A. Busic, L. Pereira, S. Backhaus. Co-optimizing energy
storage for prosumers using convex relaxations. 20th International Conference on Intelli-
gent Systems Applications to Power Systems (ISAP 2019). New Delhi, India, December
10-14, 2019.

[C27] A. Cadas, A. Busic, J. Doncel. Optimal Control of Dynamic Bipartite Matching Models.
12th EAI International Conference on Performance Evaluation Methodologies and Tools
(Valuetools 2019), Palma de Mallorca, Spain, March 13-15, 2019. Best paper award.

[C28] Md U. Hashmi, L. Pereira, A Busic. Energy storage in Madeira, Portugal: Co-
optimizing for arbitrage, self-sufficiency, peak shaving and energy backup. 13th IEEE
PowerTech 2019, Milano, Italy, 2019.

[C29] A. M. Devraj, A. Busic, S. Meyn. Zap Q-Learning – A User’s Guide. The 5th Indian
Control Conference (ICC 2019). IIT Delhi, January 9-11, 2019.

[C30] A. R. Coffman, A. Busic, and P. Barooah. Virtual Energy Storage from TCLs using
QoS persevering local randomized control. The 5th ACM International Conference on
Systems for Built Environments (BuildSys 2018). Shenzen, China, November 7-8, 2018.

[C31] N. Cammardella, J. Mathias, M. Kiener, A. Busic, S. Meyn. Balancing California’s
Grid Without Batteries. 57th IEEE Conference on Decision and Control (CDC 2018).
Miami Beach, FL, December 17-19, 2018.

[C32] Md U. Hashmi, W. Labidi, A. Busic, S-E. Elayoubi, and T. Chahed. Long-Term
Revenue Estimation for Battery Performing Arbitrage and Ancillary Services. IEEE
International Conference on Communications, Control, and Computing Technologies
for Smart Grids (IEEE SmartGridComm 2018). Aalborg, Denmark, October 29-31,
2018.

[C33] A. Busic, S. Meyn. Action-Constrained Markov Decision Processes With Kullback-
Leibler Cost. Proceedings of the 31st Conference On Learning Theory (COLT 2018).
Stockholm, Sweden, July 6–9, 2018. PMLR 75:1431-1444, 2018.

[C34] Md U. Hashmi, A. Busic. Limiting Energy Storage Cycles of Operation. IEEE Green
Technologies Conference (GreenTech 2018). Austin, TX, USA, April 4 - 6, 2018.



24 CHAPTER 1. INTRODUCTION

[C35] A. R. Coffman, A. Busic, and P. Barooah. A Study of Virtual Energy Storage From
Thermostatically Controlled Loads Under Time-Varying Weather Conditions. 5th Inter-
national High Performance Building Conference at Purdue. July 9-12, 2018.

[C36] Md U. Hashmi, D. Muthirayan, A. Busic. Effect of Real-Time Electricity Pricing on
Ancillary Service Requirements. 1st International Workshop on Energy Market Engi-
neering. Proceedings of the Ninth International Conference on Future Energy Systems
(ACM e-Energy 2018 Workshops). Karlsruhe, Germany, June 12, 2018.

[C37] A. Busic, Md U. Hashmi, S. Meyn. Distributed control of a fleet of batteries. The
2017 American Control Conference (ACC 2017). Seattle, WA, USA, May 24-26, 2017.

[C38] Md U. Hashmi, A. Mukhopadhyay, A. Busic, J. Elias. Optimal control of storage
under time varying electricity prices. IEEE International Conference on Smart Grid
Communications (IEEE SmartGridComm 2017). Dresden, Germany, 23-26 October
2017.

[C39] S. Samain, A. Busic. Exact Computation and Bounds for the Coupling Time in
Queueing Systems. The 11th EAI International Conference on Performance Evaluation
Methodologies and Tools (Valuetools 2017). Venice, Italy. December 5-7, 2017.

[C40] J. Mathias, A. Busic, S. Meyn. Demand Dispatch with Heterogeneous Intelligent Loads.
50th Annual Hawaii International Conference on System Sciences (HICSS 2017). Waikoloa,
HI, USA, January 4-7, 2017.

[C41] A. Busic, S. Meyn. Distributed Randomized Control for Demand Dispatch. 55th IEEE
Conference on Decision and Control (CDC 2016). Las Vegas, NV, USA, December 12-14,
2016.

[C42] J. Mathias, R. Kaddah, A. Busic, S. Meyn. Smart Fridge / Dumb Grid? Demand
Dispatch for the Power Grid of 2020. 49th Annual Hawaii International Conference on
System Sciences (HICSS 2016). Koloa, HI, USA, January 5-8, 2016.

[C43] Y. Chen, A. Busic, S. Meyn. State Estimation for the Individual and the Population in
Mean Field Control with Application to Demand Dispatch. 54th IEEE Conference on
Decision and Control (CDC 2015). Osaka, Japan, December 15-18, 2015.

[C44] P. Barooah, A. Busic, S. Meyn. Spectral Decomposition of Demand-Side Flexibility
for Reliable Ancillary Services in a Smart Grid. 48th Annual Hawaii International
Conference on System Sciences (HICSS 2015). Kauai, HI, USA, January 5-8, 2015.

[C45] A. Busic, S. P. Meyn. Approximate optimality with bounded regret in dynamic matching
models. SIGMETRICS 2015. Proceedings in SIGMETRICS Perform. Evaluation Rev.
43(2): 75-77, 2015. Long version: CoRR abs/1411.1044, https://arxiv.org/abs/

1411.1044.

[C46] R. Varloot, A. Busic, A. Bouillard. Speeding up Glauber Dynamics for Random Gen-
eration of Independent Sets. SIGMETRICS 2015: 461-462. 2015. Long version: CoRR
abs/1504.04517, https://arxiv.org/abs/1504.04517.



1.3. LIST OF PUBLICATIONS (SINCE PHD DEFENSE) 25

[C47] A. Bouillard, A. Busic, C. Rovetta. Perfect Sampling for Multiclass Closed Queueing
Networks. 12th International Conference on Quantitative Evaluation of SysTems (QEST
2015). Madrid, Spain, September 1-3, 2015.

[C48] Y. Chen, A. Busic, S. Meyn. Individual risk in mean-field control models for decentralized
control, with application to automated demand response. 53rd IEEE Conference on
Decision and Control (CDC 2014). Los Angeles, CA, USA, December 15-17, 2014.

[C49] A. Busic, S. Meyn. Passive Dynamics in Mean Field Control. 53rd IEEE Conference
on Decision and Control (CDC 2014). Los Angeles, CA, USA, December 15-17, 2014.

[C50] S. Meyn, P. Barooah, A. Busic, and J. Ehren. Ancillary service to the grid from de-
ferrable loads: the case for intelligent pool pumps in Florida. 52nd IEEE Conference on
Decision and Control (CDC 2013). Florence, Italy, December 10-13, 2013.

[C51] I. J. B. F. Adan, M. A. A. Boon, A. Busic, J. Mairesse, G. Weiss. Queues with skill based
parallel servers and a FCFS infinite matching model. The Workshop on MAthematical
performance Modeling and Analysis (MAMA 2013). Pittsburgh, PA, USA, June 21,
2013. ACM SIGMETRICS Performance Evaluation Review 41(3): 22-24, 2013.

[C52] A. Busic, H. Djafri, J.-M. Fourneau. Bounded state space truncation and censored
Markov chains. 51st IEEE Conference on Decision and Control (CDC 2012). Maui,
HI, USA, December 10-13, 2012.

[C53] A. Busic, B. Gaujal, F. Perronnin. Perfect Sampling of Networks with Finite and Infinite
Capacity Queues. 19th International Conference on Analytic and Stochastic Modelling
Techniques and Applications (ASMTA 2012). LNCS 7314, Springer-Verlag, pp. 136-149.
Grenoble, France, June 4-6, 2012.

[C54] A. Busic, N. Fates, J. Mairesse, I. Marcovici. Density Classification on Infinite Lattices
and Trees. 10th Latin American Symposium on Theoretical Informatics (LATIN 2012).
LNCS 7256, Springer-Verlag, pp. 109-120. Arequipa, Peru, April 16-20, 2012.

[C55] A. Busic, E. Coupechoux. Perfect Sampling with Aggregated Envelopes. 49th Annual
Allerton Conference on Communication, Control, and Computing (Allerton 2011). Mon-
ticello, IL, USA, August 28-30, 2011.

[C56] F. Pin, A. Busic, B. Gaujal. Acceleration of Perfect Sampling by Skipping Events. 5th
International ICST Conference on Performance Evaluation Methodologies and Tools
(Valuetools 2011). Cachan, France, May 16-20, 2011.

[C57] A. Busic, J. Mairesse, I. Marcovici. Probabilistic cellular automata, invariant measures,
and perfect sampling. 28th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2011). Dortmund, Germany, March 10-12, 2011.

[C58] A. Wieczorek, A. Busic, E. Hyon. Critical Level Policies in Lost Sales Inventory Sys-
tems with Different Demand Classes. 8th European Performance Engineering Workshop
(EPEW 2011), LNCS 6977, Springer-Verlag, pp. 204-218. Borrowdale, The English Lake
District, UK, October 12-13, 2011.



26 CHAPTER 1. INTRODUCTION

[C59] A. Busic, H. Djafri, J.-M. Fourneau. Stochastic bounds for censored Markov chains. 6th
International Workshop on the Numerical Solution of Markov Chains (NSMC 2010),
Williamsburg, VA, USA, September 16-17, 2010.

[C60] A. Busic, J.-M. Fourneau. Iterative component-wise bounds for the steady-state distri-
bution of a Markov chain. 6th International Workshop on the Numerical Solution of
Markov Chains (NSMC 2010), Williamsburg, VA, USA, September 16-17, 2010.

[C61] A. Busic, B. Gaujal, J.-M. Vincent. Perfect Simulation and Non-monotone Markovian
Systems. 3rd International Conference on Performance Evaluation Methodologies and
Tools (Valuetools 2008). Athens, Greece, October 20-24, 2008.

[C62] A. Busic, J.-M. Fourneau. Stochastic Complement and Strong Stochastic Bounds Based
on Algebraic Properties. 5th European Performance Engineering Workshop (EPEW
2008). LNCS 5261, Springer-Verlag, pp. 227-241. Palma de Mallorca, Spain, September
24-25, 2008.

International conferences (tool papers)

[T1] A. Bouillard, A. Busic and C. Rovetta. Clones: CLOsed queueing Networks Exact
Sampling. 8th International Conference on Performance Evaluation Methodologies and
Tools (Valuetools 2014). Bratislava, Slovakia, December 9-11, 2014. Best tool paper
award.

[T2] A. Busic, B. Gaujal, G. Gorgo, J.-M. Vincent. PSI2 : Envelope Perfect Sampling of
Non Monotone Systems. 7th International Conference on Quantitative Evaluation of
Systems (QEST 2010). Williamsburg, VA, USA, September 15 - 18, 2010.

[T3] A. Busic, J.-M. Fourneau. A toolbox for component-wise bounds of the steady-state
distribution of a DTMC. 7th International Conference on Quantitative Evaluation of
Systems (QEST 2010). Williamsburg, VA, USA, September 15 - 18, 2010.

National conferences with proceedings

[N1] C. Comte, F. Mathieu, A. Busic. Appariements, polytopes et dons d’organes. Al-
goTel 2022 - 24‘emes Rencontres Francophones sur les Aspects Algorithmiques des
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France), 2018, A. Ugolnikova, LIPN (Université Paris Nord, France), 2016; R. Kaddah
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Chapter 2

Stochastic matching models

Stochastic matching systems combine graph theoretic matching models with queueing sys-
tems. We consider two main variants: non-bipartite and bipartite stochastic matching. In
the non-bipartite case, the items arrive one by one into the system and wait until they find
a compatible match. Once matched, the items leave the system. The main difference in the
bipartite case is that the items arrive two by two. Although the bipartite stochastic match-
ing was introduced earlier than the non-bipartite model, we will start with the non-bipartite
case that is notationally easier to describe and that will motivate the arrivals by pairs in the
bipartite stochastic matching model.

This chapter sets the notation and the definitions of both models. Chapter 3 describes
the stability results for the bipartite stochastic matching model and the connections with
the non-bipartite case. Chapter 4 is devoted to the First Come First Matched discipline,
under which the stochastic matching model has product form result, both in bipartite and
non-bipartite case. This result allows to study analytically the performance of the matching
system and in particular, the expected number of unmatched items in the steady state. We
will also show that FCFM policy suffers from the following performance paradox: adding
an edge to the matching graph (and therefore increasing the potential matches) does not
necessarily decrease the mean number of waiting items in the steady-state. In Chapter 5 we
present the results on the optimal control in the stochastic bipartite matching systems. We
start with analyzing in detail the N-graph and then move to the asymptotic results for any
bipartite graphs. We will introduce a new family of matching policies, called h-Max-Weight
policies with threshold and show that there is a policy in this class that has bounded regret
for the average number of waiting items.

This part is based on the following publications: [J22] (Chapter 3), [J7, J11, C10] (Chapter
4), [J5, C45] (Chapter 5).

General notation. Denote by R the set of reals, by N the set of non-negative integers
and by N+ = N\{0}, the subset of positive integers. For any two integers m and n, denote
by Jm,nK = [m,n] ∩ N. For any n ∈ N+, let Sn be the group of permutations of J1, nK. Let
A∗ (respectively, AN) be the set of finite (resp., infinite) words over the alphabet A. Denote
by ∅ the empty word of A∗. For any word w ∈ A∗ and any subset B of A, we let |w|B be the
number of occurrences of elements of B in w. For any letter a ∈ A, we denote |w|a := |w|{a},
and for any finite word w we let |w| = ∑a∈A |w|a be the length of w. Finally, for any w ∈ A∗,
let [w] := (|w|a)a∈A ∈ NA be the commutative image of w.

Consider a simple undirected graph G = (V, E), where V denotes the set of nodes, and
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E ⊂ V2 \∆ is the set of edges, where ∆ = {(i, i) : i ∈ V}, i.e. without self-loops. We use the
notation u−v for (u, v) ∈ E and u6−v for (u, v) 6∈ E . For U ⊂ V, we define U c = V \ U and

Γ(U) = {v ∈ V : ∃u ∈ U, u− v} .

An independent set of G is a non-empty subset I ⊂ V which does not include any pair of
neighbors, i.e.

(
∀i, j ∈ V, i−j ⇒ i 6∈ I or j 6∈ I

)
. Let I(G) be the set of independent sets of

G. An independent set I is said to be maximal if I ∪ {j} 6∈ I(G) for any j 6∈ I.

2.1 Non-bipartite stochastic matching model

Non-bipartite stochastic matching model was first introduced in [97] under the name of
stochastic matching model. It is also know in the literature under the name general stochastic
matching model (GM) [110]. Items arrive one by one in the system and depart by pairs, upon
being matched. There is a finite set of item classes, denoted by V, and identified with J1, |V|K.
The compatibility between item classes is given by the matching graph, a connected simple
undirected graph G = (V, E), where the set of edges E are the allowed matchings between
classes. Two examples of matching graphs are given in Figure 2.1.

Upon arrival, any incoming item of class i ∈ V can be either matched with an item present
in the buffer, of a class j such that i−j, or it is stored in the buffer to wait for its match.
Whenever several possible matches are possible for an incoming item i, it is the role of the
matching policy to decide the match of the latter item without ambiguity. Each matched pair
departs the system instantenously.

We assume that the successive classes of arriving items are random. We fix an underlying
probability space (Ω,F ,P), on which all random variables are defined. For any n ∈ N, let
Vn ∈ V denote the class of the n-th incoming item. We assume that the sequence (Vn)n∈N
is i.i.d., from the distribution µ on V. Without loss of generality, we assume that µ has full
support V, i.e. µ ∈M+(V), which we will write shortly as µ ∈M(V).

A matching model is a triple (G,µ,Pol), where:

• G = (V, E) is the matching graph;

• µ ∈M(V) is the arrival distribution;

• Pol is a Markovian matching policy which defines the new buffer-content after the
arrival of a new item and the possible matches with the old buffer-content;

The sequence of buffer-content forms a Markov chain. The first natural question is to find
the conditions on (G,µ,Pol) for stability, i.e. positive recurrence of this Markov chain. In
[97], the authors give the necessary stability conditions:

Ncond(G) : {µ ∈M (V) : for any I ∈ I(G), µ (I) < µ (Γ (I))} (2.1)

which, from Theorem 1 in [97], is non-empty if and only if G is non-bipartite.

Remark 1. This Markov chain is periodic with period 2. This is not a problem for defining
stability, however, if we wish to have convergence to the stationary distribution from any
initial condition, it is possible to modify the model by adding a small probability of having
zero arrivals at each given time step. This does not change the stationary measure of the
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Markov chain, but it solves the issue of periodicity. Also sometimes it is more convenient
to consider a related model in continuous time with items of different classes arriving to the
system according to independent Poisson processes, with rates λi > 0, i = 1, . . . , n.

After applying standard uniformization technique, with a uniformization constant Λ ≥∑n
i=1 λi, we obtain the following matching model in discrete time. In each time slot t ∈ N∗,

there are no arrivals with probability

α0 =
Λ−∑n

i=1 λi
Λ

≥ 0.

Otherwise, with probability 1 − α0, one item arrives to the system. This item belongs to
a class within the set of item classes V, sampled from a conditional probability distribution
µ = (µ1, · · · , µn), µi = λi

Λ , over V given the event that there is an arrival. Note that this
discrete time system has average stationary queue lengths equal to the original continuous
time model.

The discrete general matching model, as defined in [97], is obtained for a particular choice
of α0 = 0.

1

2

3

4

(a) Bipartite.

1

2

3 4

(b) Non-bipartite.

Figure 2.1: Examples of matching graphs.

2.2 Bipartite stochastic matching model

In the bipartite stochastic matching model there are two populations of items, that we will
call demand and supply. There are finite sets D and S, respectively of demand and supply
classes. Authorized matchings between demand and supply items are given by a fixed bipartite
graph (D,S, E ⊂ D × S). Upon being matched, the demand and the supply item depart
simultaneously.

To model arrivals, we have a priori more flexibility, but there is basically one non-trivial
choice that can lead to stability (in the sense of positive recurrence for the Markov chain of
the model), which is to assume that time is discrete and that demand and supply items arrive
in pairs.

Consider indeed the simplest possible model with continuous-time arrivals: (i) there is only
one demand class and one supply class; (ii) demand, resp. supply items, arrive according to a
Poisson process of rate λ, resp. µ; (iii) matching is instantaneous. Let us describe the state by
Z = X − Y , where X is the number of unmatched demand and Y the number of unmatched
supply items. The process Z is a birth-and-death continuous-time Markov process on Z with
drift λ−µ. It is either transient (if λ 6= µ) or null recurrent (if λ = µ), but it is never positive
recurrent. Let us switch to discrete-time i.i.d. arrivals. At each time step, a batch of demand
and a batch of supply items arrive into the system. If the size of the batches are allowed to
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be different for demand and supply, then we are back to the continuous-time situation, and
even the simplest model is never positive recurrent.

We assume that the time is discrete and that at each time step, one demand and one supply
item arrive in the system according to a joint probability measure µ on D×S, independently
of the past. Also, at each time step, pairs of matched demand and supply, if they exist, depart
from the system. A matching policy decides how to match when there are several possibilities.
Demand/supply items that are not matched are stored in a buffer. For simplicity, we assume
that the matching is instantaneous. So the model is specified by: (i) the finite set D of demand
classes and the finite set S of supply classes; (ii) the probability law µ on D×S for the arrivals
in pairs; (iii) the bipartite graph (D,S, E ⊂ D × S) giving the possible matchings between
demand and supply classes (hence the possible departures in pairs); (iv) the matching policy
to decide how to match when several choices are possible. We consider Markovian policies
which depend only on the current state of the system. Under these assumptions, the buffer
content evolves as a discrete-time Markov chain.

We call this model the extended bipartite matching (EBM) model. The particular case
of product probability measure µ for the arrivals, i.e. under an additional assumption of
independence between arriving demand and supply items (∀d, s, µ(d, s) = µ(d,S)µ(D, s))
will be called bipartite matching (BM) model.

We now proceed to a more formal definition of the model.

Definition 2.2.1. A bipartite matching structure is a quadruple (D,S, E, F ) where

• D is the non-empty and finite set of demand types;

• S is the non-empty and finite set of supply types;

• E ⊂ D × S is the set of possible matchings;

• F ⊂ D × S is the set of possible arrivals.

The bipartite graph (D,S, E) is called the matching graph. It is assumed to be connected
(otherwise we can decompose the model into connected components and treat them separately).
The bipartite graph (D,S, F ) is called the arrival graph. It is assumed to have no isolated
vertices (otherwise we can consider a new model without such demand or supply classes).

In Figure 2.1, the graph on the left is an example of a bipartite matching graph for
D = {1, 3} and S = {2, 4}.

Demand and supply play symmetrical roles in the model. Also E and F play dual roles.
The graph (D,S, E) defines the pairs that may depart from the system, while the graph
(D,S, F ) defines the pairs that may arrive into the system.

Definition 2.2.2. A bipartite matching model is a triple [(D,S, E, F ), µ,Pol], where

• (D,S, E, F ) is a bipartite matching structure;

• µ is a probability measure on D × S, and µD and µS are the D and S marginals of µ,
with supports satisfying

supp(µ) = F, supp(µD) = D, supp(µS) = S , (2.2)

where µD and µS are the D and S marginals of µ.

• Pol is a Markovian matching policy (defined more formally in Section 3.1) which de-
fines the new buffer-content after the arrival of the new demand and supply items and
the possible matches with the old buffer-content.
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Observe that we can simplify the notation to [(D,S, E), µ,Pol]. We say that the model
[(D,S, E), µ,Pol] is associated with the structure (D,S, E, F ).

A realization of the model is as follows. Consider an i.i.d. sequence of random variables
of law µ, representing the arrival stream of pairs of demand/supply. A state of the buffer
consists of an equal number of demand and supply items with no possible matchings between
the classes. Upon arrival of a new ordered pair (d, s), two situations may occur: if neither d
nor s match with the supply/demand already present in the buffer, then d and s are simply
added to the buffer; if d, resp. s, can be matched then it departs the buffer with its match.
If several matchings are possible for d, resp. s, then it is the role of the matching policy to
select one. A Markovian matching policy selects according to the current state of the buffer
(and not according to the whole history of the buffer contents). The resulting evolution of
the buffer is described by a discrete-time Markov chain.

The bipartite stochastic matching model was first studied in Caldentey, Kaplan and Weiss
[31]. They introduced FCFM (First Come First Matched) bipartite matching model with two
infinite sequences of “customers” (also called demand in this manuscript) and “servers” (also
called supply), motivated by the Boston area social housing problem and the PhD thesis of
Kaplan [80]. FCFM policy matches a new arrival to the longest waiting compatible item in
the system. The first examples, with simple compatibility graphs were analyzed already in
[31] where the authors also conjectured the matching rates, i.e. the fraction of customers of
each type served by each type of server, for any bipartite compatibility graphs. The necessary
and sufficient condition for stability and a product form stationary distribution for the bi-
partite matching model were derived by Adan and Weiss in [3]. The product form stationary
distribution was derived by partial balance, similar to [137]. This stationary distribution was
then used to derive expressions for the matching rates.

The EBM model, as presented here, was first introduced in [J22], motivated by the ques-
tion of finding a simple matching policy that has maximal stability region. We discuss the
stability of stochastic matching models in the next chapter. FCFM policy will be discussed
more in detail in Chapter 4.



Chapter 3

Stability of stochastic matching
systems

This chapter summarizes the results on the stability of the EBM model. It is based on the
publication [J22], that contains more details and the proofs of all the results summarized in
this chapter. We start by giving the necessary conditions for stability. For some bipartite
graphs, we prove that the stability region is maximal (i.e. coincides with the necessary
conditions) for any admissible greedy matching policy. For the Match the Longest (ML)
policy, we prove that the stability region is maximal for any bipartite graph. For the Match
the Shortest (MS) and priority policies, we exhibit a bipartite graph with a non-maximal
stability region.

At the end of the chapter, we provide the discussion on the related results in the literature
for the non-bipartite matching model.

3.1 Matching policies

For a matching graph (D,S, E), let D(s) denote the set of demand classes that can be matched
with an s-supply; and S(d) the set of demand classes that can be matched with a d-demand:

S(d) = {s ∈ S : (d, s) ∈ E}, D(s) = {d ∈ D : (d, s) ∈ E}.

For any subsets A ⊂ D, and B ⊂ S, we define

S(A) = ∪d∈AS(d), D(B) = ∪s∈BD(s).

A matching policy is Markovian if only the current state of the buffer is taken into account,
i.e. there exists a state space E and a mapping � : E × (D × S) → E which returns the new
state of the system after an arrival.

A matching policy is called greedy if the buffer content never contains any compatible
items. A greedy matching policy satisfies buffer-first assumption if priority is given to items
that are already present in the buffer: if the state is (u, v) and the new arrival is (d, s), then
d and s are matched together iff there are no servers from S(d) in v and no customers from
D(s) in u. This is not a real restriction: a matching policy that gives priority to new arrivals
can be seen as a special case of the above with an arrival probability µ such that µ(E) = 0.

38
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We will focus in this chapter on Markovian greedy buffer-first policies that can be defined
on the following commutative and non-commutative state spaces. Non-greedy Markovian
matching policies will be considered in Chapter 5.

3.1.1 Commutative state space

A state of the system is given by (x, y), x = (xd)d∈D and y = (ys)s∈S , where xd denotes the
number of demand of type d and ys the number of supply of type s. The commutative state
space for greedy policies is:

E =
{

(x, y) ∈ ND × NS :
∑
d∈D

xd =
∑
s∈S

ys; ∀(d, s) ∈ E, xdys = 0
}
. (3.1)

For d ∈ D, let ed ∈ ND be defined by (ed)d = 1 and (ed)c = 0, c 6= d. For s ∈ S, let es be
defined accordingly.

Definition 3.1.1. A matching policy is admissible greedy policy if there are functions Φ and
Ψ such that:

(x, y)� (d, s) =


(x+ ed, y + es), if xD(s) = 0, yS(d) = 0, (d, s) 6∈ E
(x, y), if xD(s) = 0, yS(d) = 0, (d, s) ∈ E
(x− eΦ(x,s), y − eΨ(y,d)), if xD(s) 6= 0, yS(d) 6= 0

(x− eΦ(x,s) + ed, y), if xD(s) 6= 0, yS(d) = 0

(x, y − eΨ(y,d) + es), if xD(s) = 0, yS(d) 6= 0

The following commutative matching policies are admissible greedy policies (for RAN-
DOM, ML, and MS policies Φ(u, s) and Ψ(v, d) are random variables):

• PR (Priorities). For each demand type d ∈ D, we define a priority function αd :
S(d) → {1, . . . , |S(d)|}. Similarly, for each supply type s ∈ S, we define βs : D(s) →
{1, . . . , |D(s)|}. In the case of several matching options, a demand/supply is matched
with the supply/demand that has the highest priority: Φ(x, s) = arg max{βs(d) : d ∈
D(s), xd > 0} and Ψ(y, d) = arg max{αd(s) : s ∈ S(d), ys > 0}.

• RANDOM : Φ(x, s), resp. Ψ(y, d), is a random variable valued in D(s), resp. S(d),

and distributed as
Ä
xi/
∑

j∈D(s) xj
ä
i∈D(s)

, resp.
Ä
yi/
∑

j∈S(d) yj
ä
i∈S(d)

. Intuitively, the

match is chosen uniformly among all possible ones.

• ML : Φ(x, s), resp. Ψ(y, d), is a random variable uniformly distributed on arg max{xi :
i ∈ D(s)}, resp. arg max{yi : i ∈ S(d)}.

• MS : Φ(x, s), resp. Ψ(y, d), is a random variable uniformly distributed on arg min{xi >
0 : i ∈ D(s)}, resp. arg min{yi > 0 : i ∈ S(d)}.

3.1.2 Non-commutative state space

A state of the system is given by two finite words of the same size k ≥ 0, respectively
on the alphabets D and S, describing unmatched demand and supply. The (greedy) non-
commutative state space for greedy policies is:

E =
{

(u, v) ∈ ∪k≥0(Dk × Sk) : ([u], [v]) belongs to (3.1)
}
. (3.2)
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For a word w ∈ Ak and i ∈ {1, . . . , k}, we denote by w[i] := w1 . . . wi−1wi+1 . . . wk the
subword of w obtained by deleting wi.

Definition 3.1.2. A matching policy is admissible greedy policy if there are functions Φ and
Ψ such that:

(u, v)� (d, s) =


(ud, vs), if |u|D(s) = 0, |v|S(d) = 0, (d, s) 6∈ E
(u, v), if |u|D(s) = 0, |v|S(d) = 0, (d, s) ∈ E
(u[Φ(u,s)], v[Ψ(v,d)]), if |u|D(s) 6= 0, |v|S(c) 6= 0

(u[Φ(u,s)]d, v), if |u|D(s) 6= 0, |v|S(d) = 0

(u, v[Ψ(v,d)]s), if |u|D(s) = 0, |v|S(d) 6= 0

The First Come First Matched FCFM and Last Come First Matched LCFM policies are
admissible greedy matching policies with:

• FIFO : Φ(u, s) = arg min{uk ∈ D(s)}, Ψ(v, d) = arg min{vk ∈ S(d)}.
• LIFO : Φ(u, s) = arg max{uk ∈ D(s)}, Ψ(v, d) = arg max{vk ∈ S(d)}.

3.2 Necessary conditions for stability

Consider first a simpler finite and deterministic problem. Let (D,S,E) be a matching graph.
Consider a batch of demand x ∈ ND and a batch of supply y ∈ NS of equal size:

∑
d xd =∑

s ys. A perfect matching of x and y is a tuple m ∈ NE such that:

∀d ∈ D, xd =
∑
s∈S(d)

mds, ∀s ∈ S, ys =
∑

d∈D(s)

mds .

By Hall’s Theorem, there exists a perfect matching if and only if:∑
d∈U xd ≤

∑
s∈S(U) ys, ∀U ⊂ D∑

s∈V ys ≤
∑

d∈D(V ) xd, ∀V ⊂ S (3.3)

A perfect matching, if there is one, can be obtained by restating the model as a flow network
and by solving the maximum flow problem [58, 54].

The bipartite matching model is more complicated: first it is random, and second the
matchings have to be performed online. However the two ingredients of the simpler model
play an instrumental role in the analysis: (i) the conditions NCond, to be defined in (3.4),
are related to (3.3); (ii) the restatement as a flow problem is used in most of the proofs.

3.2.1 Stability definition

Consider a bipartite matching model [(D,S,E), µ,Pol]. We identify the model with the
Markov chain on the state space E describing the evolution of the buffer content.

Let P be the transition matrix of the Markov chain. A probability measure π on E is
stationary if πP = π. It is attractive if for any probability measure ν on E , the sequence of
Cesaro averages of νPn converges weakly to π.

Definition 3.2.1. The model is said to be stable if the Markov chain has a unique and
attractive stationary probability measure.

It implies in particular that the graph of the Markov chain has a unique terminal strongly
connected component with all states leading to it.
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3.2.2 Necessary conditions

Let µD be a probability measure on D and µS a probability measure on S. Define the following
conditions on (µD, µS):

NCond :

ß
µD(U) < µS(S(U)), ∀U ( D
µS(V ) < µD(D(V )), ∀V ( S

(3.4)

Lemma 3.2.1. The conditions NCond are necessary stability conditions: if the Markov
chain is stable then the conditions NCond are satisfied by the marginals of µ.

The conditions NCond appear already in [31] for the BM model. They have a natural
interpretation. Demand items from U need to be matched with supply from S(U). The first
line in NCond asks for strictly more supply items in average from S(U) than demand from
U . The second line has a dual interpretation.

Definition 3.2.2. Consider a bipartite graph (D,S,E) and an admissible matching policy
Pol. The stability region is the set of values of µ for which the bipartite matching model
[(D,S,E), µ,Pol] is stable.

The stability region is included in the polyhedron defined by NCond. The stability region
is maximal if it is equal to this polyhedron.

3.2.3 Complexity

The number of inequalities in NCond is exponential in |D|+ |S|. So checking directly if all
the inequalities are satisfied is a method whose time complexity is exponential in |D|+ |S|. A
polynomial algorithm to check if the conditions NCond are satisfied can be obtained using
network flow arguments.

We use the standard terminology of network flow theory, see for instance [58]. Consider
the directed graph

N =
(
D ∪ S ∪ {i, f}, E ∪ {(i, d), c ∈ D} ∪ {(s, f), s ∈ S}

)
. (3.5)

Endow the arcs of E with infinite capacity, an arc of type (i, d) with capacity µD(d), and
an arc of type (s, f) with capacity µS(s). Recall that a cut is a subset of the arcs whose
removal disconnects i and f . The capacity of a cut is the sum of the capacities of the arcs.
Set A = E ∪ {(i, d), d ∈ D} ∪ {(s, f), s ∈ S}. Recall that T : A → R+ is a flow if: (i)
∀d, T (i, d) =

∑
s∈S(d) T (d, s), ∀s,∑d∈D(s) T (d, s) = T (s, f); (ii) ∀(x, y) ∈ E, T (x, y) is less or

equal to the capacity of (x, y). The value of T is
∑

d T (i, d) =
∑

s T (s, f).

1 32

2’ 1’3’

D

S

Figure 3.1: NN graph.
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i
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f

Figure 3.2: The graph N associated with the NN model of Figure 3.1.

Let NCond≤ be the set of inequalities obtained from NCond by replacing the strict
inequalities by ≤.

Lemma 3.2.2. There exists a flow of value 1 in N iff (µD, µS) satisfies NCond≤. There
exists a flow T of value 1 such that T (d, s) > 0 for all (d, s) ∈ E iff (µD, µS) satisfies NCond.

The first part of Lemma 3.2.2 is proved in [31, Prop. 3.7].
There exist algorithms to find the maximal flow which are polynomial in the size of the

underlying graph, independent of the arc capacities. For instance, the classical “augmenting
path algorithm” of Edmonds & Karp [54] has time complexity in O((|D|+ |S|)|E|2), and there
exist more sophisticated algorithms with time complexity in O((|D|+ |S|)3).

We take one of these polynomial algorithms, call it MaxFlow and consider it as a black-
box. We build on this to design a polynomial algorithm to check NCond.

Lemma 3.2.3. Fix η such that 0 < η < 1/|E|. Define (µ̃D, µ̃S) as

µ̃D(d) =
µD(d)− |S(d)|η

1− |E|η , µ̃S(s) =
µS(s)− |D(s)|η

1− |E|η . (3.6)

The pair (µD, µS) satisfies NCond iff the pair (µ̃D, µ̃S) satisfies NCond for η strictly positive
and small enough.

Using Lemmas 3.2.2 and 3.2.3, NCond is satisfied iff MaxFlow(N , µ̃C , µ̃S) returns 1 for
η small enough. So the trick is to run MaxFlow on the input (N , µ̃C , µ̃S) by considering η
as a formal parameter made “as small as needed”.

The precise meaning is the following. If x1, x2, y1, y2 ∈ R, then: (x1 + y1η) + (x2 + y2η) =
(x1 + x2) + (y1 + y2)η. Furthermore,[

x1 + y1η = x2 + y2η
]
⇐⇒

[
x1 = x2, y1 = y2

]
[
x1 + y1η < x2 + y2η

]
⇐⇒

[
(x1 < x2) or (x1 = x2, y1 < y2)

]
(3.7)

So η is small enough not to reverse any strict inequality. When running MaxFlow on
(N , µ̃D, µ̃S), the algorithm deals with values of the type (x + yη), and adds and compare
them according to the above rules. Now observe that the algorithm stops in finite time, so
it will have performed only a finite number of operations. Therefore, it would be possible, a
posteriori, to assign to η a value which would be small enough to enforce (3.7).

The termination is obvious and the correctness follows from Lemmas 3.2.2 and 3.2.3.

Proposition 3.2.4. Given a bipartite model [(D,S,E), µ], there exists an algorithm of time
complexity O((|D|+ |S|)3) to decide if NCond is satisfied.
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3.3 Connectivity properties of the Markov chain

Define the following property for the transition graph of the Markov chain:

UTC : a unique (terminal) strictly connected component with all states leading to it.

Property UTC is necessary for stability as defined in Def. 3.2.1. But property UTC is not
granted in bipartite matching models and counterexamples are given below (Examples 2 and
3). In fact, we will see that we are in an unusual situation: the necessary stability conditions
NCond turn out to be sufficient conditions for the property UTC (Theorem 3.3.2). Observe
also that property UTC is weaker than irreducibility, and we will give an example of a model
satisfying NCond and UTC without being irreducible (Example 4).

3.3.1 Stable structures

To establish property UTC, we study a notion of independent interest: stable structures.

Definition 3.3.1. A bipartite matching structure (D,S,E, F ) is stable if there exists a prob-
ability measure µ satisfying (2.2) and whose marginals µD and µS satisfy NCond.

The justification for this terminology will appear in Section 3.6: we prove there that under
the ML policy, any model satisfying NCond is stable. So a structure is stable iff there exists
an associated model which is stable.

First, there exist stable structures.

Example 1. Consider (D,S,E,D × S), where (D,S,E) is the NN bipartite graph of Figure
3.1. Let

µD : µD(1) = µD(2) = 2/5, µD(3) = 1/5, µS : µS(1′) = µS(2′) = 2/5, µS(3′) = 1/5 .

The product measure µ = µD × µS has marginals µD and µS and we check that (µD, µS)
satisfy NCond. Also it is easily proved that for any admissible greedy matching policy, the
graph of the Markov chain is irreducible.

On the other hand, there exist unstable structures. We illustrate this on two examples.

Example 2. Consider the structure (D,S,E, F ) where (D,S,E) is the NN graph of Figure
3.1, and where

F =
{

(1, 3′), (2, 2′), (3, 1′)
}
.

Consider any µ with supp(µ) = F . We have µD(1) = µS(3′) = µ(1, 3′) which violates NCond
for V = {3′}. We can also prove that the property UTC is not satisfied. Consider a state of
the type (x, y) with x = y = (0, 0, k), for some k ≥ 0. Any one of the three possible arrivals
leave the state unchanged. In particular, there is an infinite number of terminal components.

Example 3. Consider the bipartite matching structure defined in Figure 3.3. The graph
(D,S,E) is represented on the left of the figure, while the graph (D,S, F ) is represented on
the right.

Consider any µ with supp(µ) = F . We have

µS({1′, 2′}) = µ(3, 1′) + µ(4, 2′) ≤ µD({3, 4}) ,



44 CHAPTER 3. STABILITY OF STOCHASTIC MATCHING SYSTEMS
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Figure 3.3: The matching graph (D,S,E) on the left, and the arrival graph (D,S, F ) on the
right.

which contradicts NCond for U = {3, 4}. We can also prove that the property UTC is not
satisfied. Consider a state (x, y) with x3 + x4 = k > 0. Reducing the number of demand
items of types 3/4 would require an arrival of type (1, 1′) or (1, 2′) or (2, 1′) or (2, 2′). But
none of these pairs belong to F . Therefore it is impossible to reach a state (x′, y′) with
x′3 + x′4 < x3 + x4. On the other hand an arrival of type (3, 3′) or (3, 4′) or (4, 3′) or (4, 4′)
strictly increases the number of demand items of types 3/4. Hence all the states are transient,
and there is no terminal strongly connected component.

Stability of a structure is a decidable property. There exists a probability measure µ with
the requested properties iff the following system of linear inequalities in variables µ(d, s), d ∈
D, s ∈ S, have a solution:

∑
(d,s)∈D×S µ(d, s) = 1,

µ(d, s) > 0, ∀(d, s) ∈ F,
µ(d, s) = 0, ∀(d, s) ∈ D × S − F,
µD(d) =

∑
s∈S µ(d, s), ∀d ∈ D,

µS(s) =
∑

d∈D µ(d, s), ∀s ∈ S,
NCond .

(3.8)

However, the number of inequalities is exponential in |D|+ |S|. We propose a criterion which
is much simpler, both conceptually and algorithmically.

Consider a bipartite matching structure (D,S,E, F ). Define ‹F = {(s, d) | (d, s) ∈ F}.
Associate with the structure the directed graph (D ∪ S,E ∪ ‹F ), in other words the nodes
are D ∪ S and the arcs are

d −→ s, if (d, s) ∈ E, s −→ d, if (d, s) ∈ F .

We have represented in Figure 3.4 the directed graph associated with the structure of
Example 3.

The graph of Figure 3.4 is not strongly connected: the four nodes on the right form a
strongly connected component. Similarly, the directed graph associated with the structure of
Example 2 is not strongly connected. On the other hand, the directed graph associated with
the structure of Example 1 is strongly connected. This is not a coincidence.

Theorem 3.3.1. Let (D,S,E, F ) be a bipartite matching structure. The following two prop-
erties are equivalent:

1. (D,S,E, F ) is a stable structure;
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Figure 3.4: The directed graph associated with the structure of Figure 3.3.

2. (D ∪ S,E ∪ ‹F ) is strongly connected.

In particular, one can decide if a structure is stable with an algorithm of time complexity
O(|D||S|) by testing the strong connectivity of (D ∪ S,E ∪ ‹F ).

3.3.2 Property UTC

Theorem 3.3.2. Consider a bipartite matching model [(D,S,E), µ,Pol]. Assume that the

structure (D,S,E, F ) is stable, equivalently that (D ∪ S,E ∪ ‹F ) is strongly connected. Then
the transition graph of the Markov chain of the bipartite matching model satisfies the property
UTC.

Example 4. Consider a bipartite matching model associated with the structure (D,S,E, F )
where (D,S,E) is the NN graph of Figure 3.1, and where

F =
{

(1, 1′), (2, 2′), (3, 3′)
}
.

The graph (D ∪ S,E ∪ ‹F ) is strongly connected. According to Theorem 3.3.1, the graph
satisfies property UTC. But it is not irreducible. Indeed, it is impossible to reach the state
((0, 1, 0); (0, 0, 1)) starting from the empty state.

Below, we study the stability of bipartite matching models. Therefore, we always assume
that the necessary conditions NCond are satisfied. So we get the property UTC for the
Markov chain as a consequence of Theorem 3.3.2.

3.4 Models that are stable for all admissible policies

Both the commutative and the non-commutative state space can be decomposed into facets,
defined only by the non-zero classes.

Definition 3.4.1. A facet is an ordered pair (U, V ) such that: U ⊂ D,V ⊂ S and U × V ⊂
(D × S − E). The zero-facet is the facet (∅, ∅), we denote it shortly by ∅.

For a facet F = (U, V ), define:

D•(F) = U, S•(F) = V,

D}(F) = D(V ), S}(F) = S(U),

D◦(F) = D − (D•(F) ∪D}(F)), S◦(F) = S − (S•(F) ∪ S}(F)).

We alleviate the notations to D•, S•, D}, . . . , when there is no possible confusion. The
symbol • stands for the non-zero classes, the symbol } for the classes that are forced to be
at zero (since they are matched with non-zero classes), and the symbol ◦ for the classes that
happen to be at zero.
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Graphical convention. A facet F can be represented graphically by coloring the nodes of
the bipartite graph according to the above convention (see Figure 3.5 for an illustration):

- nodes in D•(F) and S•(F) are represented as filled circles;

- nodes in D}(F) and S}(F) are represented as double circles;

- nodes in D◦(F) and S◦(F) are represented as simple circles.

Definition 3.4.2. A facet F is called saturated if D◦(F) = ∅ or S◦(F) = ∅.

In Figure 3.5, the facet on the left is non-saturated, while the one on the right is saturated.

1 32

2’ 1’3’

1 32

2’ 1’3’

Figure 3.5: NN graph: facets ({3}, {3′}) and ({2}, {3′}).

Denote by F the set of facets. Define the following conditions on µ:

SCond : µC(D}(F)) + µS(S}(F)) > 1− µ(E ∩D◦(F)× S◦(F)), ∀F ∈ F− {∅}
(3.9)

In particular, the subset of the inequalities (3.9) obtained by considering only the saturated
facets gives precisely the inequalities NCond.

By application of the Lyapunov-Foster Theorem, see for instance [21, Section 5.1], for the
linear Lyapunov function:

L(u, v) = |u|, (u, v) ∈ E ,
counting the number of unmatched demand items, it follows that SCond are sufficient sta-
bility conditions.

Proposition 3.4.1. A bipartite model with probability µ satisfying SCond is stable under
any admissible matching policy.

Corollary 3.4.2. Consider a bipartite graph in which any non-zero facet is saturated. For
any admissible matching policy, the stability region is maximal.

The bipartite graph (D = {1, 2}, S = {1′, 2′}, D× S − {(2, 2′)}) is such that any non-zero
facet is saturated. Therefore, its stability region is maximal for any admissible policy. The
same is true for the “almost complete graphs” (D = {1, . . . , k}, S = {1′, . . . , k′}, D × S −
{(i, i′), ∀i}).

Example 5. Consider the NN graph from Figure 3.1. The graph has only one non-zero facet
that is non-saturated, facet ({3}, {3′}). For any admissible policy, the stability region is at
least the polyhedron SCond, Proposition 3.4.1, which is defined by:

NCond, µD(1) + µS(1′) > 1− µ(2, 2′) . (3.10)
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Assume now µ = µD × µS and µD = µS. Set x = µD(1) = µS(1′) and y = µD(2) = µS(2′).
Then:

NCond :

ß
x < 0.5
2x+ y > 1

SCond :

ß
NCond
2x+ y2 > 1

In Figure 3.6, the light (yellow) region corresponds to SCond, and the union of the light and

Figure 3.6: NCond and SCond for the NN-graph with µ = µC × µS and µC = µS .

dark (red) regions corresponds to NCond.

3.5 Priorities and MS are not always stable

Consider the NN bipartite graph of Figure 3.1 and Example 5. For this model, Proposition
3.4.1 does not allow to decide if the stability region is maximal (see Figure 3.6). In fact, we
show below that for the PR and MS matching policies, the stability region is not maximal.

Proposition 3.5.1. Consider the NN model with either the MS policy or the PR (priority)
policy such that demand of class d1 (resp. supply of class s1) gives priority to supply of class
s2 and supply of class s1 to demand of class d2 (see Figure 3.7). For both policies, the stability

d1 d3d2

s2 s1s3

D

S

Figure 3.7: PR policy with non-maximal stability region.

region is not maximal.

The proof consist in finding a point in NCond for which the Markov chain is not positive
recurrent. For both policies, this is true for the following distribution: µD = (1/3, 2/5, 4/15),
µS = µD, and µ = µD × µS .

3.6 ML is always stable

Theorem 3.6.1. For any bipartite graph, the ML policy has a maximal stability region.
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The idea of the proof is as follows. Consider the quadratic Lyapunov function:

L(x, y) =
∑
d∈D

x2
d +

∑
s∈S

y2
s , (x, y) ∈ E . (3.11)

Observe that the ML policy minimizes the value of this Lyapunov function at each step.
We introduce a facet-dependent randomized policy that depends on the arrival distribution
µ. For this policy, we can prove that the quadratic Lyapunov function has a negative drift
outside a finite region. By the Lyapunov-Foster’s Theorem, see for instance [21, Section 5.1],
the alternate matching policy is stable. Since the ML matching policy minimizes the value of
the quadratic Lyapunov function, the ML policy is also stable. This auxiliary facet-dependent
randomized policy is constructed using network flow arguments.

3.7 Discussion and related results for the non-bipartite case

Mairesse and Moyal [97] observed that the bipartite double cover (see for exemple [23]) of a
GM model is in fact a special case of a EBM model. Given a graph G = (V, E), its bipartite
double cover is the bipartite graph 2 ◦G = (2 ◦ V, 2 ◦ E) defined as

2 ◦ V = V ∪ {ũ | u ∈ V}, 2 ◦ E = {(u, ṽ), (v, ũ) | (u, v) ∈ E}
where Ṽ = {ũ | u ∈ V} is a disjoint copy of V (see Figure 3.8).

1

2

3 4

1

1̃

2

2̃

3

3̃

4

4̃

Figure 3.8: A graph and its double cover.

Based on this observation, they were able to extend many of the results presented in this
chapter to the GM model. In particular, define the set of measures

Ncond(G) : {µ ∈M (V) : for any I ∈ I(G), µ (I) < µ (E (I))} . (3.12)

Theorem 1 in [97] states that this set is non-empty if and only if G is non-bipartite. Fur-
thermore, Proposition 2 in [97] that for any admissible (i.e. markovian greedy) policy Φ
the stability region of the GM model associated to (G,µ,Φ), is included in Ncond(G). An
admissible policy Φ is said to be maximal if these two sets coincide. Theorem 2 in [97] es-
tablishes the maximality of the matching policy ’Match the Longest’ for any non-bipartite
graph, however priority policies and the uniform-class policy (that matches a new arrival to
an item of a class chosen uniformly among all non-empty compatibility classes) are not always
maximal (respectively, Theorem 3 and Proposition 7 in [111]). Last, Theorem 2 in [97] states
that any GM model on a graph G that is p-partite complete for p ≥ 3 has a stability region
that coincides with Ncond(G) whatever the admissible matching policy; in other word any
admissible policy is maximal in this case.

Extensions to hypergraphs were inversigated in [120].
Finally, stability of stochastic matching models was considered in the sense of positive

recurrence for the Markov chain of the model. It may be also interesting to investigate the
null-recurrent case, for example using ideas in [9].



Chapter 4

FCFM stochastic matching

The focus of this chapter is on FCFM policy, i.e. the policy that matches each incoming item
with the compatible item that has been waiting the longest, if there is any. FCFM policy is
perceived as fair, it maximizes the stability region and is tractable, due to its product form
stationary distribution that will be discussed in this chapter. The intuitive interpretation for
its maximum stability is that, if an item has been waiting longer than another, it is likely
that this item is compatible with classes that are scarcer, so matching this item is a good
heuristic to preserve stability.

We will present the product form results and the reversibility properties of GM and BM
models. Although the results for the BM model were obtained first, we start by presenting
in Section 4.1 the results for the GM model, for which the notation and the key ideas are
simpler to introduce. Then in Section 4.2 we give product form results for the BM model.
Based on the product form solution, in Section 4.3, we show a performance paradox for GM
model, in the sense that adding edges to the compatibility graph can lead to larger mean
queue lengths. We end the chapter by a discussion and related results.

This chapter is based on the following publications that contain more details and the
proofs of the results presented in this chapter: [J7] (Section 4.1), [J11] (Section 4.2), [C10]
(Section 4.3).

4.1 Product form and reversibility properties of GM model

Notation. For a word w ∈ A∗ of length |w| = q, we write w = w1w2...wq, i.e. wi is the i-th
letter of the word w. In the proofs below, we understand the word w1...wk as ∅ whenever
k = 0. Also, for any w ∈ A∗ and any i ∈ J1, |w|K, we denote by w[i], the word of length |w|−1
obtained from w by deleting its i-th letter.

4.1.1 FCFM general matching model

We consider a GM model from Section 2.1 with a connected matching graph G = (V, E) that
will be considered fixed. We assume that the matching policy is ’First Come, First Matched’
(fcfm), that is, the match of i is the oldest among all stored items of neighboring classes of
i. For any n ∈ N, let Vn ∈ V denote the class of the n-th incoming item. We assume that the
sequence (Vn)n∈N is iid, from the distribution µ on V. Without loss of generality, we assume
that µ has full support V. According to the terminology in [97] and Section 2.1, we consider

49
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the general matching (GM) model associated to (G,µ, fcfm).

Markov representation

Fix an integer n0 ≥ 1, and a realization v1, ..., vn0 of V1, ..., Vn0 . Define the word v ∈ V∗
by v := v1...vn0 . Then, there exists a unique fcfm matching of the word v, that is, a
graph having set of nodes {v1, ..., vn0} and whose edges represent the matches performed in
the system until time n0, if the successive arrivals are given by v and the matching policy
is fcfm. This matching is denoted by Mfcfm(v). The state of the system is defined as
the word W fcfm(v) ∈ V∗, whose letters are the classes of the unmatched items at time n0,
i.e. the isolated vertices in the matching Mfcfm(v), in their order of arrivals. The word
W fcfm(v) ∈ V∗ is called queue detail at time n0. Any admissible queue detail belongs to

W =
{
w ∈ V∗ : ∀(i, j) ∈ E , |w|i|w|j = 0

}
. (4.1)

Fix a (possibly random) word Y ∈ W. Denote for all n ≥ 0 by W
{Y }
n the buffer content

at time n (i.e. just before the arrival of item n) if the buffer content at time 0 was set to Y .
Then the buffer-content sequence is stochastic recursive, since we clearly have that®

W
{Y }
0 = Y ;

W
{Y }
n+1 = W

{Y }
n �fcfm (Vn), n ∈ N,

where for all w ∈W and v ∈ V,

w �fcfm (v) =

ß
wv if |w|E(v) = 0;

w[Φ(w,v)] otherwise,

where Φ(w, v) = min{k ∈ J1, |w|K, : wk ∈ E(v)}. Consequently, if we assume that the sequence

(Vn)n∈N is independent of Y , the queue detail
Ä
W
{Y }
n

ä
n∈N is a W-valued Fn-Markov chain,

where F0 = σ(Y ) and Fn = σ (Y, V0, ..., Vn−1) for all n ≥ 1. The sequence (Wn)n∈N is termed
natural chain of the system.

For a connected graph G, the chain (Wn)n∈N is clearly irreducible, as all states of W lead
to ∅. In line with [97], we define the stability region of the GM model (G,µ, fcfm) by

stab(G, fcfm) :=
{
µ ∈M (V) : (Wn)n∈N is positive recurrent

}
, (4.2)

which is clearly independent of the initial state Y in view of the above observation.

We show next that the policy fcfm has maximal stability region, and characterize the
steady state of the system under the condition that µ ∈ Ncond(G).

4.1.2 Product form

The main result we established in [J7] is Theorem 4.1.1 that shows the maximality of the
FCFM policy by constructing explicitly the stationary distribution of the natural chain on
W. This probability distribution has a remarkable product form.

Theorem 4.1.1. Let G = (V, E) be a non-bipartite graph. Then the sets stab(G, fcfm) and
Ncond(G), defined respectively by (4.2) and (3.12) coincide, in other words the GM model
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(G,µ, fcfm) is stable if and only if µ belongs to the set Ncond(G). In that case, the following
is the only stationary probability of the natural chain (Wn)n∈N:

ΠW (w) = α

q∏
`=1

µ(w`)

µ
(
E ({w1, ..., w`})

) , for any w = w1...wq ∈W, (4.3)

where

α =

1 +
∑
I∈I(G)

∑
σ∈S|I|

|I|∏
j=1

µ(iσ(j))

µ
(
E
(
{iσ(1), ..., iσ(j)}

))
− µ

({
iσ(1), ..., iσ(j)

})

−1

. (4.4)

Characteristics at equilibrium

We can easily deduce, from Theorem 4.1.1, closed form formulas for performance measures of
the system in steady state. Denote by W∞, the stationary queue detail of the system, that
is, a random variable distributed following the stationary probability ΠW .

The average total number of items in storage at equilibrium is given by

E [|W∞|] =
∑
k∈N

kΠW ({w ∈W : |w| = k}) .

According to Little’s law, for any i ∈ V, the waiting time before getting matched, for an item
of class i entering the system in steady state, is given by

E [|W∞|]
µ(i)

=
1

µ(i)

∑
k∈N

kΠW ({w ∈W : |w|i = k}) .

In particular, the probability that a class i-item does have to wait before getting matched in
a stationary system is given by

P
[
|W∞|E(i) = 0

]
= ΠW

(
{w ∈W : |w|E(i) = 0}

)
,

for ΠW in (4.3).
The proof of Theorem 4.1.1 is based on a subtle reversibility scheme that is related to the

proof of reversibility for the BM model in [J11], presented in Section 4.2. However, GM model
is not a particular case of BM model, so the proof presents many specificities with respect to
[J11], and it turns out to be more elegant as we do not need to handle two populations of
items. To outline the ideas of the proof, we introduce two auxiliary Markov representations
of the system.

4.1.3 Auxiliary Markov representations

For w = w1w2 ... wq ∈ V∗, we denote by ~w the reversed version of w, i.e. ~w = wqwq−1...w2w1.
Let V be an independent copy of the set V, i.e. a set of cardinality |V|, disjoint of V and
containing copies of the elements of V. We denote by a, the copy of any element a of V, and
also say that a is the counterpart of a, and vice-versa. For any a ∈ V, let us denote a = a.
Let V := V ∪V. For any word w ∈ V∗, denote by V(w) (respectively, V(w)) the set of letters
of V (resp., V) that are present in w:

V(w) =
{
a ∈ V : |w|a > 0

}
; V(w) =

{
a ∈ V : |w|a > 0

}
.
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For any w ∈ V∗, the restriction of w to V (respectively, to V) is the word w|V ∈ V∗ (resp.,
w|V ∈ V

∗
) of size |w|V (resp. of size |w|V), obtained by keeping only the letters belonging to

V (resp. to V) in w, in the same order. The dual w of the word w = w1...wq ∈ V∗ is the
word obtained by exchanging the letters of w with their counterpart, i.e. w = w1 ...wq.

Example 6. Take for instance w = a b a c b c b d a. Then we obtain V(w) = {a, b, c, d} , V(w) ={
a, b, c

}
, w|V = a b c d a, w|V = a b c b, w = a b a c b c b d a, ~w = a d b c b c a b a.

Backwards detailed chain We define the V∗-valued backwards detailed process (Bn)n∈N
as follows: B0 = ∅ and for any n ≥ 1,

• if Wn = ∅ (i.e. all the items arrived up to time n are matched at time n), then we set
Bn = ∅;

• if not, we let i(n) ≤ n be the index of the oldest item in line. Then, the word Bn is of
length n− i(n) + 1, and for any ` ∈ J1, n− i(n) + 1K, we set

Bn(`) =


Vi(n)+`−1 if Vi(n)+`−1 has not been matched up to time n;

Vk if Vi(n)+`−1 is matched at or before time n, with item Vk
(where k ≤ n).

In other words, assuming that the initial system is empty, the word Bn gathers the class
indexes of all unmatched items entered up to n, and the copies of the class indexes of the items
matched after the arrival of the oldest unmatched item at n, at the place of the class index of
the item they have been matched to. Observe that we necessarily have that Bn(1) = Vi(n) ∈ V.
Moreover, the word Bn necessarily contains all the letters of Wn. More precisely, we have

W {∅}n = Bn|V , n ≥ 0. (4.5)

It is easily seen that (Bn)n∈N also is a Fn-Markov chain: for any n ≥ 0, the value of Bn+1

can be deduced from that of Bn and the class Vn+1 of the item entered at time n+ 1.

Forward detailed chain The V∗-valued forward detailed process (Fn)n∈N is defined as
follows: F0 = ∅ and for any n ≥ 1,

• if Wn = ∅, then we also set Fn = ∅;

• if not, we let Un be the set of items entered up to n and not yet matched at n (which
is non empty since Wn 6= ∅), and set

j(n) = sup {m > n : Vm is matched with an element of Un} .

Notice that j(n) is possibly infinite. Then, Fn is the word of V∗ of size j(n) − n
(respectively of VN if j(n) = +∞), such that for any ` ∈ J1, j(n)− nK (resp., ` ∈ N+),

Fn(`) =

ß
Vn+` if Vn+` is not matched with an item arrived up to n;

Vk if Vn+` is matched with item Vk, where k ≤ n.
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In other words, assuming that the initial system is empty, the word Fn contains the copies
of all the class indexes of the items entered up to time n and matched after n, together with
the class indexes of all unmatched items entered before the last item matched with an item
entered up to n, if any.

Recalling that F0 = ∅ ∈ V∗, observe that Fn ∈ V ∗ almost surely for all n ∈ N. Indeed, for
any n ∈ N, and w ∈ V∗ , on the event {Fn ∈ w}, Fn+1 being an infinite word would mean
that the arriving item at time n+1 is never matched, an event with null probability given that
G is connected. Observe that if Fn ∈ V∗ is finite, then Fn (j(n)− n) ∈ V since by definition,
the item Vj(n) is matched with some Vk for k ≤ n, and therefore Fn (j(n)− n) = V k. It is
also clear that (Fn)n∈N is a Fn-Markov chain, as for any n ≥ 0, the value of Fn+1 depends
solely on Fn and the class index Vj(n)+1 of the item entered at time n+ j(n) + 1.

Example 7. Consider the compatibility graph of Figure 4.1. An arrival scenario together with
successive values of the natural chain, the backwards and the forwards chain are represented
in Figure 4.2.

1

2

3 4

Figure 4.1: Compatibility graph of Example 7.

4.1.4 Dynamic reversibility

For both chains (Bn)n∈N and (Fn)n∈N, a state w ∈ V∗ is said admissible if it can be reached
by the chain under consideration under fcfm. We denote

B :=
{

w ∈ V∗ : w is admissible for (Bn)n∈N
}

; (4.6)

F :=
{

w ∈ V∗ : w is admissible for (Fn)n∈N
}
.

The two subsets B and F are isomorphic. More precisely,

Lemma 4.1.2. The mapping w 7→ ~w is one-to-one from B into F.

The dynamics of (Bn)n∈N and (Fn)n∈N are related in the following sense

Lemma 4.1.3. Let νB be the measure on B defined by (4.8). Then for any two admissible

states w,w′ for (Bn)n∈N, the states ~w and ~w′ are admissible for (Fn)n∈N and we have that

νB(w)P
[
Bn+1 = w′|Bn = w

]
= νB

(
~w′
)
P
[
Fn+1 = ~w|Fn = ~w′

]
. (4.7)

Proposition 4.1.4. Suppose that µ belongs to Ncond(G) defined by (3.12). Then the Back-
wards detailed Markov chain (Bn)n∈N is positive recurrent, and admits the following stationary
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1 4 2 1 4 3 2 3
W0 = ∅, B0 = ∅, F0 = ∅

1 4 6 2 1̄ 1 4 3 2 3
W1 = 1, B1 = 1, F1 = 41̄

1 4 6 2 1̄ 1 4 6 3 4̄ 2 3
W2 = 14, B2 = 14, F2 = 1̄144̄

2̄ 4 1̄ 1 4 6 3 4̄ 2 3
W3 = 4, B3 = 41̄, F3 = 144̄

2̄ 4 1̄ 1 4 6 3 4̄ 6 2 1̄ 3
W4 = 41, B4 = 41̄1, F4 = 44̄1̄

2̄ 4 1̄ 1 4 6 3 4̄ 6 2 1̄ 6 3 4̄
W5 = 411, B5 = 41̄11, F5 = 4̄1̄4̄

2̄ 3̄ 1̄ 1 4 4̄ 6 2 1̄ 6 3 4̄
W6 = 14, B6 = 144̄, F6 = 1̄4̄

2̄ 3̄ 1̄ 2̄ 4 4̄ 1̄ 6 3 4̄
W7 = 4, B7 = 44̄1̄, F6 = 4̄

2̄ 3̄ 1̄ 2̄ 3̄ 4̄ 1̄ 4̄
W0 = ∅, B0 = ∅, F0 = ∅

Figure 4.2: An arrival scenario on the graph of Figure 4.1, and the trajectories of the three
Markov chains.

measure (unique up to a multiplicative constant) on B, νB(∅) = 1;

νB (w) =
p∏
i=1

µ(i)|w|i+|w|i , w ∈ B \ {∅}. (4.8)

Furthermore,

νB(B) = 1 +
∑
I∈I(G)

∑
σ∈S|I|

|I|∏
j=1

µ
(
iσ(j)

)
µ
(
E
(
{iσ(1), ..., iσ(j)}

))
− µ

({
iσ(1), ..., iσ(j)

}) , (4.9)

so νB is a finite measure on B.

Observe that the measure of a word w does not change whenever any of its letters a is
exchanged with a. In particular, we have νB( ~w) = νB(w) for any w.

Furthermore, using the connection in Lemma 4.1.3 between the two processes, we prove
that the (Fn)n∈N is the reversed Markov chain of (Bn)n∈N, on a sample space where arrivals
are reversed in time and exchanged with their match. In particular (Fn)n∈N also admits νB
as a stationary measure.

Sketch of proof of Theorem 4.1.1

We know from Proposition 2 of [97] that if µ is not an element of Ncond(G), then the chain
(Wn)n∈N is transient or null recurrent. If we now assume that µ ∈ Ncond(G), then, first,
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observe that in view of (4.9), the measure defined for all w ∈ B by ανB(w), for α in (4.4)
and νB defined by (4.8), defines a probability measure on B. Second, from Proposition 4.1.4,
the auxiliary chain (Bn)n∈N is positive recurrent, and admits νB as a stationary measure.
So from (4.5), (Wn)n∈N is also positive recurrent. As it is also irreducible on W, it has a
unique stationary probability. To check that the latter is given by ΠW defined by (4.3), it
thus suffices to check that

ΠW (w) = α
∑

w∈B:w|V=w

νB(w) for any w ∈W.

4.2 Product form and reversibility properties of BM model

In this section, we summarize the contributions for the [(D,S, E), µ,FCFM] bipartite match-
ing (BM) model:

• We derive a Loynes’ scheme, which enables to get to stationarity through sample path
dynamics, and to prove the existence of a unique FCFM matching over Z.

• We define a pathwise transformation in which we interchange the positions of the two
items in a matched demand-supply pair, see Figure 4.4, and we prove the “dynamic
reversibility” of the model under this transformation.

• We construct “primitive” Markov chains whose product form stationary distributions
are obtained directly from the dynamic reversibility. Using these as building blocks,
we derive product form stationary distributions for multiple “natural” Markov chains
associated with the model, and we compute various non-trivial performance measures
as a by-product.

Detailed results and the proofs can be found in [J11].

4.2.1 FCFM bipartite matching model

We use di, i = 1, . . . , I to denote the different types of demand, and we use dm to denote
the type of the m-th demand item arrived to the system. Similarly we use sj , j = 1, . . . , J
to denote the types of supply, and sn denotes the type of the n-th supply item. In figures,
we will simplify the notation by writing dm = i if dm = di, and sn = j if sn = sj , and we
will arrange the sequences in two lines, the top one containing the ordered demand, and the
bottom one containing the ordered supply. We will sometimes swap items between the top
and the bottom lines in a way to be explained then. In figures, we put an edge between dm

and sn if they are matched, and we call this edge a link in the matching, characterized by the
pair of times (m,n).

Assumptions: We assume a connected bipartite matching or compatibility graph G =
(D,S, E), with D = {d1, . . . , dI}, S = {s1, . . . , sJ}, and E ⊂ D × S. Denote by α and β the
marginals of µ, i.e. for all d ∈ D, α(d) = µ(d,S) and for all s ∈ S, β(s) = µ(D, s). In the
bipartite matching (BM) model, it is assumed that ∀d, s, µ(d, s) = α(d)β(s), i.e. we assume
the independence between arriving demand and supply. We assume that αd > 0 for all d ∈ D
and βs > 0 for all s ∈ S. We also assume that µ ∈ NCond given by (3.4). We let S(ci)
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be the set of supply types compatible with demand type di, and D(sj) be the set of demand
types compatible with supply type sj . For D ⊂ D and S ⊂ S, we define

S(C) =
⋃
di∈D

S(di), D(S) =
⋃
sj∈S
D(sj) .

We also define
U(S) = D(S) = D \ D(S \ S)

(where · denotes the complement) which is the set of customer types that can only be
served by the servers in S. We call these the unique demand types of S. Finally, we let Let

αD =
∑
di∈D

αdi , βS =
∑
sj∈S

βsj .

For BM model, it is easy to see that NCond is equivalent to conditions in the following
lemma:

Lemma 4.2.1. The following three conditions are equivalent (and equivalent to NCond):

∀D ⊂ D, D 6= ∅, D 6= D, αD < βS(D)

∀S ⊂ S, S 6= ∅, S 6= S, βS < αD(S) (4.10)

∀S ⊂ S, S 6= ∅, S 6= S, βS > αU(S).

These conditions are called complete resource pooling conditions in [3].

Consider two independent random sequences (dm)m∈T and (sn)n∈T which are chosen re-
spectively i.i.d. from D according to α = {αd1 , . . . , αdI}, and i.i.d. from S according to
β = {βs1 , . . . , βsJ}. The parameter set T can be finite, for instance T = {0, 1, 2, . . . , N}, one
sided infinite, T = N, or two sided infinite, T = Z.

We study first come first matched (FCFM) policy, as defined in [3]. Informally, this means
that an item from S is matched to the earliest possible compatible item from D, and vice
versa. More formally,

Definition 4.2.1. Let d = (dm)m∈T1 and s = (sn)n∈T2 be some fixed ordered sequences of
demand and supply. Here T1 and T2 are index sets which are either finite, one-sided infinite
or bi-infinite.

- A partial matching of d and s is a set A ⊂ T1 × T2 corresponding to demand-supply
pairs satisfying:

(i) (m,n) ∈ A =⇒ (dm, sn) ∈ E
(ii) ∀m, #{n : (m,n) ∈ A} ≤ 1, ∀n, #{m : (m,n) ∈ A} ≤ 1 .

For a partial matching A, we denote

Ad = {m : ∃n, (m,n) ∈ A}, As = {n : ∃m, (m,n) ∈ A} .

- A partial matching A is a (complete) matching if there are no unmatched compatible
pairs left outside of A, that is:

m 6∈ Ad, n 6∈ As =⇒ (dm, sn) 6∈ E .
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- A matching A is FCFM if for every (m,n) ∈ A,

if l < n, (dm, sl) ∈ E, then there exists k < m such that (k, l) ∈ A and

if k < m, (dk, sn) ∈ E, then there exists l < n such that (k, l) ∈ A.

- A matching is perfect if T1 = T2, and all demands and supplies are matched.

Figure 4.3 illustrates FCFM matching of two sequences, for a given compatibility graph.
Items are browsed from left to right. For instance, d1 cannot be matched with s1 nor s2 since
d1 = d1, s

1 = s2 = s2 and (d1, s2) 6∈ E , but it will be matched with s3 = s3 which is the
earliest possible match.

2

s1

S 2

s2

3

s3

3

s4

2

s5

1

s6

1

s7

. . .

. . .1

d1

D 4

d2

1

d3

3

d4

2

d5

3

d6

4

d7

d1 d2 d3 d4

s1 s2 s3

G

Figure 4.3: FCFM matching of two sequences (left), for the compatibility graph G (right)

Lemma 4.2.2 (Adan & Weiss, [3]). For every finite index sets, there exists a complete FCFM
matching, and it is unique.

The sequences (dm)m∈N and (sn)n∈N are matchable if the number of type di demand and
the number of type sj supply is infinite for all i = 1 . . . , I and j = 1, . . . , J . The sequences
(dm)m∈Z and (sn)n∈Z are matchable if the same also holds for times −1,−2, . . ..

Theorem 4.2.3 (Adan & Weiss, [3]). For any two matchable sequences (dm)m∈N and (sn)n∈N,
there exists a unique perfect FCFM matching.

The matching can be obtained in a constructive way up to arbitrary length. We consider
three methods of constructing a FCFM matching step by step, and define three Markov chains
associated with them:

(i) Matching pair by pair: Proceeding from a complete FCFM matching of (dm, sn)m,n≤N , we
add the pair dN+1, sN+1, and match them FCFM to compatible previously unmatched
supply and demand if possible, or to each other if possible, or else leave one or both
unmatched. With each step we associate a state that consists of the ordered lists of the
unmatched supply and demand. It is easy to see that the step by step evolution of the
state defines a countable state discrete time irreducible and aperiodic Markov chain.
We denote it by O = (ON )N∈N, this is the ‘natural’ pair by pair FCFM Markov chain.

(ii) Matching supply by supply: Proceeding from the FCFM matching of all the supply items
sn, n ≤ N , we add the next supply sN+1, and match it to the first compatible demand
that has not yet been matched. With each step we associate a state that consists of
the ordered list of skipped demands. This again defines a countable state discrete time
irreducible and aperiodic Markov chain. We denote it by Qs = (QsN )N∈N, this is the
‘natural’ supply by supply FCFM Markov chain.
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(iii) Matching demand by demand is analogous, resulting in a ‘natural’ demand by demand
FCFM Markov chain Qd = (QdN )N∈N.

All three Markov chains have a common state if at time N a perfect matching of all
previous demand and supply items is reached, in which case the state consists of empty lists
and is denoted by ∅ or by 0. Because these Markov chains have a common state, they will be
transient, null recurrent, or ergodic together.

Definition 4.2.2. We will say that the FCFM bipartite matching is ergodic if the correspond-
ing Markov chains are ergodic.

Theorem 4.2.4 (Adan & Weiss [3]). The FCFM bipartite matching is ergodic if and only if
the conditions in Lemma 4.2.1 hold.
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Figure 4.4: The matched sequences of Figure 4.3, after the exchange transformation

4.2.2 Loynes’ construction of FCFM bipartite matching over Z

In this section we show that if complete resource pooling holds, then for two independent
bi-infinite sequences of i.i.d. demands and supplies, (dn, sn)n∈Z there exists almost surely
a unique FCFM matching. This matching coincides with the matchings obtained from the
stationary versions of the various Markov chains described above. The matching is obtained
using a Loynes’ type scheme (see [94] for the original Loynes’ construction).
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Figure 4.5: Backward step changes the matching

Consider the (unique by Theorem 4.2.3) matching of (dn, sn)n>−K , and let K → ∞. At
first glance we notice that as we let K increase the matching changes. This is illustrated
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in the example of Figure 4.5. In this example, if and d−K−1 = d2 and s−K−1 = s2, then
starting empty at −K−1, the state at −K cannot be empty, so the matching starting empty
from −K is different from the matching starting from −K − 1. Nevertheless, in this simple
example, classical results can be used to prove that the matching does converge as K →∞.
The condition for that is that complete resource pooling should hold, which in this example
happens when α2 < β1.

We sketch the argument to provide some intuition for the general proof to come. Denote by

(O
[−K]
n )n≥−K , the pair by pair FCFM Markov chain associated with the sequence (dn, sn)n≥−K

(see the definition above). Denote by X
[−K]
n the number of unmatched demands, all of them

of type d2, (or of unmatched supplies, all of them of type s2) in O
[−K]
n . Observe that:

X
[−K]
n+1 =


X

[−K]
n + 1 if (dn+1, sn+1) = (d2, s2)

max(X
[−K]
n − 1, 0) if (dn+1, sn+1) = (d1, s1)

X
[−K]
n if (dn+1, sn+1) = (d1, s2) or (d2, s1) .

So (X
[−K]
n )n≥−K can be interpreted as the queue-length process of a discrete-time version

of an M/M/1 queue. Complete resource pooling then implies that the drift of this queue
is negative. A straightforward adaptation of the original Loynes argument (designed for a
continuous time G/G/1 queue with negative drift), yields the existence of a limiting process

for (X
[−K]
n )n≥−K when K → +∞, see for instance Chapter 2.1 in [8]. Let us denote the

limiting process by (X∞n )n∈Z. Again, the original Loynes argument shows that the set of
indices {n ∈ Z, X∞n = 0} is a.s. infinite. These indices can be viewed as regeneration points

for the processes (X
[−K]
n )n≥−K . In particular, if X∞k = 0 then X

[−K]
k = 0 for all −K ≤ k.

Now, observe that these regeneration points are also regeneration points for the processes

(O
[−K]
n )n≥−K , that is, [X∞k = 0] =⇒ [∀K, −K ≤ k, O

[−K]
k = ∅]. Between two regeneration

points, we have a finite complete matching of the sequences of demands and of supplies, and
this matching will not change over time. Therefore, there exists a limiting bi-infinite matching
which is obtained by simply concatenating the finite matchings between regeneration points.

In general, we prove the following result:

Theorem 4.2.5. For two independent i.i.d. sequences (dn, sn)n∈Z, if complete resource pool-
ing holds, there exists almost surely a unique FCFM matching over all of Z, and it can be
obtained by Loynes’ scheme, of constructing a FCFM matching from −K to ∞, and letting
K →∞.

The proof uses two pathwise results which do not depend on any probabilistic assumption:
monotonicity and subadditivity.

Lemma 4.2.6 (Monotonicity). Consider d1, . . . , dM and s1, . . . , sN , and complete FCFM
matching between them. Assume there are K demands and L supplies left unmatched. Con-
sider now an additional demand d0, and the complete FCFM matching between d0, d1, . . . , dM

and s1, . . . , sN . Then this matching will have no more than K + 1 demands and L supplies
unmatched.

Lemma 4.2.7 (Subadditivity). Let A′ = (d1, . . . , dm), A′′ = (dm+1, . . . , dM ) and B′ =
(s1, . . . , sn), B′′ = (sn+1, . . . , sN ) and let A = (d1, . . . , dM ), B = (s1, . . . , sN ). Consider
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the complete FCFM matching of A′, B′, of A′′, B′′, and of A,B and let K ′,K ′′,K be the num-
ber of unmatched demands and L′, L′′, L be the number of unmatched supplies in these three
matchings. Then K ≤ K ′ +K ′′ and L ≤ L′ + L′′.

The third ingredient is the existence of a simple path (i.e. with no repeated nodes) in the
compatibility graph G. This follows directly from the connectivity assumption for G.

Lemma 4.2.8. Consider an incompatible pair c0, s0. Then there exists an h and a sequence
d1, . . . , dh, s1, . . . , sh with h ≤ min{I, J} − 1, where (si, di), i = 1, . . . , h are compatible, such
that the FCFM matching of d0, d1, . . . , dh, s0, s1, . . . , sh is perfect.

Clearly, the probability of occurrence of such a sequence is strictly positive and lower
bounded by: δ =

∏
(d,s)∈E αdβs.

We assume from now on in this section that complete resource pooling holds. By Theorem
4.2.4, the pair by pair matching Markov chain (ON )N∈N is ergodic. Using the Kolmogorov
extension theorem [113], we may define (in a non-constructive way) a stationary version

O∗ = (O∗N )N∈Z of the Markov chain. Define also O[k] = (O
[k]
N )N≥−k the realization of the

Markov chain that starts at O
[k]
−k = ∅.

The proof of Theorem 4.2.5 consists now of two steps:

Forward coupling. The proof uses Lemmas 4.2.6, 4.2.7, 4.2.8.

Proposition 4.2.9 (Forward coupling). The two processes (O∗n)n∈N and (O
[0]
n )n∈N will couple

after a finite time τ , with E(τ) <∞.

Note that once O[0] and O∗ couple, they stay together forever.

Backward coupling. The second step is based on standard arguments to show backward
coupling and convergence to a unique matching.

Proposition 4.2.10 (Backward coupling). Let O∗ be the stationary pair by pair FCFM

matching process, and let O[−k] be the process starting empty at time −k. Then limk→∞O
[−k]
N =

O∗N for all N ∈ Z almost surely.

Each process O
[−k]
N determines matches uniquely for all N > −k, so if we fix N , matches

from N onwards are uniquely determined by limk→∞O
[−k]
N . Hence (O∗N )N∈Z determines for

every supply sn and every demand dn his match, uniquely, almost surely.

4.2.3 Exchange transformation and dynamic reversibility

The FCFM matching depends on the time direction in which it is constructed. The simple
example in Figure 4.6 shows that FCFM is not preserved if the time direction is reversed.

Nevertheless, this model has a dynamic reversibility result. In this section we introduce
the exchange transformation, in which we switch the positions of each matched pair of demand
and supply. Figures 4.3 and 4.4 illustrate the exchange transformation. We show that the
exchanged sequences are independent i.i.d. and that the matching is FCFM in reversed time.

Definition 4.2.3. Consider a FCFM bipartite matching of sequences (dn, sn)n∈T . The ex-
change transformation of the matched pair dn, sm, is the matched pair d̃m, s̃n where s̃n = sm

and d̃m = dn.
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Figure 4.6: FCFM is not preserved when time is reversed

Lemma 4.2.11. Let A be a perfect matching of d1, . . . , dM , and s1, . . . , sM . Let s̃1, . . . , s̃M ,
d̃1, . . . , d̃M be the sequences obtained by the exchange transformation, retaining the same links
of the matched pairs. The resulting matching of d̃1, . . . , d̃M , s̃1, . . . , s̃M is the unique FCFM
matching in reversed time.

Lemma 4.2.12. Consider the FCFM matching of two i.i.d. sequences, and let O(m+1,m+M)

be the block of demand and supply items for the times [m + 1,m + M ]. Then the condi-
tional probability of observing values O(m+1,m+M) =

(
(dm+1, . . . , dm+M ), (sm+1, . . . , sm+M )

)
conditional on the event that the FCFM matching of these values is a perfect match is:

P
(
Om+1,m+M =

(
(dm+1, . . . , dm+M ), (sm+1, . . . , sm+M )

)∣∣∣Om+1,m+M forms a perfect FCFM match
)

= κM

I∏
i=1

αdi
#di

J∏
j=1

βsj
#sj

where κM is a constant that may depend on M , and #di, #sj count the number of type di
demand and type sj supply items in the block.

Corollary 4.2.13. Let Om+1,m+M be a FCFM perfectly matched block, and let
←−Om+1,m+M

be obtained from Om+1,m+M by performing the exchange transformation and time reversal.

Then
←−OM is a FCFM perfectly matched block, and

P (
←−Om+1,m+M ) = P (Om+1,m+M )

Theorem 4.2.14. Consider a bipartite matching model under complete resource pooling (con-
ditions in Lemma 4.2.1). Let (dn, sn)n∈Z be the independent i.i.d. sequences of demand and
supply items, with the unique FCFM matching between them. Then the exchanged sequences
(d̃n, s̃n)n∈Z are independent i.i.d. of the same law as (dn, sn)n∈Z. The unique FCFM match-
ing in reverse time between them (using Loynes’ construction in reversed time) consists of the
same links as the matching between (dn, sn)n∈Z.

We have found that for any two independent i.i.d. sequences of demand D = (dm)m∈Z
and of supply items S = (sn)n∈Z, under complete resource pooling, there is a unique FCFM
matching almost surely. Furthermore, if we exchange every matched pair (dn, sm) of demand
and supply and retain the matching, we obtain two permuted sequences, of matched and
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exchanged demand D̃ = (d̃n)n∈Z, and of matched and exchanged supply S̃ = (s̃m)m∈Z. These
new sequences are again independent and i.i.d., and the retained matching between them is
FCFM in reversed time direction, and it is the unique FCFM matching of D̃, S̃ in reversed
time.

4.2.4 Stationary distributions

We consider the Markovian evolution of the stationary FCFM matching on Z, and derive
stationary distributions of several Markov chains associated with it. The FCFM matching
of D, S evolves moving step by step from the past up to position N , where we add matches
and perform exchanges at each step from N to N + 1. Four ways in which this can be done
are illustrated in Figure 4.7 where light circles represent demand and dark circles represent
supply (in original or exchanged positions). In each of these, if we reverse the time direction
we get a Markovian construction of FCFM matches between D̃, S̃ that moves from N + 1 to
N and at each of these steps adds matches for elements d̃n, s̃m and exchanges them back to
dm, sn. We exploit this reversibility to derive the stationary distributions.

The outline of this subsection is as follows: we first describe in more details the four
mechanisms and define a Markov chain associated with each. The states of these processes
consist of the ordered lists of items in the region encircled by a dashed ellipse in each of
the four panels in Figure 4.7. We call these the detailed Markov chains. Then we formulate
Lemmas 4.2.15, 4.2.16 on time reversal, that associates each Markov chain in the forward
time direction, with a corresponding Markov chain in the reversed time direction. We use
time reversal to derive in Theorem 4.2.17 the stationary distributions of the detailed Markov
chains. These are, up to a normalizing constant, simply the distributions of a finite sequence
of multi-Bernoulli trials. Also, all these distributions possess the same normalizing constant.

Then we define a Markov chain with an augmented state description, and obtain its
stationary distribution as a corollary to Theorem 4.2.17. The advantage of this augmented
chain is that its state can be re-interpreted as the state of a queue with parallel servers which
is overloaded, as described in [137, 3, 4]. Under this interpretation it is possible to sum
over the detailed states and to obtain the stationary distribution of a host of other processes
associated with FCFM matching. Furthermore, by summing over all the states we obtain the
normalizing constant for the stationary distributions of Theorem 4.2.17. We conjecture that
its calculation is ]-P hard.

Finally, we again sum over states to obtain the stationary distribution of the ‘natural’
Markov chains. We illustrate this for the FCFM matching model of the “NN”-system.

Mechanisms for evolution of FCFM matching and detailed Markov chains

We consider four mechanisms for the Markovian evolution of the stationary FCFM matching,
and define an associated Markov chain for each.

Supply by supply matching

At time N all supply items sn, n ≤ N have been matched and exchanged with the demand
items to which they were matched, as illustrated in panel (i) of Figure 4.7. At this point
the supply line has d̃n, n ≤ N demand items that matched and replaced by supply items
sn, n ≤ N , and supply items sn, n > N are still unmatched. On the demand line there is
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Figure 4.7: Four mechanisms of FCFM matching

a position M such that all the demand items dm, m < M have been matched and replaced
by s̃m, and dM is the first unmatched demand item, and there is a position M such that all
demand items dm, m > M have not yet been matched, and dM is the last demand item that
has been matched, so that now s̃M is the matched and exchanged supply item in position M .
If the matching for n ≤ N is perfect then M = M − 1 = N , otherwise L = M −M + 1 ≥ 2.
We let z = 0 in the former case (sometimes we write z = ∅), and in the latter case we let
z = (z1, . . . , zL) be the ordered sequence of unmatched demand and of matched and exchanged

supply items so that z1 = dM , zL = s̃M and zl, 1 < l < L is either dM+l−1 if unmatched or
s̃M+l−1 if matched and exchanged.

We define the supply by supply FCFM detailed matching process Zs = (ZsN )N∈Z with
ZzN = z. It is a Markov chain where the transition from ZsN to ZsN+1 depends on the current
state z, and on the innovation variables which are the types of supply item sN+1 and of
demand items dm, m > M .

Demand by demand matching

Similar to supply by supply matching, at time M all demand items dm, m ≤ M have been
matched and exchanged with supply items, as illustrated in panel (ii) of Figure 4.7. We
define a demand by demand FCFM detailed matching process, Zd = (ZdM )M∈Z so that the
state ZdM = y is y = 0 for perfect match, and otherwise y = (z1, . . . , zL) where z1 = sN is the

first unmatched supply item on the supply line, zL = d̃N is the last matched and exchanged
demand item, and zl, 1 < l < L is either sN+l−1 if unmatched or d̃N+l−1 if matched and
exchanged. It is a Markov chain where the transition from ZdM to ZdM+1 depends on the
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current state y, and on the innovation variables which are the types of demand item dM+1

and of supply items sn, n > N .

Pair by pair backward matching

For pair by pair backward FCFM matching (illustrated in panel (iii) of Figure 4.7) we assume
that all possible FCFM matches between sn, dm, m, n ≤ N have been made and exchanged,
and in step N + 1 we add the pair sN+1, dN+1, and if possible match and exchange each of
them FCFM to previous unmatched items or to each other.

We define the pair by pair backwards detailed FCFM matching process D = (DN )N∈Z as
DN = (z, y), where z = (z1, . . . , zL) describes the demand line and y = (y1, . . . , yK) describes
the supply line. Here z1 is the first unmatched demand item, in position N − L+ 1, and the
remaining items of z are either unmatched demand items or matched and exchanged supply
items, y1 is the first unmatched supply item, in position N − K + 1, and the remaining
items of y are either unmatched supply items or matched and exchanged demand items. The
number of unmatched demand items in z needs to be equal to the number of unmatched
supply items in y. We may have z = y = 0 if there is a perfect match, otherwise both L ≥ 1
and K ≥ 1. This is a Markov chain, whose next state depends on the current state and the
random innovation consists of the types of sN+1, dN+1.

Pair by pair forward matching

For pair by pair forward FCFM matching (illustrated in panel (iv) of Figure 4.7) we assume
all demand items sn, dm, m, n ≤ N have been matched and exchanged. After step N we
consider the pair in position N + 1, which may contain either items which were matched and
exchanged already, or items which are still unmatched, and then in step N + 1 the items
which are still unmatched after step N are matched and exchanged with each other or with
items in positions > N + 1.

We define the pair by pair forward FCFM matching process E = (EN )N∈T as EN = (y, z),
where y = (y1, . . . , yK) lists items in positions N + 1, . . . , N +K on the demand line, where
yK is the last matched and exchanged supply item s̃N+K , and yk, 1 ≤ k < K is either an
unmatched demand or a matched and exchanged supply item in position N + k, and where
(z1, . . . , zL) lists items in positions N + 1, . . . , N + L on the supply line, where zL is the last
matched and exchanged demand item d̃N+L and zl, 1 ≤ l < L is either an unmatched supply,
or a matched and exchanged demand in position N + k. EN = ∅ after a perfect match,
otherwise K,L ≥ 1. EN is a Markov chain, whose next state depends on the current state,
and the random innovation consists of the dm, m > N + L and sn, n > N +K.

Time reversal of the detailed Markov chains

Examining panel (i) of Figure 4.7 we see that it illustrates FCFM matching and exchange
of supply and demand lines D and S all the way from −∞ up to position N , and at the
same time it also illustrates matching and exchange of supply and demand lines D̃ and S̃
FCFM in reversed time, all the way from ∞ to N + 1. Our main observation now is that
if ZsN = z = (z1, . . . , zL), then (zL, . . . , z1) is exactly the state of the demand by demand
FCFM matching in reversed time of the sequences D̃, S̃, when all demand items d̃n, n ≥ N+1
have been matched to some s̃m, and exchanged back to a demand dm and supply sn. For
z = (z1, . . . , zL) we denote ←−z = (zL. . . . , z1). We denote the Markov chain of demand by
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demand FCFM matching of D̃, S̃ in reversed time by
←−
Z , so that

←−
Z d
N , is the state where all

d̃n, n > N have been matched. We then state formally (see Figure 4.8):
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States z,←−z

D/S̃
z

S/D̃

States z′,←−z ′
D/S̃

z′

S/D̃

Figure 4.8: Single match and exchange of demand supply pair and its reversal

Lemma 4.2.15 (Time reversal). The Markov chain
←−
Z d
N of demand by demand FCFM match-

ing of D̃, S̃ in reversed time, is the time reversal of the Markov chain ZsN of supply by supply
FCFM matching of D, S, in the sense that

ZsN = z, ZsN+1 = z′ if and only if
←−
Z d
N+1 =

←−
z′ ,
←−
Z d
N =←−z . (4.11)

This implies that the reversal of the transition ZsN = z→ ZsN+1 = z′ is exactly the transition
←−
Z d
N+1 =

←−
z′ → ←−Z d

N = ←−z . In other words, if the transition of ZsN → ZsN+1 matches and

exchanges sn with dm, then the transition of
←−
Z d
N+1 →

←−
Z d
N matches and exchanges d̃n with

s̃m.

A similar observation on time reversal holds also for the pair by pair backward and
forward detailed Markov chains. Examining panel (iii) of Figure 4.7 we again see that
it illustrates FCFM matching and exchange of supply and demand lines D and S all the
way from −∞ up to position N , and at the same time it also illustrates matching and ex-
change of supply and demand lines D̃ and S̃ FCFM in reversed time, all the way from ∞ to
N + 1. Our main observation now is that if ZsN = (z, y) =

(
(z1, . . . , zL), (y1, . . . , yK)

)
, then(

(yK , . . . , y1), (zL, . . . , z1)
)

= (←−y ,←−z ) is exactly the state of the pair by pair forward detailed

FCFM matching in reversed time, of the sequences D̃, S̃, when all demand and supply items
d̃n, s̃m, m, n > N have been matched and exchanged back to a demand dm and supply sn.
We denote the pair by pair forward detailed FCFM matching of D̃, S̃ in reversed time by←−
EN . We then state formally (see Figure 4.9):

Lemma 4.2.16 (Time reversal). The Markov chain
←−
EN of pair be pair forward FCFM

matching of D̃, S̃ in reversed time, is the time reversal of the Markov chain DN of pair by
pair backward FCFM matching of D, S, in the sense that

DN = (z, y), DN+1 = (z′, y′) if and only if
←−
EN+1 = (

←−
y′ ,
←−
z′ ),
←−
EN = (←−y ,←−z ). (4.12)

This implies that the reversal of the transition DN = z→ ZN+1 = z′ is exactly the transition←−
EN+1 = (

←−
y′ ,
←−
z′ ) → ←−EN = (←−y ,←−z ). In other words, if the transition of DN → DN+1 looks

for matches for dN+1, sN+1 and exchanges sn with dm, then the transition of
←−
EN+1 →

←−
EN

considers the elements in position N , and transforms them back.
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Figure 4.9: Adding pair backward and its reversal adding pair forward

Stationary distributions of the detailed Markov chains

We are now ready to derive the stationary distributions of the detailed Markov chains.

Theorem 4.2.17. (i) The stationary distribution of ZsN and of ZdM is given, up to a nor-
malizing constant, by

πZs(z) = πZd(
←−z ) =

I∏
i=1

αdi
#di

J∏
j=1

βsj
#sj , (4.13)

where #di is the number of demand items of type di, and #sj is the number of supply items
of type sj, as they appear in the state z.

(ii) The stationary distribution of DN and of EN is given, up to a normalizing constant,
by

πD(z, y) = πE(←−y ,←−z ) =
I∏
i=1

αdi
#di

J∏
j=1

βsj
#sj , (4.14)

where #di, #sj count demand and supply items as they appear in the state (z, y).
(iii) The normalizing constant is the same in all four distributions.

We prove (i) using the time reversal result and Kelly’s Lemma ([83], Section 1.7): For a
Markov chain Xt, if we can find non-negative π(i) and pj→i such that∑

i

pj→i = 1 for all j, and π(i)P (Xt+1 = j |Xt = i) = π(j)pj→i for all i, j (4.15)

then π is the stationary distribution of Xt, and pj→i are the transition rates of the reversed
stationary process, pj→i = P (Xt = i |Xt+1 = j). The proof of (ii) is similar. To show (iii) we
show that there is a 1-1 correspondence between states of ZsN and DN .

Augmented state, marginals and the normalizing constant

The extreme simplicity of the stationary probabilities obtained in Theorem 4.2.17 is deceptive,
since it does not indicate which states are possible, according to the compatibility graph and
the FCFM matching policy. In particular, there seems to be no simple way of deciding what
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are all the possible states of the four detailed Markov chains. As a result it is not at all
obvious how to calculate the normalizing constant for the distributions (4.13), (4.14). To
allow us to classify states in a convenient way, and thus to allow us to count them and to
add up their stationary probabilities, we define an augmented detailed Markov chain. It also
describes the supply by supply FCFM matching mechanism, but its states are augmentations
of the states of Zs, in that they are even more detailed.

Consider supply by supply FCFM matching when all supply items up to position N have
been matched and exchanged. For the supply by supply FCFM detailed matching process we
defined ZsN as the sequence of elements from position M of the first unmatched demand item
to position M of the last matched and exchanged supply on the demand line. We now consider
positions N < M and N > M such that the interval of positions N to N contains for each
supply type at least one matched and exchanged supply item, and it contains for each demand
type at least one unmatched demand, and the interval is minimal. Let z = (z1, . . . , zK) where

K = N−N+1, z1 = s̃N , zK = dN , and for N < l < N , zl is either an unmatched demand or a
matched and exchanged supply in position N+l−1. We consider the process oZs = (oZsN )N∈Z
where oZsN = z. Note that oZsN = z differs from ZsN by the addition of some supply items

before dM and some demand items after s̃M . We always have K ≥ I + J .

We define also the supply by supply FCFM augmented matching process Z = (ZN )N∈T
with state z = (z1, . . . , zL) with L = M −N + 1 ≥ J , which includes elements from positions

N to M on the demand line, starting with z1 = s̃N and ending with zL = s̃M

Corollary 4.2.18. The stationary distributions of oZs and of Z are given by

πoZs(z) = B
I∏
i=1

αci
#ci

J∏
j=1

βsj
#sj , (4.16)

πZ(z) = B
I∏
i=1

αci
#ci

J∏
j=1

βsj
#sj , (4.17)

where #di is the number of demand items of type di in z, and #sj is the number of supply
items of type sj in z.

The motivation for considering the augmented process Z is that each state ZN = z can
be written in a different form, and in that form we can actually enumerate all the possible
states. This enables us to obtain stationary distributions of various marginal processes, and
finally to derive an explicit expression for the normalizing constant B. We now rewrite the
state z = z1, . . . , zL as follows: Let SJ be the type of supply zL = s̃M . Define recursively,
for 1 ≤ j < J , Sj as the type of the last supply in the sequence z1, . . . , zL which is different
from Sj+1, . . . , SJ . Then R = (S1, . . . , SJ) is a permutation of the supply types s1, . . . , sJ .
Let w1, . . . ,wJ−1 be the subsequences of demand and supply types between the locations
of S1, . . . , SJ in z. We will then write the state as z = (S1,w1, . . . ,wJ−1, SJ). The idea of
presenting the state in this form stems from [138, 137] and was used in [3, 4].

The main feature of z = (S1,w1, . . . ,wJ−1, SJ) is that all the demand items in w` are of
types in U(S1, . . . , S`) and all the supply items in w` are of types in {S`+1, . . . , SJ}. Of course



68 CHAPTER 4. FCFM STOCHASTIC MATCHING

we can write the stationary distribution of states of Z, given in (4.17), also as:

πZ(S1,w1, . . . ,wJ−1, SJ) = B
J∏
j=1

βsj

J−1∏
`=1

Ñ ∏
di∈U{S1,...,S`}

α
#(di,w`)
di

∏
sj∈{S`+1,...,SJ}

β
#(sj ,w`)
sj

é
,

(4.18)
where #(di,w`), #(sj ,w`) count the number of type di demand and of type sj supply in w`.

We will use the notation Bs = B
∏J
j=1 βsj .

We now consider the process RN = (S1, . . . , SN ) which is the permutation of supply types
after the Nth match. It is derived by aggregating the states of the detailed augmented Markov
chain Z.

Theorem 4.2.19. The stationary distributions of R is given by:

πR(S1, . . . , SJ) = Bs
J−1∏
`=1

(
β{S1,...,S`} − αU{S1,...,S`}

)−1
. (4.19)

We are now ready to obtain the normalizing constant B (see [3]).

Theorem 4.2.20. The normalizing constant B is given by:

B =

Ñ
J∏
j=1

βsj ×
∑

(S1,...,SJ )∈PJ

J−1∏
`=1

(
β{S1,...,S`} − αU({S1,...,S`})

)−1

é−1

(4.20)

=

Ñ
I∏
i=1

αdi ×
∑

(D1,...,DI)∈PI

I−1∏
`=1

(
βS({D1,...,D`}) − α{D1,...,D`}

)−1

é−1

. (4.21)

where the summation is over all permutations of s1, . . . , sJ in the first expression, and over
all permutations of d1, . . . , dI in the second expression.

By observing when B is finite we obtain:

Corollary 4.2.21. A necessary and sufficient condition for ergodicity of all the FCFM match-
ing Markov chains is complete resource pooling (4.10).

Corollary 4.2.22. The conditional distributions of the numbers of unmatched demand and of
matched and exchanged supply, given the permutation is a product of geometric probabilities:

P (XN = (S1, n1, . . . , nJ−1, SJ) |S1, . . . , SJ) =

J−1∏
`=1

Ç
αU{S1,...,S`}
β{S1,...,S`}

ån` Ç
1−

αU{S1,...,S`}
β{S1,...,S`}

å
,

P (YN = (S1,m1, . . . ,mJ−1, SJ) |S1, . . . , SJ) =
J−1∏
`=1

Ç
β{S`+1,...,SJ}
αD{S`+1,...,SJ}

åm` Ç
1−

β{S`+1,...,SJ}
αD{S`+1,...,SJ}

å
.

Stationary distribution of the ‘natural’ Markov chains

We now consider the ‘natural’ Markov chains O of pair by pair and Qs, Qd of supply by
supply and demand by demand FCFM matching. The state consists of the ordered list of
unmatched demand and/or supply.
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Theorem 4.2.23. The stationary distributions for Qs = (QsN )N∈Z, for Qd = (QdN )N∈Z and
for O = (ON )N∈Z are given by

πQs(d
1, . . . , dL) = B

(
1− βS({d1,...,dL})

) L∏
`=1

αd`

βS({d1,...,d`})
, (4.22)

πQd(s
1, . . . , sK) = B

(
1− βD({s1,...,sK})

) K∏
k=1

βsk

αD({s1,...,sk})
. (4.23)

πO(d1, . . . , dL, s1, . . . , sL) = B
L∏
`=1

αd`

βS({d1,...,d`})

βs`

αD({s1,...,s`})
. (4.24)

An example: the ”NN” system

We consider the “NN” system, which is illustrated in Figure 4.10. This system was studied
in [31],

d1

α1

d2

α2

d3

α3

s3

β3

s2

β2

s1

β1

G

Figure 4.10: Compatibility graph and probabilities of the “NN” system

where ergodicity under complete resource pooling was demonstrated but stationary prob-
abilities could not at that time be obtained.

We can easily calculate stationary probabilities of the pair by pair, supply by supply and
demand by demand ‘natural’ FCFM processes, using formulae (4.22)–(4.24), (4.20). The
conditions for stability, i.e. for complete resource pooling, are:

β1 > α3, α1 > β3, α1 + β1 < 1.

Some examples are (we write αi, βj for αdi , βsj ):

P (QsN = d1, d1, d1, d1) = Bβ1

Å
α1

β2 + β3

ã4

,

P (QsN = d3, d3, d3, d3, d3) = B(1− β1)

Å
α3

β1

ã5

,

P (QcN = s3, s3, s3, s2, s3, s2) = Bα3

Å
β3

α1

ã3 Å β2

α1 + α2

ã2 β3

α1 + α2
,

P
(
ON = (d3, d3, d2, d3, d2), (s3, s3, s3, s3, s3)

)
= B

Å
α3

β1

ã2 Å α2

β1 + β2

ã2 Å α3

β1 + β2

ãÅ
β3

α1

ã5

.

The value of the normalizing constant is:

B =
(α1 − β3)(β1 − α3)(1− α1 − β1)

α1α2β1β2
.
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4.2.5 Calculation of performance measures

Matching rates

Assume ergodicity (complete resource pooling) holds. The matching rate rdi,sj is the a.s.
limit of the fraction of matches of demand of type di with supply of type sj , in the complete
FCFM matching of (sn, dm)0≤m,n≤N , as N →∞. An expression for rdi,sj was derived in [3].
We include this expression here for completeness and also because of its close similarity to
the derivation of the distribution of link lengths Lsj , Ldi,sj .

Both rdi,sj and the distribution of Ldi,sj are obtained by considering the state of the
process oZs which is s = (S1,w1, S2,w2, . . . , SJ ,wJ) (or equivalently, of the process Z with

the addition of wJ , where wJ is the sequence of dM+1, . . . , dN ). The final expressions include
summation over all the permutations S1, . . . , SJ ∈ PJ of the supply types s1, . . . , sJ .

For convenience we use the following notations relative to each permutation S1, . . . , SJ :

α(k) = αU{S1,...,Sk}, β(k) = β{S1,...,Sk} = βS1 + · · ·+ βSk .

Note that if U{S1, . . . , Sk} = ∅ then α(k) = 0. Further,

φk =
αU{S1,...,Sk}∩{di}
αU{S1,...,Sk}

, ψk =
αU{S1,...,Sk}∩(D(sj)\{di})

αU{S1,...,Sk}
, χk = 1− φk − ψk,

where φk, ψk, χk express the conditional probability that sN+1 = sj and dm ∈ wk form an
(sj , di) match, or an (sj , dk), dk 6= di match, or no match at all, respectively. By convention
0/0 = 0.

The expression for the matching rate is:

rdi,sj = βsj
∑

(S1,...,SJ )∈PJ
πR(S1, . . . , SJ)

(
J−1∑
k=1

φk
α(k)

β(k) − α(k)χk

k−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl
+

φJ
φJ + ψJ

J−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl

)
. (4.25)

Link lengths

Assume ergodicity (equivalently, complete resource pooling) holds, and consider a stationary
FCFM matching over Z. If sn is matched to dm we let L(sn, dm) = m − n denote the link
length. We define the random variable Lsj to have the stationary distribution of link lengths
of supply of type sj . We define the random variable Lsj ,di to have the stationary distribution
of link lengths of matches between supply of type sj and demand of type di. We derive the
distributions of Lsj and of Lsj ,di . They are mixtures of convolutions of some positively signed
and some negatively signed geometric random variables. We summarize the results in terms
of generating functions.

Theorem 4.2.24. The generating functions of the distributions of Lsj , Ldi,sj are:

E(ZLsj ) =
∑

(S1,...,SJ )∈PJ
πR(S1, . . . , SJ)

J∑
`=1

α(`)(φ` + ψ`)

β(`) − α(`)χ`

`−1∏
k=1

β(k) − α(k)

β(k) − α(k)χk

×
∏̀
k=1

( β(k) − α(k)χk

β(k) − α(k)χkZ

)
×

J∏
k=`

( β(k) − α(k)

1− α(k) − (1− β(k))Z−1

)
× 1

ZJ−`
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E(ZLsj ,ci ) =
∑

(S1,...,SJ )∈PJ
πR(S1, . . . , SJ)

J∑
`=1

α(`)φ`

β(`) − α(`)(ψ` + χ`)

`−1∏
k=1

β(k) − α(k)

β(k) − α(k)(ψk + χk)

×
∏̀
k=1

( β(k) − α(k)(ψk + χk)

β(k) − α(k)ψk − α(k)χkZ

)
×

J∏
k=`

( β(k) − α(k)

1− α(k) − (1− β(k))Z−1

)
× 1

ZJ−`

4.3 Performance paradox in FCFM systems

This section addresses the performance paradox in the FCFM general matching model. We
analyze the impact of adding edges to the matching graph. This can be seen as increasing the
matching flexibility, and intuitively, one might expect that this improves the overall system
performance.

For example, consider a carpooling system where compatibilities between classes represent
the geographic proximity of the users. Consider now the case where one class of users declares
to be willing to walk or drive longer to be eligible to be matched with a geographical further
location. This situation corresponds to a new matching system with a matching graph with
an additional edge. Another example is asking a family registering for social housing to list
less requirements in order to be compatible with more housing units. We show that this can
lead to overall longer average queue lengths, and therefore also longer average waiting times.

This performance paradox can be seen as a reminiscent of the Braess paradox. This con-
nection will be further discussed in Section 4.4. More closely related to our present work,
performance issues due to flexibility were studied in skill based routing models such as queue-
ing systems with redundant requests in [63]. They demonstrate that adding redundancy to a
class improves its mean response time but can hurt the mean response time of other classes.
Skill based routing models are used in many applications, such as for instance call centers
[61], and have several connections to matching models, that will be discussed in discussed in
Section 4.4. However, these connections between redundancy service model and stochastic
matching models rely on specific assumptions, that we do not suppose in our work, such as
bipartite compatibility graph and server by server Markov representation, or ignoring some
items if they are not immediately matched upon arrival.

Adding an edge to the compatibility graph leads to a bigger set of possible matchings.
Therefore, it is clear that, when we add an edge to the compatibility graph, the performance
of the system will always improve under an optimal policy. However, this is less obvious for
other matching policies. We study the conditions under which the mean number of unmatched
items under FCFM policy decreases when we add an edge to the compatibility graph. The
FCFM assumption allows us to use the product-form result from Theorem in Theorem 4.1.1.

We start in 4.3.1 by computing a closed-form expression for the mean total number of items
present in the system under the stationary distribution given in Theorem 4.1.1. Specifically,
we show that it can be written as a finite sum over all independent sets. This is then used
in 4.3.2 to derive sufficient conditions for the existence or the non-existence of a performance
paradox in matching models under an asymptotic assumption similar to the heavy-traffic
assumptions in queueing systems [86]. We assume that the sum of the arrival rates of an
independent set, which we call saturated, grows to its capacity (the sum of the arrival rates of
its neighbors), while the other independent sets stay strictly within their capacity. We prove
that a performance paradox exists when the saturated independent set has both nodes of the
added edge as neighbors. We also prove that a performance paradox does not exist when the
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saturated independent set contains at least one of the nodes of the added edge. The intuition
behind is that the performance paradox occurs when the added edge in the compatibility
graph disrupts the draining of the saturated set.

All the proofs of this section can be found in [C10]. Discussion on the extensions to other
matching policies is provided in Section 4.4.

4.3.1 Expected total number of unmatched items

We consider a general matching model (G,µ,FCFM) with matching graph G = (V, E) that
is connected, and µ ∈ Ncond(G) given in (2.1).

We denote by E [Q] = E [|W∞|] the mean total number of items present in the system un-
der the stationary distribution π given in Theorem 4.1.1. We start by computing a closed-form
expression for E [Q]. This result will be used in the proof of the existence of a performance
paradox in the next subsection.

For an independent set I ∈ I, consider an ordered version of I, noted Io = (i1, · · · , i|I|).
We note σ a permutation of its elements, i.e Iσ(o) = (iσ(1), · · · , iσ(|I|)) and S|I| the set of all
permutations of J1, |I|K.

We define

TIo =

|I|∏
k=1

µik
|µE({i1,··· ,ik})| − |µ{i1,··· ,ik}|

and TI =
∑

σ∈S|I| TIσ(o) . We also define

EIo =

|I|∑
l=1

|µE({i1,··· ,il})|
|µE({i1,··· ,il})| − |µ{i1,··· ,il}|

×
|I|∏
k=1

µik
|µE({i1,··· ,ik})| − |µ{i1,··· ,ik}|

and EI =
∑

σ∈S|I| EIσ(o) .
The normalizing constant of the stationary distribution in Theorem 4.1.1 can be written

as the sum of terms over the independent sets. In the following result, we show that the
expected total number of remaining items, defined as an infinite sum over all possible words,
can be also written a finite sum over all independent sets.

Proposition 4.3.1. Let E [Q] be the expected value of Q under the stationary distribution π.
Then

E [Q] =

(
1 +

∑
I∈I

TI

)−1(∑
I∈I

EI

)
.

4.3.2 Performance paradox

Consider another compatibility graph G̃ = (V, Ẽ), obtained from G = (V, E) by adding the

edge (i∗, j∗), i.e Ẽ = E ∪{(i∗, j∗)}. We denote by W̃ the Markov chain defined by G̃ on W̃ and

by E[‹Q] the mean total number of items present in the system with the added edge. Since

E(I) ⊆ Ẽ(I) for all I ∈ I and we assume µ ∈ Ncond(G), W̃ is also positive recurrent.
We say that there exists a performance paradox if there exists an edge (i∗, j∗) such that

E
î‹Qó > E [Q] ,
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1 2

34

Figure 4.11: Example of a compatibility graph.

i.e. the mean number of items can be increased by adding an edge to the compatibility graph.
For example, we will compare the performance between a matching model with the com-

patibility graph of Fig. 4.11 and a matching model with a complete compatibility graph of
four nodes (i.e we add an edge between node 1 and node 2 in Fig. 4.11).

Let Ĩ be the set of independent sets of G̃. Since Ẽ only differ from E in the added edge
(i∗, j∗), Ĩ can be obtained from I by removing all the independent sets that contain both i∗

and j∗.
We prove sufficient conditions for the existence or non-existence of a performance paradox

in matching models under a heavy-traffic assumption. This asymptotic assumption is similar
to the assumption (A1) used in [C45], and that will be presented in Section 5.3 to prove an
approximate optimality result for a carefully designed matching policy.

For any I ∈ I, denote by |Wt|I =
∑

i∈I |Wt|i, t ≥ 0 and

∆I = |µE(I)| − |µI |.

Under FCFM policy, for any t ≥ 0, we have

E [|Wt+1|I − |Wt|I ] ≥ −∆I ,

with the equality that is achieved for example when |Wt|i > 0, ∀i ∈ I and |Wt|i = 0, ∀i ∈
E(E(I))\I. A set I ∈ arg minI∈I ∆I will be called a bottleneck set in the sense that it has the
smallest maximal draining speed. Let

δ̄ = min
I∈I

∆I = min
I∈I

(|µE(I)| − |µI |).

We have δ̄ > 0 as we assume that µ ∈ Ncond(G). We select a bottleneck set Î ∈
arg minI∈I ∆I with the highest cardinality, i.e.

|Î| = max
I∈I s.t. ∆I=δ̄

|I|.

We are interested in how the performance of the system will evolve by adding an edge
when ∆Î tends towards 0. First, we define a parameterized family of item class distributions:

µδi =


µi + δ̄

2
µi
|µÎ |
− δ

2
µi
|µÎ |

if i ∈ Î
µi − δ̄

2
µi
|µE(Î)|

+ δ
2

µi
|µE(Î)|

if i ∈ E(Î)

µi otherwise

for all 0 < δ ≤ δ̄. It is clear that µδ̄ = µ. By definition of µδ, when δ tends to 0, then
|µδE(Î)

|−|µδÎ | = δ tends to 0. Then µδ is a distribution with full support, and µδ ∈ Ncond(G).
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Lemma 4.3.2. Let 0 < δ ≤ δ̄. We have µδi > 0 for all i ∈ V and
∑

i∈V µ
δ
i = 1. Furthermore,

µδ ∈ Ncond(G).

We have constructed a continuous path of distributions µδ, for 0 < δ ≤ δ̄, so we can
consider E [Q] as a function of δ and take its limit when δ tends to 0. We can rewrite µδ as
a linear combination of δ, i.e µδi = ai + biδ with

ai =


µi + δ̄

2
µi
|µÎ |

if i ∈ Î
µi − δ̄

2
µi
|µE(Î)|

if i ∈ E(Î)

µi otherwise

and

bi =


− µi

2|µÎ |
if i ∈ Î

µi
2|µE(Î)|

if i ∈ E(Î)

0 otherwise

.

Definition 4.3.1. An independent set I is called saturated if ∆δ
I = |µδE(I)| − |µδI | tends to 0

when δ tends to 0, i.e. if |aE(I)| − |aI | = 0.

Proposition 4.3.3. The vector a = (a1, · · · , an) is stochastic, a ∈ Ncond(G), for all I ∈
I \ {Î} and |aÎ | = |aE(Î)|, i.e. Î is the only saturated independent set for our parametrized

family µδ.

We now present the main result about the performance paradox.

Theorem 4.3.4. If Î has both i∗ and j∗ as neighbors, then there exists a performance paradox
for δ sufficiently small. If Î contains i∗ or j∗ and E(Î) ( Ẽ(Î), then there does not exist a
performance paradox for δ sufficiently small.

Example 8. Consider a matching model with the compatibility graph of Fig. 4.11 and let
us define µ as µ1 = µ2 = 0.22, µ3 = 0.45 and µ4 = 0.11. The independent set is Î = 3
is the only bottleneck set that achieves the smallest maximal draining speed δ̄ = ∆{3} =

|µ{1,2,4}| − |µ3| = 0.1. Define a new collection of conditional probability distributions µδ based

on the bottleneck set Î = {3}, for all 0 < δ ≤ 0.1, i.e µδ1 = µδ2 = 0.2 + δ
5 , µδ3 = 0.5 − δ

2 and

µδ4 = 0.1 + δ
10 . Thus ∆δ

Î = |µδE(Î)
| − |µδÎ | = δ tends to 0 when δ tends to 0 and Î is the only

saturated independent set. Comparing this matching model with the matching model with the
complete compatibility graph leads to a paradox for δ sufficiently small. Indeed, the added
edge (i∗, j∗) = (1, 2) has both nodes as neighbors of Î = {3}. In this example, E

î‹Qó > E [Q]
if and only if 0 < δ < 0.0818369.

The intuition behind the results of Theorem 4.3.4 is that the performance paradox occurs
when the added edge in the compatibility graph disrupts the draining of a bottleneck. Indeed,
as δ decreases, the maximal draining speed of the saturated independent set Î becomes very
small compared to the other independent sets. Thus, the set of classes Î is a critical part
of the system and every item of those classes should be matched anytime a compatible item
arrives. However, adding an edge in the compatibility graph between two neighbors of Î
means that sometimes the FCFM policy will match items of those two neighbors together
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instead of having them available when items of Î arrive. In that case, it is quite intuitive
that the load would increase on this already critical part of the system which would lead
to degrading performances. Assume now that the added edge in the compatibility graph is
between a node within Î and a node that was not a neighbor of Î. Then, items of the new
neighbor of Î can now be sometimes matched with the latter. Thus, reducing the load on the
critical part of the system and improving performance.

4.4 Discussion and related results

Both BM and GM models are somewhat related to queuing systems with known product
forms. For BM, this was first observed by Adan and Weiss [3]. They show that the supply
by supply Markov chain description is related to a queuing system with multi-type customers
and multi-type servers from [137], that also has a product form distribution, under some spe-
cial conditions. Using this connection, Adan and Weiss in [3] were able to prove that FCFM
BM has maximal stability region and they established a product form stationary distribution
result for this Markov chain description. However, the product form stationary distribution
was derived by partial balance, similar to [137]. Reversibility and Loynes construction for
FCFM BM was first established in [J11], together with product form results for other marko-
vian descriptions and the closed form expressions for link lengths in the stationary perfect
matching. This stationary distribution was then used to derive expressions for the matching
rates.

Connections between FCFS parallel server systems and matching models were further
studied in [2]. They established very strong connections between FCFS-ALIS parallel queuing
model from [4], redundancy service model from [63] and a parallel FCFS matching queue in
which arriving customers join a queue of waiting customers and arriving servers are matched
to a first compatible waiting customer, or lost otherwise. They show that the continuous-time
Markov chains that describe all three service models share the same stationary distribution,
which leads the way to comparing their performance measures. In particular, the redundancy
service model and the matching queue are equivalent in the sense that they share the same
continuous-time Markov chain. By introducing a new discrete FCFS infinite directed matching
model, similar to the one in [3], but in which servers are matched only to customers arrived
before them, and embedding all three previous models into this new one, they obtained a
version of Burke’s Theorem for the redundancy service and for the matching queue systems.
An overview of connections between product forms for FCFS queuing models with server-job
compatibilities is provided in [62].

In [3], the authors show that the FCFS infinite bipartite matching model has the same
state description and stationary distribution as the ”First Come First Served-Assign the
Longest Idle Server” (FCFS-ALIS) parallel queueing model conditioned on all the servers
being busy, which implies heavy-traffic assumptions on the arrival rates.

For GM models, the connection with order independent loss queues was first established
by Comte in [48]. Comte shows that a FCFM GM model is a loss variant of order-independent
queues introduced in [13]. This allowed to derive closed-form expressions for several perfor-
mance metrics, like the waiting probability or the mean matching time, that can be computed
recursively over the family of independent sets of items. Some of these results have been then
translated to the FCFM BM model in [49].

So far, FCFM BM and FCFM GM are the only instances of FCFM EBM that we know



76 CHAPTER 4. FCFM STOCHASTIC MATCHING

to have a product form. The reversibility proof for FCFM BM heavily uses the independence
assumption between the supply and demand classes, so investigating other instances of EBM
will require a new approach.

An extension to a variant of FCFM GM in which the items of a given class can be matched
together, i.e. to the case of a compatibility graph with self-loops, have been simultaneously
proposed in [11] and [C6], using different proof techniques.

Loynes type constructions have been investigated further in [W4] for GM and in [W7] for
EBM models, under general matching policies. In [W7], we proposed an explicit construction
of the stationary state of EBM model. We use a Loynes-type backwards scheme, allowing to
show the existence and uniqueness of a bi-infinite perfect matching under various conditions,
for a large class of matching policies and of bipartite matching structures. The key algebraic
element of our construction is the sub-additivity of a suitable stochastic recursive representa-
tion of the model, satisfied under most usual matching policies. By doing so, we also derive
stability conditions for the system under general stationary ergodic assumptions, subsuming
the classical markovian settings. The extension to GM is studied in [W4]. We prove that
most common matching policies (including FCFM, priorities and random) satisfy a particular
sub-additive property, which we exploit to show in many cases, the coupling-from-the-past
to the steady state, using a backwards scheme à la Loynes. We then use these results to
explicitly construct perfect bi-infinite matchings, and to build a perfect simulation algorithm
in the case where the buffer of the system is finite.

Extensions of performance paradox to greedy matching policies are studied further in
[W2]. What is intriguing is that the same paradox occurs even if we consider the whole
family of greedy policies, i.e. the policies that always match a new arrival to a waiting item
if there are any compatible items waiting in the system. An example is given in [W2]. In
stochastic matching model, greedy matching policies can be interpreted as selfish behavior
of new arrivals, so this performance paradox is to some extent similar to a Braess paradox
observed in transportation networks [20]. Braess paradox states that, when the agents can
take self-interested decisions, the travelling times of the agents can increase if we add a new
road. The idea behind this phenomenon is that the extension of the network might cause a
redistribution of the traffic that increases the congestion and, as a result, the delay of agents.
More precisely, the Braess paradox shows that the travel time in the Nash equilibrium (the
set of strategies such as no agent has incentive to deviate unilaterally) can increase if we add
a shortcut in the network. This result reflects that the selfish behavior of agents in a network
might lead to a situation whose performance is sub-optimal. The existence of a Braess paradox
has been explored in several contexts related to queueing networks [10, 33, 46, 47, 79].

In the next chapter, we will consider optimal control problems in stochastic matching
systems. The existence of performance paradox for any greedy policies shows that it is
necessary to extend the class of admissible policies to include non-greedy behavior.



Chapter 5

Optimal control in bipartite
stochastic matching

The choice of matching decisions can be cast as an optimal control problem for a dynamic
matching model. The goal is to obtain a better understanding of the structure of optimal
policies. The focus in this chapter is on the infinite-horizon average-cost optimal control
problem for a linear cost function c on buffer levels.

We start by giving a complete characterization of an optimal policy in the N case in Section
5.2. We show that there exists an optimal policy that gives priority to the pendant edges
of the matching graph, and that is of threshold type for the diagonal edge. We also fully
characterize the optimal threshold. Under some assumptions in the costs of the nodes, this
threshold-based structure of the optimal matching policy extends to quasi-complete graphs
(i.e. complete graphs minus one edge). In an arbitrary acyclic graph, we show that, when
the cost of the pendant nodes is larger or equal than the cost of its neighbors, the optimal
policy always gives priority to the pendant edges.

In Section 5.3, a new class of policies is introduced: the h-MaxWeight with threshold.
The policy is the solution to a linear program that minimizes the drift of the function h,
subject to non-idling constraints. Performance analysis is based on a one-dimensional relax-
ation of the stochastic control problem, which is found to be a special case of an inventory
model, as treated in the classical theory of Clark and Scarf [45]. Consequently, the optimal
policy for the relaxation admits a closed-form expression based on a threshold rule. These
observations inform the choice of function h, and the choice of threshold. For a parameter-
ized family of models in which the network load approaches capacity, this policy is shown to
be approximately optimal, with bounded regret, even though the average cost grows without
bound.

This chapter is based on on the following publications that contain more details and the
proofs of the results presented in this chapter: [J5, C45].

5.1 MDP model

The bipartite matching model considered in this chapter is a variant of bipartite stochastic
matching model. It consists of a queueing network model with two sets of buffers, distin-
guished by their role as providing supply or demand of resources. Let `S denote the number
of supply classes, `D the number of demand classes, and define the following index sets:

77
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D: Indices of demand classes. S: Indices of supply classes.

E : Matching pairs, E ⊂ D × S, A: Arrival pairs, A ⊂ D × S.

The bipartite graph (D ∪ S, E) is called the matching graph. The graph is assumed con-
nected.

e1 e2 e3 e4 e5

xD
1 xD

2 xD
3

xS
1xS

2xS
3

D

S

Figure 5.1: The NN network.

The NN-network shown in Fig. 5.1 is an example in which `D = `S = 3, and the set E
denotes the edges (ei) shown. Each of the three integers {xDi : i = 1, 2, 3} corresponds to
units of demand of a particular class, and {xSi : i = 1, 2, 3} correspond to units of the three
different types of supply.

A discrete-time Markov Decision Process (MDP) model is introduced next to capture
temporal dynamics. The main departure from traditional queueing networks is that there are
no servers. Instead of “service”, activities in this model correspond to instantaneous matching
a particular unit of supply with a unit of demand.

The vector of buffer levels for the dynamic matching model is denoted X(t). It takes
values in Z`+, where ` = `D + `S . The following notation is used to emphasize the different
roles for supply or demand buffers:

X(t) = (XD1 (t) , . . . , XD`D(t) , XS1 (t) , . . . , XS`S (t))T (5.1)

It is often convenient to drop the super-scripts. In this case, for i ∈ D:={1, . . . , `D}, the integer
Xi(t) denotes the number of units of demand of class i, and for j ∈ S := {`D+ 1, . . . , `D+ `S},
the integer Xj(t) denotes the units of supply of class j.

An i.i.d. arrival process is denoted A. As in Chapter 3, we assume that a single pair arrive
at each time slot – one of demand and one of supply. That is, for each t, A(t) takes values in
the set

A� = {1i + 1j : (i, j) ∈ A}, (5.2)

where 1i denotes a column vector with ith component equal to 1 and zero elsewhere.

Let ξ0 = (1, . . . , 1,−1, . . . ,−1)T, the vector with `D entries of +1, followed by `S entries
of −1. The queue length vector is subject to the following balance constraint:

ξ0 ·X(t) = 0 (5.3)

An input process U represents the sequence of matching activities, and the queue dynamics
are

X(t+ 1) = X(t)− U(t) +A(t+ 1), t ≥ 0 . (5.4)

Input constraints are captured by the input space:

U� =
{
u =

∑
e∈E

neu
e : ne ∈ Z+

}
(5.5)
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The vectors {ue} are an enumeration of all single matches across edges of the matching graph:
that is, ue = 1i + 1j for e = (i, j) ∈ E . There are also implicit constraints on U(t), since the
components of X(t) are constrained to non-negative integer values.

The input is further constrained by U(t) ∈ U�(x) when X(t) = x, where

U�(x) =
{
u ∈ U� : x− u ≥ 0

}
, x ∈ X� (5.6)

Based on (5.2) and (5.15) we have

ξ0 · U(t) = 0 and ξ0 ·A(t) = 0 , a.s. (5.7)

Consequently, the constraint (5.3) holds automatically under (5.15) and (5.2), provided it
holds at time t = 0. That is, for each t, X(t) takes values in the set

X� = {x ∈ Z`+ : ξ0 · x = 0}. (5.8)

The existence of an optimal policy for this MDP model requires stabilizability of the network.
We assume a linear cost function on buffer levels and aim to minimize the average cost

given by

η = lim sup
N→∞

1

N

N−1∑
t=0

E
[
c(X(t))

]
. (5.9)

Stabilizability. Let S(i) denote the set of supply classes that can be matched with a class
i demand, and let D(j) denote the set of demand classes that can be matched with a class
j supply. This definition and the extension to subsets D ⊂ D and S ⊂ S are formalized as
follows:

S(i) = {j ∈ S : (i, j) ∈ E} , D(j) = {i ∈ D : (i, j) ∈ E}

S(D) =
⋃
i∈D
S(i) , D(S) =

⋃
j∈S
D(j)

For any vector x ∈ R`+ denote, |xD| =
∑

i∈D xi, |xS | =
∑

j∈S xj .
The MDP model is said stabilizable if there exists a policy for which the controlled MDP

model is positive Harris recurrent. The necessary and sufficient condition for stabilizability
of the MDP model is given as follows, based on the mean arrival rate vector α = E[A(t)]:
NCond: For all non-empty subsets D ( D and S ( S,

|αD| < |αS(D)| and |αS | < |αD(S)| (5.10)

The proof can be found in [J22] and it was presented in Chapter 3. The sufficiency part
is constructive: it is shown that the following Match the Longest (ML) policy is stabilizing
under NCond:

φ(x) = arg max{u · ∇h (x) : u ∈ U�(x)}, x ∈ X�, (5.11)

with h(x) = ‖x‖2, the usual `2-norm.
Under NCond we are also assured of the existence of an optimal policy for the MDP model.

The proof of Proposition 5.1.1 follows from Theorem 9.0.2 of [109].

Proposition 5.1.1. If NCond holds, then the optimal average cost η∗ exists as a deterministic
constant, independent of initial conditions.
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In stability and performance analysis it is sometimes convenient to consider the process
Q(t) = X(t)−A(t), t ≥ 1, which evolves according to a recursion similar to (5.4):

Q(t+ 1) = Q(t)− U(t) +A(t) , t ≥ 0 (5.12)

If U is defined using a stationary policy U(t) = φ(X(t)), it then follows that Q is a Markov
chain evolving on X�.

Furthermore, in a part of the analysis it is useful to allow U(t) to depend on both Q(t) and
A(t) rather than a function of the sum X(t). To apply MDP theory it is therefore necessary
to defined a second MDP model in which the state is the pair process Y (t) = (Q(t), A(t)). It
is assumed that the input process U is non-anticipative (a function of present and past values
of Y ). A stationary (state feedback) policy is of the form U(t) = ψ(Y (t)), for some function
ψ : X� × A� → U�. We allow for randomized stationary policies in our analysis.

Let η∗Y denote the optimal average cost for the MDP with the larger state process Y .
Given the greater information, it is immediate that η∗Y ≤ η∗, with η∗ defined in Prop. 5.1.1.
In fact, the two are identical.

Proposition 5.1.2. If NCond holds, then the optimal average cost exists as a deterministic
constant, independent of initial conditions, for either MDP X or Y . Moreover, the average
costs are equal: η∗Y = η∗.

5.2 Optimality results for specific graphs

For simplicity, in this section we assume independence between demand and supply arrivals.
The demand item arrives to the queue di with probability αi and the supply item arrives to
the queue sj with probability βj , i.e:

∀(i, j) ∈ A P(A(n) = e(i,j)) = αiβj > 0

with
∑nD

i=1 αi = 1,
∑nS

j=1 βj = 1 and where A = D × S, e(i,j) = edi + esj and ek ∈ NnD+nS is
the vector of all zeros except in the k-th coordinate where it is equal to one, k ∈ D ∪ S. We
assume that the αi and βj are chosen such that the arrival distribution satisfies the necessary
and sufficient conditions for stabilizability of the MDP model: Ncond given by (5.10), i.e
∀D ( D, ∀S ( S: ∑

di∈D
αi <

∑
sj∈S(D)

βj and
∑
sj∈S

βj <
∑

di∈D(S)

αi. (5.13)

As A(t) are i.i.d., to ease the notation from now on, we denote by A a random variable
with the same distribution as A(1). For a given function v, Y (t) = (q, a), x = q+a, u ∈ U�(x),
we define:

Tuv(q, a) = c(q, a) + E[v(q + a− u,A)] = c(x) + E[v(x− u,A)]

Tv(q, a) = c(q, a) + min
u∈Ux

E[v(q + a− u,A)] = c(x) + min
u∈Ux

E[v(x− u,A)]

A solution of the average cost problem can be obtained as a solution of the Bellman fixed
point equation η∗Y + v = Tv.

We say that a value function v or a decision rule u is structured if it satisfies a special
property, such as being increasing, decreasing or convex. Throughout this section, by in-
creasing we mean nondecreasing and we will use strictly increasing for increasing. A policy
is called structured when it only uses structured decision rules.
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We use property preservation framework for the dynamic programming operator T . First,
we identify a set of structured value functions V σ and a set of structured deterministic Marko-
vian decision rules Dσ such that if the value function belongs to V σ an optimal decision rule
belongs to Dσ. Then, we show that the properties of V σ are preserved by the Dynamic Pro-
gramming operator and that they hold in the limit. This framework is described in [118]. In
particular, we use in our analysis [118, Theorem 6.11.3], and its variant [76, Theorem 1], for
the discounted cost case and [118, Theorem 8.11.1] for the average cost case.

Assumption 1. The cost function c is a nonnegative function with the same structured
properties as the value function, i.e c ∈ V σ.

All bipartite and connected graphs of at most 4 nodes, except the N -shaped graph that
will be studied in Section 5.2.1, are complete, i.e E = D × S. Without loss of generality, we
can focus on the matching graphs such that there are more demand nodes than supply nodes,
i.e nD ≥ nS (see Figure 5.2).

s1

d1

1

1

s1

d1 d2

α1 α2

1

s1

d1 d2 d3

α1 α2 α3

1

s1 s2

d1 d2

β1 β2

α1 α2

Figure 5.2: Bipartite and connected matching graphs of at most 4 nodes (except the N -shaped
matching graph).

For these matching graphs, the stabilizability conditions are 0 < αi < 1 for i ∈ {1, 2, 3}
and 0 < βj < 1 for j ∈ {1, 2}. The optimal policy for complete graphs is very intuitive. We
can empty the system from any state and because we only consider costs on the number of
items at each node and not rewards on which edge we match, it does not matter how do we
empty the system. However, leaving some items in the system will only increase the total
cost in the long run. Thus, in complete graphs it is optimal to match all compatible items
(i.e. any greedy policy is optimal).

5.2.1 N-model

The first model where difficulties arise is the N -shaped graph in Figure 5.3). For this graph,
we have D = {d1, d2}, S = {s1, s2} and E = {(1, 1), (1, 2), (2, 2)}. Let us also define (2, 1) as
the imaginary edge between d2 and s1 (imaginary because (2, 1) /∈ E) that we introduce to
ease the notations. To ensure stability, we assume that α > β.

We will show that the optimal policy for this case has a specific structure. For this
purpose, we first present the properties of the value function. Then, we show how these
properties characterize the optimal decision rule and how they are preserved by the dynamic
programming operator. Finally, we state the main result in Theorem 5.2.3.
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s1 s2

d1 d2

β 1− β

α 1− α

Figure 5.3: The N -shaped matching graph.

Value Function Properties

Definition 5.2.1 (Increasing property). Let (i, j) ∈ E. We say that a function v is increasing
in (i, j) or v ∈ I(i,j) if

∀a ∈ A, ∀q ∈ Q, v(q + e(i,j), a) ≥ v(q, a).

We also note I = ∪(i,j)∈EI(i,j).

We will use the increasing property in (1, 1) and (2, 2). We also define an increasing
property in the imaginary edge (2, 1) using the same definition as in Definition 5.2.1 (even if
(2, 1) /∈ E) that we will note I(2,1).

Remark 2. The increasing property in (2, 1) can be interpreted as the fact that we prefer to
match (1, 1) and (2, 2) rather than to match (1, 2). Indeed, v(q + e(1,1) + e(2,2) − e(1,2), a) =
v(q + e(2,1), a) ≥ v(q, a).

We also define the convexity in (1, 2) and (2, 1) as follows:

Definition 5.2.2 (Convexity property). A function v is convex in (1, 2) or v ∈ C(1,2) if
v(q + e(1,2), a) − v(q, a) is increasing in (1, 2), i.e., ∀a ∈ A, ∀q ∈ Q such that qd1 ≥ qs1, we
have

v(q + 2e(1,2), a)− v(q + e(1,2), a) ≥ v(q + e(1,2), a)− v(q, a).

Likewise, v is convex in (2, 1) or v ∈ C(2,1) if v(q + e(2,1), a) − v(q, a) is increasing in (2, 1),
i.e., ∀a ∈ A, ∀q ∈ Q such that qs1 ≥ qd1, we have

v(q + 2e(2,1), a)− v(q + e(2,1), a) ≥ v(q + e(2,1), a)− v(q, a).

Definition 5.2.3 (Boundary property). A function v ∈ B if

∀a ∈ A, v(0, a)− v(e(2,1), a) ≤ v(e(1,2), a)− v(0, a).

As we will show in Proposition 5.2.2, the properties I(1,1), I(2,2), I(2,1) and C(1,2) charac-
terize the optimal decision rule. On the other hand, C(2,1) and B are required to show that
C(1,2) is preserved by the operator T .

We will consider the following set of structured value functions

V σ = I(1,1) ∩ I(2,2) ∩ I(2,1) ∩ C(1,2) ∩ C(2,1) ∩ B. (5.14)

We show that the properties of the value function are preserved by the dynamic program-
ming operator. In other words, we show that if v ∈ V σ, then Tv ∈ V σ.
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Optimal decision rule

In this section, we show that, for any v ∈ V σ, there is a control of threshold-type in (1, 2)
with priority to (1, 1) and (2, 2) that minimizes Tuv.

Definition 5.2.4 (Threshold-type decision rule). A decision rule ux is said to be of threshold
type in (1, 2) with priority to (1, 1) and (2, 2) if:

1. it matches all of (1, 1) and (2, 2).

2. it matches (1, 2) only if the remaining items (in d1 and s2) are above a specific threshold,
denoted by t (with t ∈ N ∪∞).

i.e, ux = min(xd1 , xs1)e(1,1) + min(xd2 , xs2)e(2,2) + kt(x)e(1,2) where

kt(x) =

ß
0 if xd1 − xs1 ≤ t
xd1 − xs1 − t otherwise

.

We define Dσ as the set of decision rules that are of threshold type in (1, 2) with priority
to (1, 1) and (2, 2) for any t ∈ N ∪∞.

If t =∞, the decision rule will never match (1, 2). Otherwise, the decision rule will match
(1, 2) until the remaining items in d1 and s2 are below or equal to the threshold t.

In the next proposition, we establish that there exists an optimal decision rule with priority
to (1, 1) and (2, 2).

Proposition 5.2.1. Let v ∈ I(1,1) ∩ I(2,2) ∩ I(2,1), let 0 ≤ θ ≤ 1. For any q ∈ Q and a ∈ A,
x = q + a, there exists u∗ ∈ Ux such that u∗ ∈ arg minu∈Ux Tuv(q, a), u∗(1,1) = min(xd1 , xs1)

and u∗(2,2) = min(xd2 , xs2).

From this result, it follows that there exists an optimal decision rule that matches all
possible (1, 1) and (2, 2). Our goal now is to find the optimal number of matchings in (1, 2).
We introduce first some notation:

Definition 5.2.5. Let x ∈ Q. We define:

Kx =

ß {0} if xd1 ≤ xs1
{0, · · · ,min(xd1 − xs1 , xs2 − xd2)} otherwise

the set of possible matching in (1, 2) after having matched all possible (1, 1) and (2, 2).

Remark 3. The state of the system after having matched all possible (1, 1) and (2, 2) is of
the form (0, l, l, 0) if xd1 ≤ xs1 and of the form (l, 0, 0, l) otherwise (because of the definition
of Q and Ux).

Finally, we prove that a decision rule of threshold type in (1, 2) with priority to (1, 1) and
(2, 2) is optimal. This is done by choosing the right t for different cases such that kt(x) is the
optimal number of matchings in (1, 2) for a given x.

Proposition 5.2.2. Let v ∈ I(1,1) ∩ I(2,2) ∩ I(2,1) ∩ C(1,2). For any q ∈ Q and for any a ∈ A,
x = q + a, there exists u∗ ∈ Dσ (see Definition 5.2.4) such that u∗ ∈ arg minu∈Ux Tuv(q, a).
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Structure of the optimal policy

The following theorem shows that there exists an optimal stationary Markovian matching
policy which is formed of a sequence of decision rules that belong to Dσ (with a fixed thresh-
old).

Theorem 5.2.3. An optimal control for the average cost problem is of threshold type in (1, 2)
with priority to (1, 1) and (2, 2).

Computing the optimal threshold

We consider the matching policy of threshold type in (1, 2) with priority to (1, 1) and (2, 2)
in the average cost case.

Proposition 5.2.4. Let ρ = β(1−α)
α(1−β) ∈ (0, 1), R =

cs1+cd2
cd1+cs2

and ΠT(1,2) be the set of matching

policy of threshold type in (1, 2) with priority to (1, 1) and (2, 2). Assume that the cost function
is a linear function. The optimal threshold t∗, which minimizes the average cost on ΠT(1,2), is

t∗ =

ß dke if f(dke) ≤ f(bkc)
bkc otherwise

where k =
log ρ−1

(R+1) log ρ

log ρ −1 and f(x) = (cd1 +cs2)x+(cd1 +cd2 +cs1 +cs2)ρ
x+1

1−ρ −(cd1 +cs2) ρ
1−ρ +

((cd1 + cs1)αβ + (cd2 + cs2)(1− α)(1− β) + (cd2 + cs1)(1− α)β + (cd1 + cs2)α(1− β)).

Quasi-complete graphs

Further results for specific graphs are obtained in [J5]. We show that, under some assumptions
on the costs of the nodes, this threshold-based structure of the optimal matching policy
extends to quasi-complete graphs (i.e. complete graphs minus one edge).

5.2.2 Acyclic graphs

In Section 5.2.1, we fully characterized the optimal matching control of the N -shaped match-
ing graph, which is an acyclic graph. In this section, we study the optimal matching control
of an arbitrary acyclic matching graph. We show that, under certain assumptions on the
costs of the nodes, the optimal matching policy consists of prioritizing the matching of the
pendant edges.

For an acyclic matching graph, we say that (i, j) is an pendant edge if the unique adjacent
node of di is sj or if the unique adjacent node of sj is di. We denote by E∗ the set of pendant
edges. We say that an edge (i1, j1) belongs to the neighborhood of an edge (i2, j2) if i1 = i2
or j1 = j2. We denote by N((i, j)) the neighborhood of an edge (i, j).

We assume that the neighborhood of all the edges is not empty, i.e., the matching graph
is connected, and that in the neighborhood of a pendant edge there are no pendant edges.
An example is provided in Figure 5.4. The set of pendant edges is E∗ = {(1, 1), (3, 3), (6, 5)}
and the neighborhood of (1, 1) is N((1, 1)) = {(1, 2)}, whereas that of (3, 3) is N((3, 3)) =
{(2, 3), (4, 3)}.
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s1 s2 s3 s4 s5

d1 d2 d3 d4 d5 d6

β1 β2 β3

α1 α2 α3

β4 β5

α4 α5 α6

Figure 5.4: An example of an acyclic matching graph.

Optimal decision rule

Definition 5.2.6 (Prioritizing the pendant edges). We say that a matching policy prioritizes
the pendant edges if it matches all the items in the pendant edges. This means that, for all
(i, j) ∈ E∗, u(i,j) = min(xdi , xsj ).

We consider that Dσ is the decision rule that prioritizes the pendant edges.

Proposition 5.2.5. Let a ∈ A, q ∈ Q, x = q + a, v ∈ V σ. There exists u∗ ∈ Ux such that
u∗ ∈ arg minu∈Ux Tuv(q, a) and u∗(i,j) = min(xdi , xsj ) for all (i, j) ∈ E∗.

Structure of the optimal policy

Theorem 5.2.6. The optimal control for the average cost problem prioritizes the pendant
edges.

For the above results, we have assumed that the pendant edges do not have other pendant
edges in their neighborhoods. We now explain how the results of this section also hold when in
the neighborhood of an pendant edge there are other pendant edges. An example the matching
models we now study consists of the matching graph of Figure 5.4 with an additional demand
node d7 and an edge (7, 5).

If the cost of the pendant edges that are neighbors is the same, these edges can be
merged and seen as a single edge whose arrival probability is equal to the sum of their
arrival probabilities. Otherwise, using similar arguments it can be shown that the optimal
policy prioritizes the most expensive pendant edges.

5.3 Approximate optimality with bounded regret

We will restrict here additionally the input space to be finite, and use:

U� =
{
u =

∑
e∈E

neu
e : ne ∈ Z+, |n| ≤ nu

}
(5.15)

where |n| = ∑
ne, and nu ≥ 1 is a fixed integer. The integer nu must be chosen sufficiently

large to ensure stabilizability of the network. This constraint on the input is imposed only
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to simplify Taylor series approximations used to obtain performance bounds. It is assumed
henceforth that nu ≥ 4, to ensure the feasibility of the randomized policies used in the proof
of Theorem 5.3.6.

5.3.1 h-MaxWeight policies

For a differentiable function h : R`+ → R+, the is exactly of the form (5.48):

φ(x) = arg max{u · ∇h (x) : u ∈ U�(x)}, x ∈ X� (5.16)

Here we present initial motivation, and conditions for stability.

Recall that the main goal of this paper is to approximation the solution to the average
cost optimal control problem, in which c : R`+ → R+ is linear: c(x) = c · x for some vector
c with strictly positive entries. That is, we search for a stationary policy φ for which the
average cost is approximately equal to the optimal value η∗ defined in Prop. 5.1.1.

The approximately optimal policy introduced in Section 5.3.4 is a variation of h-MW,
with a particular choice of the function h; it is denoted c̃, and defined as follows. For a fixed
constant β > 0, let x̃ denote the function of x with entries,

x̃k = xk + β(e−xk/β − 1) , xk ∈ R+ (5.17)

The right hand side vanishes at xk = 0, as does its first derivative. The constant β is chosen
so that its derivative with respect to xk is small for xk within some neighborhood of the
origin. We then define

c̃(x) := c(x̃) , x ∈ X� (5.18)

The motivation for the perturbation is that the resulting function satisfies the following
zero-marginal cost property: with h = c̃,

∂

∂xk
h(x) = 0 if xk = 0 (5.19)

This eliminates boundary effects in Lyapunov function stability analysis. It also indirectly
provides safety-stocks when using the c̃-MW policy (an example is provided for a scheduling
model in Fig. 3 of [105]).

The c̃-MW policy is similar to the original MW policy if β is large, since the function c̃ is
approximately quadratic. This is seen through the second order Taylor series expansion

e−xk/β = 1− xk/β + 1
2(xk/β)2 +O

(
(xk/β)3e−xk/β

)
, β ∼ ∞ (5.20)

so that for large β,

β c̃(x) ≈ hc(x) :=
1

2

∑̀
k=1

ckx
2
k (5.21)

A stationary policy U(t) = φ(X(t)) is said to be stabilizing if the resulting Markov chain
X is positive recurrent. It is shown in [24] From Chapter 3 it follows that the hc-MW policy is
stabilizing under NCond. The c̃-MW policy is known to be stabilizing for a class of scheduling
models, provided β > 0 is chosen sufficiently large (see [105, Section 2.2.1]). This result is
extended to the matching model in Section 5.3.1.
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Why we need perturbation

When the function h is linear, h(x) = c · x, then the h-MW policy reduces to the priority
policy:

φc(x) = arg max{c · u : u ∈ U�(x)} (5.22)

where U�(x) is the permissible input set defined in (5.6).
Consider for example the NN model shown in Fig. 5.1, with cost function

c(x) = (xD1 + xS3) + 2(xD2 + xS2) + 4(xD3 + xS1)

The resulting c-MW policy gives priority to “vertical edges”. This is precisely the example
discussed in Chapter 3 for which an arrival process can be constructed such that NCond holds,
yet the resulting Markov chain X is transient. It is likely that the c̃-MW policy will also give
rise to a transient Markov chain for β > 0 sufficiently small.

Stability of the c̃-MW policy

A sufficient condition for stability requires the following lower bound on the parameter β:

β >
1

γ

cmax

cmin

[
2‖α‖2 +m2

A +m2
U

]
(5.23)

where cmin = mini ci, cmax = maxi ci, m
2
A = E[‖A(t)‖2], m2

U = max{‖u‖2 : u ∈ U�}, and
γ = 1

|E| mink∈D∪S αk.

Proposition 5.3.1. Suppose that NCond holds, and that β satisfies the bound (5.23). Then
the c̃-MW policy is stabilizing, and the controlled Markov chain X is geometrically ergodic.

5.3.2 Workload

The monograph [109] presents a general theory of workload based on a fluid model, which is
taken of the general form

d
dtx(t) = Bζ(t) + α

where α is the arrival rate, ζ(t) is a vector of “activity rates”, and B is a matrix of suitable
dimension. The fluid model is intended to describe the average behavior of (5.4) over a
long time horizon, which leads to the following definitions for the matching model: the state
process is constrained exactly as in the MDP model: x(t) ∈ X = {x ∈ R`+ : ξ0 · x = 0}. We
take B the matrix consistent with (5.15):

B = −[u1 | · · · | u|E|]

That is, the columns of −B are equal to the single matches {ue} defined below (5.15). The

input is constrained to the non-negative orthant: ζ(t) ∈ R|E|+ (the upper bound nu is relaxed).
A geometric description is given as follows. Denote by V0 the velocity space for the arrival

free model:

V0 = {v = Bζ : ζ ∈ R|E|+ } (5.24)

and V = {v + α : v ∈ V0}. The fluid model is then described by the differential inclusion,
d
dtx(t) ∈ V .
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It is evident that the set V0 is a cone with vertex equal to the origin. The Weyl-Minkowski
Theorem asserts that it is represented as the intersection of half spaces: there are vectors
{ξi : 1 ≤ i ≤ `w} ⊂ R` such that

V0 = {v : ξi · v ≥ 0 : 1 ≤ i ≤ `w} (5.25)

This geometry is illustrated in Fig. 5.5.

v2

v1

v2

v1
ξ2ξ1

α

V = {V0V0 + α}

Figure 5.5: Velocity sets for a matching model: V0 is a cone, and V is an affine translation.

The minimal draining time is defined as follows: for x ∈ X,

T ∗(x) = inf{t ≥ 0 : x+ tv = 0, v ∈ V }

The following result follows exactly as in the proof of eq. (6.13) of [109, Prop. 6.1.3].

Proposition 5.3.2. Suppose that NCond holds. Then T ∗(x) < ∞ for each x ∈ X, and has
the following representation: If ξi · x ≤ 0 for each i, then T ∗(x) = 0. Otherwise,

T ∗(x) = max
i

x · ξi
|α · ξi| (5.26)

The next step is to identify the workload vectors. For any set D ( D we let ξD ∈ R`
denote the vector whose components are 1 for i ∈ D, −1 for i ∈ S(D), and zero elsewhere.

Proposition 5.3.3. The representation (5.25) holds with

{ξi} = {ξD : D ⊂ D} ∪ {−1j : j ∈ D ∪ S}

We could introduce symmetric notation for S ⊂ S, but this is unnecessary: for each
S ( S, denote Ŝ = ∪{S′ : D(S′) = D(S)}. By definition of Ŝ and the connectivity of the
graph, S(D(S)c) = Ŝc. Thus, with D̄ = D(S)c,

ξS ≤ ξŜ = ξD̄ − ξ0.

Moreover, by (5.24) we have v · ξ0 = 0, and also vi ≤ 0 for each i for any v ∈ V0, giving

v · ξS ≥ v · ξD̄ ≥ 0 , v ∈ V0

Consequently, it is sufficient to consider only demand in a representation of V0.
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Based on this geometry and on Prop. 5.3.2, we see that the vectors {ξD} play a role
similar to workload vectors in standard queueing models. Moreover, condition NCond can be
equivalently expressed,

δ(D) :=−ξD · α > 0, for all D ( D

which means that −α is in the interior of V0: a typical example is shown in Fig. 5.5. A heavily
loaded system is one in which δ(D) is very close to zero for one or more sets D ( D.

We can now define a workload process. For a particular set D ( D we take W (t) =
ξD ·X(t), and δ = δ(D).

Proposition 5.3.4. The workload process evolves according to the recursion,

W (t+ 1) = W (t)− δ + I(t) +N(t+ 1), t ≥ 0, (5.27)

in which δ > 0, N(t+ 1) = δ + ξD ·A(t+ 1), and I(t) = −ξD · U(t).

(i) I(t) takes values in the non-negative integers Z+, and is zero if and only if there is no
matching between S(D) and Dc at time t.

(ii) The sequence N is zero-mean, i.i.d., and takes values in {−1 + δ, δ, 1 + δ}.
(iii) The first and second order statistics are represented as follows:

δ = p−N − p+
N

σ2
N = p−N + p+

N − δ2
(5.28)

in which p+
N = P{ξTA(t) = 1} and p−N = P{ξTA(t) = −1}.

Given a convex cost function c : R`+ → R+, the effective cost is defined as the solution to
the convex program,

c(w) := min{c(x) : x ∈ R`+, ξD · x = w , ξ0 · x = 0}, w ∈ R (5.29)

An optimizer is called an effective state. We denote by X ∗ a continuous function, and satis-
fying

X ∗(w) ∈ arg min
x∈R`+

{c(x) : ξD · x = w , ξ0 · x = 0}, w ∈ R (5.30)

It is assumed throughout most of the paper that c : R`+ → R+ is a linear function of the
state, c(x) =

∑
cixi, with ci > 0 for each i. It follows that c is piecewise linear.

Lemma 5.3.5. For a linear cost function c, the solution to the linear program (5.29) results
in a piecewise linear function of w:

c(w) = max(c+w,−c−w) (5.31)

where c+ = cD+ + cS+ and c− = cD− + cS−, with

cD+ = min{ci : i ∈ D} , cS+ = min{cj : j ∈ Sc}
cS− = min{cj : j ∈ S} , cD− = min{ci : i ∈ Dc}

(5.32)
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An optimizer x∗ for (5.29) exists in which exactly two entries are non-zero. The form depends
on the sign of w:

w ≥ 0 : x∗i = w for some i ∈ D satisfying ci = cD+,

x∗j = w for some j ∈ Sc satisfying cj = cS+.

w < 0 : x∗i = |w| for some i ∈ Dc satisfying ci = cD−,

x∗j = |w| for some j ∈ S satisfying cj = cS−.

(5.33)

We henceforth assume that x∗ = X ∗(w) is of the form (5.33) for a fixed pair of indices
i, j.

The workload relaxation is an MDP model, described as a one-dimensional controlled
random walk, defined on the same probability space, and evolves as,

Ŵ (t+ 1) = Ŵ (t)− δ + Î(t) +N(t+ 1), t ≥ 0, (5.34)

in which Ŵ (0) ∈ R is given, and N is an i.i.d. sequence in R with zero mean. The process Î(t)

is interpreted as the input for this MDP model: it is adapted to”W and takes on non-negative
values. The controlled random walk (5.34) with cost function c is thus a relaxation of the
original MDP model.

The controlled random walk (5.34) is considered in [109, Sec. 7.4 and Sec. 9.7]: In [109,
Theorem 9.7.2] it is shown that an optimal policy is determined by a threshold policy of the
following form: There is a scalar τ• > 0 so that

Î(t) = max{Ŵ (t)− τ•, 0} (5.35)

Under this policy, the stochastic process {Φ(t) = Ŵ (t)−N(t) + δ} is a reflected random walk
on [−τ•,∞). Equation (7.37) of [109] defines the diffusion heuristic, intended to approximate
this threshold based on a reflected-Brownian motion model, giving

τ∗ = 1
2

σ2
N

δ
log
(

1 +
c+

c−

)
(5.36)

where δ and σ2
N are given in (5.28). The approximation |τ• − τ∗| = O(1), independent of δ,

is established.

5.3.3 h-MaxWeight with threshold

The structure of the policy for the relaxation is the inspiration for the following refinement
of the h-MaxWeight policy in (5.48).

For a differentiable function h : R` → R+, and a threshold τ ≥ 0, the h-MWT (h-
MaxWeight with threshold) policy is obtained as the solution to the constrained non-linear
program,

φ(x) = arg max u · ∇h (x)

subject to u ∈ U�(x) and ξD · u ≥ min(w + τ, 0)
(5.37)
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Based on the definition of workload and idleness (5.27), the constraint ξD · u ≥ min(w+ τ, 0)
is equivalently expressed

I(t) ≤ max(−W (t)− τ, 0), when X(t) = x and U(t) = u.

This constraint is motivated by the definition of a threshold policy (5.35) for the workload
relaxation.

We take τ = τ∗ in our main results, and the function h (see (5.46)) is also designed using
inspiration from the workload relaxation.

The choice of h = c̃, as defined in (5.18), will also be considered in numerical experiments
in Section 8.3.

5.3.4 Asymptotic optimality

To evaluate performance we consider an asymptotic setting: Assume that we have a family
of arrival processes {Aδ(t)} parameterized by δ ∈ [0, δ̄•], where δ̄• ∈ (0, 1). Each is assumed
to satisfy (5.2). The following additional assumptions are imposed throughout:

(A1) For one set D ( D we have ξD · αδ = −δ, where αδ denotes the mean of Aδ(t).

Moreover, there is a fixed constant δ > 0 such that ξD
′ · αδ ≤ −δ for any D′ ( D, D′ 6= D,

and δ ∈ [0, δ̄•].

(A2) The distributions are continuous at δ = 0, with linear rate: For some constant b,

E[‖Aδ(t)−A0(t)‖] ≤ bδ. (5.38)

(A3) The sets E and A do not depend upon δ, and the graph associated with E is connected.
Moreover, there exists i0 ∈ S(D), j0 ∈ Dc, and pI > 0 such that

P{Aδi0(t) ≥ 1 and Aδj0(t) ≥ 1} ≥ pI , 0 ≤ δ ≤ δ̄•. (5.39)

We suppress the dependency of A,Q,U on δ when there is no risk of confusion. We also let
ξ = ξD, so that δ = −ξ · α.

We are now prepared to state the main result this section, establishing asymptotic opti-
mality of a family of h-MWT policies. We let η∗ denote the optimal average cost for the
MDP model, η̂∗ the optimal average cost for (5.34), and the following is shown to approximate
each of these values:

η̂∗∗ = τ∗c− = 1
2

σ2
∆

δ
c− log

(
1 +

c+

c−

)
(5.40)

Theorem 5.3.6 (Asymptotic Optimality With Bounded Regret). Suppose that Assumptions
(A1)–(A3) hold. For each δ ∈ (0, δ̄•], there is a function h such that the h-MWT policy using
the threshold τ∗ has finite average cost η, satisfying the following bounds,

η̂∗ ≤ η∗ ≤ η ≤ η̂∗ +O(1)

where the constant O(1) does not depend upon δ. Moreover, the average cost for the relaxation
is approximated by the value in (6.11):

η̂∗ = η̂∗∗ +O(1)



92 CHAPTER 5. OPTIMAL CONTROL IN BIPARTITE STOCHASTIC MATCHING

Construction of the h-MWT policy. The ACOE for the MDP model is

min
u∈U�

E[c(X(t)) + h∗(X(t+ 1)) | X(t) = x , U(t) = u] = h∗(x) + η∗, x ∈ X�, (5.41)

in which η∗ is the optimal average cost, and h∗ is the relative value function. The approxi-
mation is taken as the sum of two terms:

h(x) = ĥ(ξ · x) + hc(x)

Similar to [105], the function hc is introduced to penalize deviations between c(x) and c(ξ ·x).
The first term is a function of workload: it solves for w ≥ −τ∗ the differential equation,

−δĥ′ (w) + 1
2σ

2
∆ĥ
′′ (w) = −c(w) + η̂∗∗, (5.42)

where the threshold τ∗ is defined in (5.36), and the optimal average cost η̂∗∗ is given in (6.11).
There is a solution that is convex and increasing on [−τ∗,∞), with ĥ′(−τ∗) = ĥ′′(−τ∗) = 0:

ĥ(w) =

A+w
2 +B+w w ≥ 0

A−w2 +B−w + C− +D−eΘw −τ∗ ≤ w ≤ 0
(5.43)

where Θ−1 = σ2
∆/(2δ), A+ = c+/(2δ), B+ = δ−1

(
σ2

∆A+ − η̂∗∗
)
, A− = −c−/(Θσ2

∆), B− =
2Θ−1A−−δ−1η̂∗∗, D− = Θ−1

(
B+−B−

)
. The constant C− is obtained by imposing continuity

at zero.
The domain is extended to obtain a convex, C2 function on all of R. We fix a parameter

δ+ ∈ (0, pI), where pI > 0 is used in Assumption (A3). The sum δ + δ+ is interpreted as the
desired idleness rate when w < −τ∗. Fix another constant θ > 0, and for w < −τ∗ define

ĥ(w) = ĥ(−τ∗) +
c−
δ+

[
1
2(w + τ∗)2 +

1

θ
(w + τ∗) +

1

θ2

(
1− exp(θ(w + τ∗))

)]
(5.44)

where ĥ(−τ∗) is given in (5.43).
We now turn to the construction of hc. For this we might take a constant times [c(x) −

c(ξ · x)]2. This fails because of positive drift on the boundary of X�.
Let x̃ denote the function of x with entries, x̃k = xk + β(e−xk/β − 1), where β > 0 is a

constant. The right hand side vanishes at the origin, as does its first derivative. The constant
β is chosen so that its derivative with respect to xk is small for xk in some interval [0, q].

A similar transformation for workload is used,

w̃ = sign(w)
[
|w|+ β(e−|w|/β − 1)

]
(5.45)

If w = ξ · x then the definition does not change, but w̃ is of course a function of x; the
perturbation ensures that c(w̃) is C1 as a function of x.

The second term is defined to be hc(x) = [c(x) − c(w)]2; the function h and its gradient
are thus

h(x) = ĥ(w) + hc(x) = ĥ(w) + κ[c(x̃)− c(w̃)]2 (5.46)

∇h (x) = ĥ′(w)ξ +∇hc(x) , x ∈ R`+, w = ξ · x. (5.47)
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Figure 5.6: The plots on the left hand side compare the average cost for T ≤ 106, obtained using
h-MWT, c̃-MWT, MaxWeight (given by (5.48) with h(x) =

∑
cix

2
i ), and a priority policy. Shown on

the right is the average cost at T = 105 for the two MWT policies in which the threshold τ was taken
as a parameter.

5.3.5 Numerical experiments

Numerical experiments were performed for the NN-network from Figure 5.1, for various cost
functions and arrival statistics. Results from one experiment are summarized here. The
parameters were chosen so that the set that defines maximal workload was D = {3D}. The
value δ = −ξTα was smaller than −ξD′ · α for any other set D′ ( D. The cost was taken to
be c(x) = xD1 + 2xD2 + 3xD3 + 3xS1 + 2xS2 + xS3 . Numerical values were chosen so that δ = 0.01.

Four policies were considered: two versions of the h-MWT policy (5.37), one with h given
in (5.46) and the other with h(x) = c(x̃)2; the static policy giving priority to vertical matches
(edges e1, e3 and e5 in Fig. 5.1); the cost-weighted MaxWeight policy:

φ(x) = arg max{u · ∇h (x) : u ∈ U�(x)}, x ∈ X�, (5.48)

with h(x) =
∑
cix

2
i .

A comparison of the average cost T−1
∑T

t=1 c(Q(t)) is shown on the left hand side of
Fig. 5.6. The average cost under either of the MWT policies (using the τ = τ∗) performed
the best – about 30% lower than the cost-weighted MaxWeight policy.

The figure on the right hand side shows the average cost for T = 105 obtained for the two
MWT policies for a range of threshold values τ . It is clear that the best value of τ obtained
through simulation is very close to the value τ∗ predicted by the RBM model.

It is conjectured that c(x̃)-MWT is also asymptotically optimal.

5.4 Discussion and related results

In this chapter we considered bipartite matching graphs with linear costs in the buffer size.
We model this problem as a Markov decision problem for the average cost problem.

In Section 5.2, we fully characterize the optimal policy for the N -shaped matching graph.
We show that there exists an optimal policy that is of threshold type for the diagonal edge with
priority to the pendant edges of the matching graph. We also fully characterize the optimal
threshold value. Under some assumptions in the costs of the nodes, this threshold-based
structure of the optimal matching policy extends to quasi-complete graphs (i.e. complete
graphs minus one edge). In an arbitrary acyclic graph, we show that, when the cost of the
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pendant nodes is larger or equal than the cost of its neighbors, the optimal policy always
gives priority to the pendant edges. In [J5] we also provide similar optimality results for the
discounted cost problem, and we discuss the W -shaped matching model. We conjecture that
the optimal matching policy for the W -model is also of threshold type with priority to the
extreme edges when the cost of the extreme nodes is higher that the one of other nodes.

In Section 5.3, we have shown how relaxation techniques can lead to insight for the con-
struction of good policies with low complexity. The key argument is a correspondence with
models in inventory theory.

Many of the results in [109] on workload relaxations are based on stabilizability of the
arrival-free model. That is, it is assumed that the network without arrivals can be stabilized
using some policy. This assumption fails for matching models. Consider the case of organ
donation (e.g. [1]): if there is a patient waiting for a kidney, and no donors arrive, then the
patient will wait for eternity. Nevertheless, there is a natural formulation of workload for
these models, described in Section 5.3.2. Each component of the multi-dimensional workload
process can take on positive and negative values, much like what is found in inventory models.
It is found that optimal policies will have structure similar to what is found in inventory theory,
such as the classical work of Clark and Scarf [45]. In particular, based on a one-dimensional
relaxation, an approximating model is obtained that can be identified as an inventory model
of a special form, so that an optimal policy for the relaxation is obtained via a one-dimensional
threshold policy. We introduced a class of policies that take into account the structure found
in the optimal policy for a workload relaxation, leading to the h-MaxWeight with threshold
policy, or h-MWT. This policy is greedy subject to a non-idling constraint whenever the
workload is above a pre-determined threshold. The non-idling constraint is relaxed when the
workload is below this threshold. It is demonstrated that this simple policy is approximately
optimal, in the sense of Theorem 5.3.6, so that the regret is bounded as a function of network
load.

These conclusions imply that optimal policies do not follow the conventions of Section 3.
Optimal policies may perform no matches at certain time instances, even though matches are
possible.

Although the theoretical results are based on a heavy-traffic setting, we expect that this
structure will play some role even when the assumptions of this work are violated.

The conclusion of Theorem 5.3.6 and the analysis used are different from the prior work
[105] or [70, 82]. The paper [105] is most similar, in which the main result is a logarithmic
bound on regret in heavy-traffic. This is a weaker conclusion compared to our result, but
the main difference is an entirely different mode of analysis. The proof of optimality in
[105, 70, 82] relies on the simplicity of the optimal solution, which is approximately path-
wise minimal in heavy-traffic. The proof of logarithmic regret amounts to quantifying this
approximation. The proof of bounded regret in our work is based on “lifting” the dynamic
programming equations from a diffusion approximation to the original stochastic network.
This diffusion approximation is entirely different than encountered in this prior work.

The prior work [66] considers a general class of matching models, with performance anal-
ysis based on an asymptotic heavy-traffic setting. The conclusions are very different because
of the different assumptions imposed on the network model: when specialized to connected
bipartite graphs, their Assumption 1 implies that bipartite graph reduces to a star network.

The matching graphs considered in [66] allow more general topologies, including certain
hypergraphs. Assumption 1 is useful in their analysis because it is then possible to establish
a form of path-wise optimality for the workload model under a particular policy (as in [105,
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70, 82]). This is not possible for the models considered in the present paper because the
workload process takes on positive and negative values: an average-cost optimal policy has
a threshold form, which is inconsistent with path-wise optimality (see Section 5.5 of [109]
for further discussion). A related average reward maximization problem has been considered
in [112]. An extension of the greedy primal-dual algorithm was developed and proved to be
asymptotically optimal for the long-term average matching reward. However their results do
no longer hold if there is a cost function on the queue sizes.
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Chapter 6

Balancing the power grid with
flexible loads

The power system transformation brings new challenges and opportunities due to changes and
uncertainties in electricity consumption and generation. In power networks, it is necessary
that the electricity production is equal to the demand at all times. In addition to ensuring
sufficient electricity production, there is also a need for flexible resources that can quickly
adapt their production / consumption to compensate for demand forecasting errors and ensure
real-time balancing between production and demand. This service is an example of the system
services (also called ancillary services) essential to the proper functioning of power grids.

Matching electricity supply and demand used to be relatively straightforward, with large
and controllable power plants on the one hand, and demand that was relatively easy to
predict on the other. Slowly ramping cheaper generators were committed in advance to
follow the predicted demand. The real time balancing was done by ramping up or down
the most responsive power plants, such as gas turbines or hydro, when available. They were
operating at lower capacity, leaving the possibility to ramp up or down their generation.
This was providing balancing reserves used to correct the forecasting errors and follow the
demand in real time. In recent years, there has been a significant increase in participation
of intermittent renewable generation. Balancing service from traditional power plants is
becoming very expensive due to the need to compensate for the missed opportunity cost the
power plants are facing while operating at a lower set-point to be able to ramp up and down
more aggressively than in the past. Providing new flexibility resources is crucial to integrate
renewable energies into the power grid. At the same time, the rapid development of ”smart
technologies” (e.g. Linky meter and the connected appliances) has opened new possibilities
for innovation on the demand side, as well as new control solutions on the grid level.

There is an enormous flexibility potential in the power consumption of the majority of
electric loads (e.g., thermal loads such as water heaters, air-conditioners and refrigerators;
electric vehicles, etc.). Their power consumption can be shifted in time to some extent without
any significant impact to the consumer needs. This flexibility can be exploited to create
“virtual batteries”. The best example of this is the heating, ventilation, and air conditioning
(HVAC) system of a building: There is no perceptible change to the indoor climate if the
airflow rate is increased by 10% for 20 minutes, and decreased by 10% for the next 20 minutes.
Power consumption deviations follow the airflow deviations closely, but indoor temperature
will be essentially constant.

97
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The major issue lies in the distributed nature of this flexibility resource: piloting the
flexible demand in real time requires a design of (simple) incentives for millions of devices.
Moreover, many residential devices are on-off (e.g. water-heater or air-conditioner). In order
to provide valuable balancing service, the aggregate must provide a predictable response. The
future power grids will contain millions of smart components, which completely prohibits cen-
tralized decision making using standard stochastic optimization techniques, such as stochastic
dynamic programming and Markov decision processes (MDP), as they do not scale well with
the number of different components in the system (both the state space and the control space
of the model grow exponentially with the number of components).

This part of the manuscript provides an overview of our probabilistic distributed control
approach for balancing the power grid using flexible loads. The proposed approach relies on
new smart technologies allowing for automatic control of devices. The objective is to control a
great amount of devices to provide services to the system (load shaping or ancillary services)
while: i) maintaining the quality of service for the users; ii) minimizing communications
between controllable devices and the central controller. The proposed approach combines
the techniques from the theory of controlled Markov processes, mean-field theory, and linear
control theory.

We start in Chapter 6 with an overview of our probabilistic distributed control approach
for an online tracking problem: The objective is to control the average consumption of a pop-
ulation of N devices to track the reference signal (Rt), which is progressively revealed by the
grid at discrete time steps t = 1, ..., T (online reference tracking problem). Through load-level
and grid-level control design, high-quality ancillary service for the grid is obtained without
impacting quality of service delivered to the consumer. This approach to grid regulation is
called demand dispatch: loads are providing service continuously and automatically, without
consumer interference.

One theoretical contribution will be presented more in detail in Chapter 7. It was moti-
vated by the need to extend the initial distributed control approach to include the randomness
that cannot be controlled (e.g. hot water usage or the weather conditions) [C41]. This lead
to a new ODE method for solving a parametrized family of Markov Decision Processes [J10].
Besides power applications, this new technique also has its potential applications in machine
learning and robotics [C33].

Demand dispatch has many advantages:

• minimal communication: a unique control signal is sent from the central entity to the
loads, without the communication from the loads to the centralized entity;

• local control design enables strict guarantees for the quality of service for the users;

• randomized control limits the synchronization of the response of the loads.

However, in this online reference tracking formulation of the problem, the target consump-
tion is revealed in real time (there is no anticipation of the target by probabilistic forecasts).
The fact of not allowing any anticipation of the target consumption does not make it possible
to fully integrate the constraints of the different devices in terms of energy consumed over a
given period. To overcome this limitation, we have proposed an offline reference tracking ap-
proach that takes into account a deterministic forecast of the target consumption over a period
of anticipation (e.g. day ahead) and solves directly the tracking problem at the population
level, formalized as a Kullback-Leibler-Quadratic (KLQ) optimal control problem in discrete



6.1. INTRODUCTION 99

[C20, C8, J1], or continuous time [C22]. This new Kullback-Leibler-Quadratic (KLQ) control
approach can be seen as a special case of a finite horizon stochastic optimal control problem
with the objective function that is composed of two terms: quadratic tracking error cost and
a relative entropy control cost that penalizes the deviation from the nominal behavior of the
load. An overview for the discrete time case is provided in Chapter 8.

This part is based on the following publications: [B2] (Chapter 6), [C33, J10] (Chapter
7), and [C8, J1] (Chapter 8).

6.1 Introduction

Inexpensive energy from the wind and the sun comes with unwanted volatility, such as ramps
with the setting sun or a gust of wind. Controllable generators manage supply-demand
balance of power today, but this is becoming increasingly costly with increasing penetration
of renewable energy. It has been argued since the 1980s that consumers should be put in
the loop: “demand response” will help to create needed supply-demand balance. However,
consumers use power for a reason, and expect that the quality of service (QoS) they receive
will lie within reasonable bounds. For example, the temperature in a building or refrigerator
must lie within strict bounds. Moreover, the behavior of some consumers is unpredictable,
while the grid operator requires predictable controllable resources to maintain reliability.
The goal of this chapter is to describe distributed control solutions for demand dispatch that
will create virtual energy storage from flexible loads. By design, the grid-level services from
flexible loads will be as controllable and predictable as a generator or fleet of batteries. Strict
bounds on QoS will be maintained in all cases. The potential economic impact of these new
resources is enormous. California spends billions of dollars on batteries that provide only a
small fraction of the balancing services that could be obtained using demand dispatch. The
potential impact on society is enormous: a sustainable energy future is possible with the right
mix of infrastructure and control systems.

Supply-demand balance in a power grid. As more wind and solar energy come online,
the system operators who run the power grid are faced with a problem: how do they compen-
sate for the variable nature of renewable energy resources? The control systems diagram in
Fig. 6.1 provides a simple view of how the grid is operated today, in which wind and solar are
viewed as sources of disturbances. In North America, the GRID block is in fact a subset of
the grid called a balancing region. The block denoted Compensation represents a balancing
authority (BA). The grid-level measurements obtained by the BA are summarized as a scalar
function of time called the area control error (ACE). It is a linear combination of two error
signals: the deviation of local grid frequency from the nominal 60 Hz, and the tie-line error
— defined as the mismatch between scheduled and actual flow of power out of the balancing
region. Command signals are broadcast to resources such as controllable generators so that
the ACE signal is kept within desired bounds.

The compensator Gc is designed by the BA in a particular region. For example, PJM (an
RTO in the Eastern U.S.) creates their RegA and RegD signals by passing the ACE signal first
through a PI compensator, and then through a bandpass filter. In this case the compensator
Gc in Fig. 6.1 is taken to be a PI controller, and the bandpass filters are embedded in
the block denoted Actuation. The decomposition “H = Ha + Hb + · · · ” represents many
resources acting in parallel to provide actuation, which may include controllable generation
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Figure 6.1: Power Grid Control Loop.

and batteries.

It is anticipated that the basic architecture illustrated in Fig. 6.1 will remain in place for
many decades to come. The grid will become more adaptable to persistent disturbances or
crisis through a combination of control techniques and hardware.

The term ancillary service refers to resources required to maintain supply-demand balance
in the grid, but do not necessarily supply energy. While controllable generation is the most
common source of most ancillary services today, other technologies such as flywheels and
batteries are increasingly popular.

Virtual energy storage. Batteries may be a clean source of ancillary service, but currently
they are still an expensive solution. In addition to the large space required for large systems,
batteries have finite life time, and waste energy as they are charged and discharged to service
the grid [55].

Distributed control architectures are described in this chapter to create virtual energy
storage (VES) based on the inherent flexibility in power consumption from a majority of loads.
The ancillary services that can be obtained include regulation (such as automatic generation
control, or AGC), smooth peaks in load, address ramps from wind or solar generation, and
help to recover gracefully from contingencies such as generation faults. It is believed that
VES is a low-cost complement to batteries and power plants, and may in the future provide
the majority of required ancillary services.

The term Demand Dispatch is a convenient alternative to Demand Response; the latter is
defined by policy makers and regulatory bodies (such as FERC) as load-shedding in exchange
for some monetary reward. Load shedding is not the goal of the technology surveyed here. In
applications to both regulation and ramping services, the distributed control algorithms are
designed so that power consumption is increased and decreased over time, while keeping the
total energy deviation over time at zero — just like charging and discharging of a battery.

The control architectures described in this chapter are based on a series of papers on
distributed control [C50, J16, J14, J13].

The proposed frequency decomposition of VES resources was first introduced in [68, 67] in
the context of commercial buildings, and generalized in [C44]. The key novel contribution in
all of this work is the focus on “intelligence at the load”, based on local control loops. There
are many benefits:

(i) Communication infrastructure requirements are reduced, which hopefully leads to both
improved security, and higher consumer confidence regarding privacy.

(ii) A simple control problem at the BA, since the single-input / single-output system is highly
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controllable.

(iii) Strict bounds on quality of service (QoS) to the consumer are guaranteed.

This chapter does not consider market issues. It is assumed that consumer engagement will be
achieved through contractual agreements and periodic credits, such as automatic water-heater
control by EDF, or those offered by Florida Power and Light in their OnCallr program.

The remainder of the chapter is organized as follows. Section 6.2 contains a high-level
description of the control architecture, with details on distributed control contained in Sec-
tion 6.3. Section 6.4 provides an application to control of TCLs. Related results are discussed
in Section 6.5.

6.2 Distributed Control Architecture

The grid operator requires resources to balance the grid at all times. A significant proportion
of the needed resources can come in the form of virtual storage from flexible loads. Reliable
grid services can be obtained from loads, but this requires a well-designed control architecture.

A particular hierarchical control architecture is proposed. One realization is illustrated by
the feedback structure shown in Fig. 6.1, in which the actuation block is composed of many
resources acting in parallel, including generation, batteries, and virtual energy storage.

Assumptions regarding this control structure include

(i) Local control: This will be based in part on randomized decision rules, that provide
necessary degrees of freedom in shaping aggregate dynamics. Randomization also helps to
prevent synchronization of the response from loads.

(ii) Information flow from loads: Two-way information exchange between the BA and indi-
vidual loads is not a component of this architecture. In [J16] it is assumed that the BA
measures aggregate power consumption from the loads under its authority. Alternatively,
each load broadcasts its power state several times per day, and aggregate power consumption
is estimated at the BA [C43].

In [C40, C42] it is argued that it is possible to create a reliable control system in which
direct information flow from loads to BA is entirely absent. This requires more complex
control at each load, and hence is beyond the scope of this chapter.

(iii) Information flow from the BA: A single regulation signal is broadcast to each collection
of loads of the same class, as illustrated in Fig. 6.2. This signal is designed based on grid
level measurements, and a model of the aggregate behavior of the loads in each class.

The value of “local intelligence” at each load is vital for the envisioned architecture.
Feedback loops at each load are used to ensure that QoS constraints are met, and also so that
the aggregate of loads will appear to the grid operator as a reliable resource – much like a
battery system, or a controllable generator.

Consumer choice will be an input to any VES system, and a monetary reward may be
part of the arrangement. A contract for services can be established so that the consumer is
rewarded for participation, without exposing him or her to the complexity and uncertainty
of the grid. In this way the BA or aggregator can design the system so that highly reliable
grid services are obtained, while respecting the QoS constraints of the consumer.
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Figure 6.2: Control architecture: a common command signal is transmitted to each load
in a particular class. The resulting input-output system from ζ to power consumption y is
regarded as virtual energy storage.

In the future it is possible that some loads will be grid-friendly by design; the consumer
will never know that their refrigerator is helping to regulate the grid.

Local control The lowest level of control in the proposed architecture is at an individual
load, such as a water heater, refrigerator, agricultural water pump, or air-conditioner. The
load is equipped with sensors. For example, the microprocessor in a water heater receives
measurements of water temperature at one or more locations in the unit. It is also assumed
that the load receives measurements from the grid. This could be purely local, such as the
grid frequency measured locally [101, 100]. We will consider here the setting where each load
receives a signal from the BA, in which the theory is best developed.

The local control loop is designed to meet these potentially conflicting goals: 1. Ensure
that the load is providing the desired services to the consumer, respecting strict bounds on
QoS, and 2. Ensure that the aggregate of loads responds to a signal from the BA in a manner
that is both predictable and beneficial to the grid.

One obvious challenge: the degrees of freedom are extremely limited for a typical load
of interest. For example, a residential water heater or refrigerator can be in only one of a
small number of power states. Contained in Section 6.3 are several design techniques for local
control that result in smooth aggregate behavior. This is possible without the introduction
of complex scheduling rules, or the solution of real-time optimization problems at the BA.

Macro control This high-level control layer may be a part of the traditional BA, or through
a load aggregator. The balancing challenges are of many different categories, on many different
time-scales:

(i) Automatic Generation Control (AGC): time scales of seconds to 20 minutes.

(ii) Balancing reserves. In the Bonneville Power Authority, the balancing reserves include
both AGC and balancing on timescales of many hours.1

(iii) Contingencies (e.g., a generator outage).

(iv) Peak shaving.

1Balancing on a slower time-scale is achieved through real time markets in some other regions of the U.S.,
and in every region under the jurisdiction of an RTO.
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(v) Smoothing ramps from solar or wind generation.

In this chapter it is assumed that these high-level control problems are addressed as they are
today: the BA receives measurements of the grid, and based on this information sends out
signals to each resource in its domain. In many cases control loops are based on standard PI
(proportional-integral) control design.

The difference here is that some resources are virtual, such as a collection of water heaters.
A large collection of batteries distributed across the region might be regarded as a single
resource – in this case, local control loops will be installed in each battery system so that the
aggregate behaves as a single massive battery.

6.3 Mean-Field Control Design

Standard approaches for solving a stochastic control problem include stochastic dynamic pro-
gramming and Markov decision processes (MDP) [117]. The future power grids will contain
millions of smart components, which prohibits centralized decision making using these tech-
niques as they do not scale well with the number of different components in the system (both
the state space and the control space of the model grow exponentially with the number of
components). The extension of MDP models to the case of optimization problems involving
many agents that are making decisions based on partial knowledge of the system is called
DEC-POMDP (decentralized partially observable MDP). These problems are NEXP-hard for
the finite horizon optimization case [14], and undecidable in the infinite horizon case [96].

In physics and probability theory, mean field theory (MFT) approximates the behavior
of a large number of small individual components which interact with each other. The effect
of all the other individuals on any given individual is approximated by a single averaged
effect, thus reducing a many-body problem to a one-body problem. The mean-field ideas
first appeared in physics in the work of Pierre Curie and Pierre Weiss to describe phase
transitions [78, 139]. Approaches inspired by these ideas have seen applications in epidemic
models [19], computer network performance and game theory [91, 74]. In power systems, they
were first used to model the aggregate dynamic of the collection of water-heaters in [98], and
more recently in [87, 135, 130]. However, the global objective optimization under mean-field
interactions remains very challenging and an exact analysis is possible only under restrictive
assumptions on the local dynamics and the cost structure. There is still a significant gap
between the theoretical assumptions and the applications, and the results may be sensitive
to the modeling errors.

The approach in [38, 39, 26] combines the mean-field theory with classical feedback control.
The main idea consists in defining a parametrized family of randomized local decision rules
that lead to an aggregate behavior with desirable control properties (e.g. passivity for the
linearized aggregate input-output system).

This section provides an overview of key concepts and results of this approach.

6.3.1 Mean-field model

A nominal Markovian model for an individual load is created based on its typical operating
behavior. This is described as a Markov chain with transition matrix denoted P0, with state
space X = {x1, . . . , xd}. For example, a water chiller turns on or off depending upon the
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temperature of the water. In this case, a state value xi encodes water temperature as well as
the power state (on or off).

A family of transition matrices {Pζ : ζ ∈ R} is then constructed to define local decision
making. Each load evolves as a controlled Markov chain on X, with common input ζ =
(ζ0, ζ1, . . . ). It is assumed that the scalar signal ζ is broadcast to each load. If a load is in
state x at time t, and the value ζt is broadcast, then the load transitions to the state x′ with
probability Pζt(x, x

′). Letting Xi
t denote the state of the ith load at time t, and assuming N

loads, the empirical pmf (probability mass function) is defined as the average,

µNt (x) =
1

N

N∑
i=1

I{Xi
t = x}, x ∈ X.

The mean-field model is the deterministic system defined by the evolution equations,

µt+1 = µtPζt , t ≥ 0, (6.1)

in which µt is a row vector of dimension d. Under general conditions on the model and on µ0

it can be shown that µNt is approximated by µt.
In [38, 39, 107] it is assumed that average power consumption is obtained through mea-

surements or state estimation: Let U(x) denote power consumption when the load is in state
x, where U : X→ R+. The average power consumption is denoted

yNt =
1

N

N∑
i=1

U(Xi
t) ,

which is approximated using the mean-field model:

yt =
∑
x

µt(x)U(x), t ≥ 0. (6.2)

The next subsection describes the linearized dynamics. Sections 6.3.2–6.3.3 provide an
overview of design techniques for the parametrized transition family {Pζ : ζ ∈ R}, to ensure
that the linearized input-output model has desirable properties for control at the grid level.

Linearized mean-field model The mean-field model (6.1) is a state space model that is
linear in the state µt, and nonlinear in the input ζt. The observation equation (6.2) is also
linear as a function of the state. Assumptions imposed in [38, 39, 107] imply that the input
is a continuous function of these values. The design of the feedback law ζt = φt(y0, . . . , yt) is
based on a linearization of this state space model.

The linearized input-output model requires additional notation. The derivative of the
transition matrix is also a d× d matrix, denoted

Eζ =
d

dζ
Pζ (6.3)

Denote Ũζ = U − Ūζ , with Ūζ = πζ(U).
The invariant pmf πζ for Pζ is regarded as the equilibrium state for the mean-field model

(6.1), with respect to the constant input value ζt ≡ ζ. The linearization about this equilibrium
is described in Prop. 6.3.1. The proof can be found in [107, Prop. 2.4].



6.3. MEAN-FIELD CONTROL DESIGN 105

Proposition 6.3.1. Consider a family of transition matrices {Pζ : ζ ∈ R} that are contin-
uously differentiable in ζ. Assume also that Pζ is irreducible and aperiodic for each ζ. The
unique invariant pmf πζ is an equilibrium for (6.1) when ζ takes on this constant value. The
input-output model with state evolution (6.1), input ζ, and output (6.2) admits a lineariza-
tion about this equilibrium. It is described as a d-dimensional state space model with transfer
function,

Gζ(z) = C[Iz −A]−1B (6.4)

in which A = P T
ζ , Ci = Ũζ(xi) for each i, and

Bi =
∑
x

πζ(x)Eζ(x, xi), 1 ≤ i ≤ d (6.5)

6.3.2 Local control design

It is assumed throughout this chapter that the family of transition matrices used for dis-
tributed control is of the form,

Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x, x

′)− Λhζ (x)
)

(6.6)

in which hζ is continuously differentiable in ζ, and Λhζ is the normalizing constant

Λhζ (x) := log
(∑
x′

P0(x, x′) exp
(
hζ(x, x

′)
))

(6.7)

Each Pζ is irreducible and aperiodic under the assumption that this is true for P0.

Myopic design and the exponential family. A simple choice is the myopic design. This
is obtained by setting hζ(x, x

′) = ζU(x′),

Pmyopζ (x, x′) := P0(x, x′) exp
(
ζU(x′)− Λζ(x)

)
(6.8)

with the normalizing constant Λζ(x) := log
(∑

x′ P0(x, x′) exp
(
ζU(x′)

))
. This corresponds to

a tilted probability transition matrix, favoring the transitions to states with lower power
consumption when ζ < 0, and to states with higher power consumption when ζ > 0.

Advantages of this design include ease of implementation, and the straightforward general-
ization to the continuous state space case. This generalization will be illustrated in Section 6.4.

It is possible to consider any other family of functions, linear with respect to ζ, leading
to an exponential family for {Pζ : ζ ∈ R},

hζ(x, x
′) = ζH0(x, x′). (6.9)

The choice of H0 will typically correspond to the linearization of a more advanced design
around the value ζ = 0 (or some other fixed value of ζ). One example is given in Section 6.3.3.
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Individual Perspective Design. Consider a finite-time-horizon optimization problem:
For a given terminal time T , let p0 denote the pmf on strings of length T :

p0(x1, . . . , xT ) =

T−1∏
i=0

P0(xi, xi+1) ,

where x0 ∈ X is assumed to be given. The scalar ζ ∈ R is interpreted as a weighting
parameter in the following definition of total welfare. For any pmf p, this is defined as the
weighted difference,

WT (p) = ζEp

[ T∑
t=1

U(Xt)
]
−D(p‖p0) (6.10)

where the expectation is with respect to p, and D denotes relative entropy:

D(p‖p0) :=
∑

x1,...,xT

log
( p(x1, . . . , xT )

p0(x1, . . . , xT )

)
p(x1, . . . , xT )

It is easy to check that the myopic design is an optimizer for the horizon T = 1,

Pmyopζ (x0, ·) ∈ arg max
p

W1(p).

The infinite-horizon mean welfare is denoted,

η∗ζ = lim
T→∞

1

T
WT (p∗T ) (6.11)

The two terms in the welfare function (6.10) represent the two conflicting goals: To provide
service to the grid and to reduce deviation of the load’s behavior from the nominal. If the
controlled probability p is chosen to be different from p0, it potentially reduces the QoS to
the consumer, which is modeled by the term “−D(p‖p0).”

Recall that U(Xt) is equal to the power consumption of the load at time t. If the grid
operator desires lower power demand than the nominal value, this goal is modeled through
the first term in (6.10) whenever the parameter ζ is negative.

A solution to the infinite horizon problem is given by a time-homogenous Markov chain
whose transition matrix is obtained following the solution of an eigenvector problem, based
on the d× d matrix, “P (x, x′) = exp(ζU(x))P0(x, x′) , x, x′ ∈ X . (6.12)

Let λ > 0 denote the Perron-Frobenious eigenvalue, and v the eigenvector with non-negative
entries satisfying, “Pv = λv (6.13)

The proof of Prop. 6.3.2 is contained in [107, Section II], following [132].

Proposition 6.3.2. If P0 is irreducible, an optimizing p∗ that achieves (6.11) is defined by
a time-homogeneous Markov chain whose transition probability is defined by,

P̌ζ(x, x
′) =

1

λ

1

v(x)
“P (x, x′)v(x′) , x, x′ ∈ X . (6.14)
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6.3.3 Uncontrolled dynamics

In many cases it is not possible to apply the IPD solution in the form (6.14) because a portion
of the stochastic dynamics are not directly controllable. Consider a load model in which the
full state space is the Cartesian product X = Xu × Xn, where Xu are components of the state
that can be directly manipulated through control.

In [27, 26], the following conditional-independence structure is assumed: for each state
x = (xu, xn), and each ζ ∈ R,

P̌ζ(x, x
′) = Rζ(x, x

′
u)Q0(x, x′n) ,

Rζ(x, x
′
u) = R0(x, x′) exp

(
hζ(x, x

′
u)− Λhζ (x)

) (6.15)

where
∑

x′u
Rζ(x, x

′
u) =

∑
x′n
Q0(x, x′n) = 1 for each x and ζ. The matrix Q0 is out of our

control – this models load dynamics and exogenous disturbances. For example, it may be
used to model the impact of the weather on the climate of a building. The matrices {Rζ} are
a product of design.

It is reasonable to assume that U is a function only of Xu; the power state is directly
controllable. In this case the myopic design (6.8) is unchanged, hζ(x, x

′
u) = ζU(x′u).

The formulation of the IPD optimization problem is unchanged, but its solution is not
in the form (6.14). A computational ODE approach is introduced in [27, 26] and will be
presented more in detail in Chapter 7: for a vector field V whose domain and range are
functions on X× Xu,

d

dζ
hζ = V(hζ) , ζ ∈ R , h0 ≡ 1 .

Besides its computational value, this approach provides a useful alternative to the myopic
design. The function H0 = V(h0) can be used in the exponential family design (6.9). It is
shown in [27] that this function is a solution to Poisson’s equation for the nominal model:
P0H0 = H0 − Ũ0.

Motivation for the IPD design or its exponential family approximation is in part empirical.
In nearly every numerical experiment conducted to-date, it is found that the resulting input-
output mean field model appears nearly linear over a large range of ζ, and also minimum
phase. Moreover, in nearly all cases the linearization (6.4) is passive when the delay is
removed. That is, the transfer function zC[Iz −A]−1B is strictly positive real.

Passivity can be established mathematically for a restricted class of models [25], or using
a different ODE called the system perspective design (SPD) [26].

6.3.4 Quality of service and opt-out

In analysis of QoS it is convenient to consider a steady-state setting: the state process for
each load is assumed to be a stationary process on the two-sided time interval. It is also
useful to consider a functional form for QoS – the following conventions were introduced in
[38].

Several QoS metrics may be considered simultaneously, but each are assumed to be of the
following form. Assumed given is a function ` : X→ R, defined so that Lit := `(Xi

t) describes
a “snap-shot” indication of QoS for the ith load at time t. The function ` may represent
the temperature of a TCL, cycling of an on/off load, or power consumption as a function of
x ∈ X.



108 CHAPTER 6. BALANCING THE POWER GRID WITH FLEXIBLE LOADS

Second is a stable transfer function denoted HL. The QoS of the ith load at time t is
defined by passing Li through the transfer function HL. Two classes of transfer functions HL
are considered:

(i) Summation over a finite time horizon Tf :

Lit =

Tf∑
k=0

`(Xi
t−k). (6.16)

(ii) Discounted sum, with discount factor β ∈ [0, 1):

Lit =

∞∑
k=0

βk`(Xi
t−k) . (6.17)

When β is close to unity, or Tf is very large, then these QoS metrics can be approximated
by Gaussian random variable by appealing to the Central Limit Theorem [38]. A Gaussian
distribution indicates that QoS for some individuals in the population will sometimes take on
unacceptable values.

QoS can be constrained by imposing an additional layer of control at each load. A simple
mechanism is opt-out control.

The opt-out mechanism is based on pre-defined upper and lower limits, denoted b+ and
b−. A load ignores a command from grid operator if it will result in Lit+1 6∈ [b−, b+], and takes
an alternative action so that Lit+1 ∈ [b−, b+]. This ensures that the QoS metric of each load
remains within the predefined interval for all time.

Numerical examples are presented in [38] for both residential pools and TCLs.

6.4 Example: Thermostatically Controlled Loads

This special case is dominant in much of the literature on demand dispatch. Examples of ther-
mostatically controlled loads (TCLs) include refrigerators, water heaters and air-conditioning.
Each of these loads is already equipped with primitive “local intelligence” based on a dead-
band (or hysteresis interval): there is a sensor that measures the temperature of the unit,
and turns the power on when the measured value reaches one end of this deadband.

The state process for a TCL at time t will be of the form

X(t) = (Xu(t), Xn(t)) = (m(t),Θ(t)) , (6.18)

in which m(t) ∈ {0, 1} denotes the power mode (the value “1” indicating the unit is on), and
Θ(t) the inside temperature of the load. Exogenous disturbances that directly influence Θ
include ambient temperature, and usage: the inside temperature of a refrigerator is impacted
by an open door, and the temperature of water in a water heater is influenced by the rate of
flow of water out of the unit.

The remainder of this section is restricted to a residential water heater (WH). This will
simplify discussion, and extensions to other TCLs are often straightforward.
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Nominal model. The standard ODE model of a water heater is the first-order linear
system:

d
dtΘ(t) = −λ[Θ(t)−Θa(t)] + γm(t)− α[Θ(t)−Θin(t)]f(t) , (6.19)

for constants (λ, γ, α), in which Θ(t) is the temperature of the water in the tank, Θa(t)
is ambient temperature, Θin(t) is temperature of the cold water entering the tank (degrees
Fahrenheit), f(t) is flow rate of hot water from the WH (gallons/s), and m(t) is the power
mode of the WH (“on” indicated by m(t) = 1). The corresponding power consumed by a
WH when m(t) = 1 is denoted Pon.

The upper and lower temperature limits that define the deadband are denoted Θ−, Θ+,
respectively. A standard residential water heater in the U.S. has the following typical behavior:
At the moment that Θ(t) reaches the lower limit Θ−, the unit turns on, and remains on until
the time t+ at which Θ(t+) = Θ+. The unit then turns off and begins to cool. It may take 6
hours to once again reach the lower limit, while the time to heat the water is much shorter.

The nominal model used for local control design is based on an approximation of this
typical behavior, in which with some probability the unit turns on before Θ(t) reaches Θ−,
and the unit may also turn off before reaching the maximum temperature Θ+. The definition
of the nominal model is based on the specification of two cumulative distribution functions
(CDFs) for the temperature at which the load turns on or turns off, denoted F⊕ and F	.

Random variables with these CDFs are denoted ‹Θ⊕ and ‹Θ	, so that

F⊕(θ) = P{‹Θ⊕ ≤ θ}, F	(θ) = P{‹Θ	 ≤ θ} , θ ∈ R .

It is always assumed that ‹Θ⊕ and ‹Θ	 take values in the interval [Θ−,Θ+], which implies that
F⊕(θ) = F	(θ) = 1 for θ ≥ Θ+ and F⊕(θ) = F	(θ) = 0 for θ < Θ−.

A particular design for F	 is obtained on fixing three parameters θ	0 ∈ [Θ−,Θ+], and
constants % ∈ (0, 1) and κ > 1:

F	(θ) = (1− %)
[θ − θ	0 ]κ+

[Θ+ − θ	0 ]κ
, θ ∈ [Θ−,Θ+) ,

where [x]+ := max(0, x) for x ∈ R. In a symmetric model, the other CDF is defined by the
transformation,

F⊕(θ) = 1− lim
θ′↓θ

F	(Θ+ + Θ− − θ′)

Fig. 6.3 illustrates a particular special case of the symmetric model.

It is assumed that the local control operates in discrete-time. By choice of time-units,
without loss of generality it is assumed that the sampling interval is 1 unit. At time instance
k, if the water heater is on (i.e., m(k) = 1), then it turns off at time k + 1 with probability,

p	(k + 1) =
[F	(Θ(k + 1))− F	(Θ(k))]+

1− F	(Θ(k))

If Θ(k+ 1) ≤ Θ(k), then this probability is zero. Similarly, if the load is off, then it turns on
with probability

p⊕(k + 1) =
[F⊕(Θ(k))− F⊕(Θ(k + 1))]+

F⊕(Θ(k))
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The nominal behavior of the power mode can be expressed

P{m(k) = 1 | θ(k − 1), θ(k),m(k − 1) = 0} = p⊕(k)

P{m(k) = 0 | θ(k − 1), θ(k),m(k − 1) = 1} = p	(k)
(6.20)

The IPD and SPD designs were obtained in [26] based on a similar nominal model for a
residential refrigerator.

F�(θ)

Θ− Θ+θ⊕0

1

0

F⊕(θ

θ

)

Θ− Θ+θ�0

1

0

�

Figure 6.3: Nominal model for a water heater

The myopic design (7.11) is obtained through an exponential tilting:

p⊕ζ (k) :=
p⊕(k)eζ

p⊕(k)eζ + 1− p⊕(k)
, p	ζ (k) :=

p	(k)

p	(k) + (1− p	(k))eζ

If p⊕(k) > 0, then the probability p⊕ζ (k) is strictly increasing in ζ, approaching 1 as ζ →∞;

it approaches 0 as ζ → −∞, provided p⊕(k) < 1.

System identification. Power, temperature, and usage data from residential water heaters
was obtained through our partners at ORNL.2 The constants (λ, γ, α) were estimated using
least squares. The parameter values listed in Table 6.1 reflect the range of values observed in
actual data.

A testbed was created to simulate a collection of N = 100, 000 water heaters with usage.
Each evolves according to the ODE (6.19), but parameters were different for each of the N
loads: parameters were chosen via uniform sampling of the values in Table 6.1. A simulation
model for usage at each load was created, based on sampling from historical usage of actual
water heaters.

The mean-field model is a nonlinear input-output system with input ζ and output equal to
power deviation, y. An approximate linear model was obtained through least squares, in which
the input ζ was taken to be the swept-sine: ζ(t) = 1.5 sin(10−7t2) for 0 ≤ t ≤ 432×105 sec. (5
days). Fig. 6.4 shows results from the estimation experiment for two different model orders.
The Bode plots shown represent the approximate model in continuous time. The 5th order
model predicts that the gain of the linearization vanishes as the frequency tends to zero (DC).
This is a physical reality for this example.

The linearization is minimum phase and stable. Its gain is approximately constant in the
frequency range [5 × 10−4, 10−2] rad/s. It is expected that a collection of water heaters can
accurately track signals in this frequency range.

2Water heater data provided by Ecotope, Inc., with funding from the Northwest Energy Efficiency Alliance
(NEEA) and the Bonneville Power Administration (BPA).
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Temp. Ranges ODE Pars. Loc. Control

Θ+ ∈ [118, 122] F λ ∈ [8, 12.5]× 10−6 Ts = 15 sec

Θ− ∈ [108, 112] F γ ∈ [2.6, 2.8]× 10−2 κ = 4

Θa ∈ [68, 72] F α ∈ [6.5, 6.7]× 10−2 % = 0.8

Θin ∈ [68, 72] F Pon = 4.5 kW θ0 = Θ−

Table 6.1: Parameters for nominal model for water heaters.
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Figure 6.4: Least square estimates of the transfer function for water heaters.

Tracking. Design at the macro level is most easily performed for a model in continuous
time. A PI controller Gc(s) = KP + KI/s was designed based on the linearized mean-field
model. The values KP = 105 and KI = 500 result in a crossover frequency ωc = 0.03 rad/s
(corresponding to a time period of approximately 3.5 minutes), with a 75◦ phase margin.

The balancing reserves signal from the Bonneville Power Administration (BPA) was used
in the tracking experiments described in this section. A typical windy day, February 19, 2016,
was chosen for the experiments described here. The signal was filtered using a second-order
Butterworth high pass filter with a cut-off frequency at 8 × 10−4 rad/s (corresponding to a
sine wave with period of approximately 2 hours).

Fig. 6.5 shows results from several numerical experiments. The three rows are differen-
tiated by the regulation signal: In the first row r ≡ 0, in the second the absolute value of
the regulation signal takes a maximum value of about 8 MW, and in the final row the prior
regulation signal was multiplied by 4. Exact tracking is not feasible over the entire period
for the largest regulation signal (results shown in the bottom left plot), but the performance
remains nearly perfect over time periods for which |rt| does not exceed about 90% of the
nominal power consumption.

The second column shows evolution of temperature and the power mode for a typical load
in the three cases. The seed for the random number generator was identical in each of the
three experiments. It is amazing to see that the evolution of temperature and power mode is
hardly impacted by local control.

These loads are equally valuable for contingency and ramping services. Fig. 6.6 shows
recent results that illustrate the potential. In these experiments the water flow was set to
zero; in this case, the nominal power consumption for 100,000 loads is approximately 8 MW.
Each plot is a particular saw-tooth wave, scaled to reach the maximum lower limit of −8 MW.
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Figure 6.5: Tracking results with 100,000 water heaters, and the behavior of a single water
heater in three cases, distinguished by the reference signal r. The morning peak in nominal
power consumption is consistent with typical water usage included in the simulation experi-
ments.

6.5 Discussion and related results

With appropriate filtering and local control, loads can provide excellent grid services without
two-way communication. While there is some cost to install hardware on appliances that can
receive a signal from a balancing authority, in the long run this will be far less costly than
batteries.

The numerical results presented in this chapter, in particular the tracking results illus-
trated in Figures 6.5, 6.6, show that VES working in conjunction with traditional resources
can provide balancing services, ramping services and contingency reserves simultaneously.

Future research questions include:

(i) The application of reinforcement learning may be valuable for learning the local control
law.

(ii) Further research is required to better estimate capacity in terms of both energy and power.

(iii) The impact of usage is not entirely understood. Numerical results presented in Section 6.4
suggest that this is not an obstacle in the case of water heaters. Air-conditioning is a greater
challenge because variations in load are much greater.

(iv) A question posed in [100]: Does the load need to receive a signal from the BA? It is possible
that some VES resources can provide valuable services using only local measurements.
Frequency (as well as voltage) measurements can be obtained inexpensively at loads, and
these measurements are similar to those used by the BA to construct analogs of our “ζ”
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Figure 6.6: Tracking a pair of saw tooth waves with 105 water heaters.

today. The advantage of distributed control is reduced cost due to reduced communication
between a BA and loads.

Some history and further reading. In the early eighties, Schweppe wrote a series of
influential articles on the value of new architectures for the grid [124, 123], with an emphasis on
demand response based on either automation or prices. Tools for analysis were lacking at the
time, but many researchers came to fill the void. An influential example is the paper [98], that
introduced ideas from statistical mechanics to model a large population of thermostatically
controlled loads (TCLs).

There is substantial literature on indirect load control, where customers are encouraged
to shift their electricity usage in response to real-time prices. Dynamic prices can introduce
uncertain dynamics, such as cyclical price fluctuations and increased sensitivity to exogenous
disturbances, and present a risk to system stability [121, 32, 43].

Randomization is an essential element of the distributed control architecture described in
this chapter. Its value has been widely recognized in academia as well as industry [126].

On the academic side, Matheiu’s dissertation [102] and references [103, 104] were highly in-
fluential, motivating in part the research surveyed in this chapter and others [44, 88, 135, 142].
The control model in [102] is based on the mean-field setting of [98], with the introduction of
a control signal from a central authority: at each time slot, a BA or aggregator broadcasts
probability values {p⊕τ , p	τ : τ ∈ R} where p⊕τ (p	τ ) denotes the probability of turning the de-
vice on (off) when the temperature of the device is τ . The temperatures are binned to obtain
a finite state-space aggregate model. This model is bilinear and partially observed, where the
state x is the histogram of load temperature and power consumption. The bilinear control
system is transformed to a linear model by defining products of probability and state as an
input. The resulting linear state space model has the same state, but the vector-valued input
is now defined as products of the form uk = pmτ xj for some τ(k), j(k), and m(k) ∈ {⊕,	}.
Feedback control design is performed based on LQR. However, it is still necessary to recover
the probability vector {pmτ }. In this prior work, this is defined as the ratio of components
of the input u(t), and components of the estimate of the state at time t (see e.g. eq. (11)
of [104]). It is assumed that estimates are computed by the BA based on measurements of
aggregate power consumption. A current challenge with this approach is the creation of suf-
ficiently accurate state estimates for an inherently infinite-dimensional system. Challenges to
state estimation are discussed in [39], where it is shown that the linearized mean field model
may not be observable. Robustness of this approach to bilinear control systems is another an
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important area for future research.
The approach to distributed control surveyed in Sections 6.2 and 6.3 involves an entirely

different approach to local control at each load. One example is the Individual Perspective
Design (IPD) described in Section 6.3.2. This can be regarded as an application of the MDP
technique of Todorov [132], but only in one special case: the construction of [132] can be
applied only if there is no exogenous stochastic disturbance in the load model. Contained in
Section 6.3.2 are techniques to extend this design to a broader class of load models. These
ideas were first applied to demand-dispatch in [108], and have seen many extensions since.
For more history the reader is referred to [107, 42], in addition to the papers surveyed in
Section 6.3.2. While beyond the scope of this article, it is important to note that Todorov’s
‘linearly solvable’ MDP model [132] is similar to prior work such as [81], and the form of the
solution could have been anticipated from well-known results in the theory of large-deviations
for Markov chains [27]. It is pointed out in [133] that this approach has a long history in the
context of controlled stochastic differential equations [57].



Chapter 7

ODE method for Markov decision
processes

This chapter concerns computation of optimal policies in which the one-step reward func-
tion contains a cost term that models Kullback-Leibler divergence with respect to nominal
dynamics. This technique was introduced by Todorov in [132], where it was shown under
general conditions that the solution to the average-reward optimality equations reduce to a
simple eigenvector problem. Since then many authors have sought to apply this technique to
control problems and models of bounded rationality in economics.

A crucial assumption is that the input process is essentially unconstrained. For example,
if the nominal dynamics include randomness from nature (e.g., the impact of wind on a
moving vehicle), then the optimal control solution does not respect the exogenous nature of
this disturbance.

We introduce a technique to solve a more general class of action-constrained MDPs. The
main idea is to solve an entire parameterized family of MDPs, in which the parameter is a
scalar weighting the one-step reward function.

This chapter is based on the publications [J10, C33], that contain more details and the
proofs of the results summarized in this chapter.

7.1 Introduction

Consider a Markov Decision Process (MDP) with finite state space X, general action space
U, and one-step reward function w : X × U → R. Two standard optimal control criteria are
finite-horizon:

W∗T (x) = max

T∑
t=0

E[w(X(t), U(t)) | X(0) = x] (7.1)

where T ≥ 0 is fixed, and average reward :

η∗(x) = max
{

lim inf
T→∞

1

T

T−1∑
t=0

E[w(X(t), U(t)) | X(0) = x]
}
. (7.2)

where X = {X(t) : t ≥ 0}, U = {U(t) : t ≥ 0} denote the state and input sequences.
In either case, the maximum is over all admissible input sequences; it is obtained as

deterministic state feedback under general conditions. In the average-reward framework the

115
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optimal policy is typically stationary: U(t) = φ∗(X(t)) for a mapping φ∗ : X→ U, and η∗(x)
does not depend upon the initial condition x (see [119, 15]).

A special class of MDP models was introduced by [132], for which either optimal control
problem has an attractive solution. The reward function is assumed to be the sum of two
terms:

w(x, µ) = U(x)−D(µ‖P0(x, · )).
The first term is a function U : X→ R that is completely unstructured. The second is a “con-
trol cost”, defined using Kullback–Leibler (K-L) divergence (also known as relative entropy).
The control cost is based on deviation from nominal (control-free) behavior; modeled by a
nominal transition matrix P0:

D(µ‖P0(x, · )) :=
∑
x′

µ(x′) log
( µ(x′)
P0(x, x′)

)
.

It is shown that the solution with respect to the average reward criterion is obtained
as the solution to the following eigenvector problem: let (λ, v) denote the Perron-Frobenius

eigenvalue-eigenvector pair for the positive matrix with entries “P (x, x′) = exp(U(x))P0(x, x′),
x, x′ ∈ X. The eigenvector property “Pv = λv implies that the “twisted” matrix

P̌ (x, x′) =
1

λ

v(x′)
v(x)

“P (x, x′) , x, x′ ∈ X . (7.3)

is a transition matrix on X. This transition matrix defines the dynamics of the model under
optimal control. A similar model was introduced in the earlier work of [81], but without the
complete solution reviewed here.

Since the publication of [132] there has been significant theoretical advancement, with
proposed applications to economics [64], distributed control [107], and neuroscience [53].

It is appealing to imagine that rational economic agents are solving an eigenvector problem
to maximize their utility. However, a careful look at the controlled dynamics (7.3) suggests
a limitation of this MDP formulation: how can this transformation respect exogenous distur-
bances from nature? An essential assumption in this prior work is that for each x, and any
pmf µ, it is possible to choose the action so that P (x, x′) = µ(x′). This is equivalent to the
assumption that the action space U consists of all probability mass functions on X, and the
controlled transition matrix is entirely determined by the input as follows:

P{X(t+ 1) = x′ | X(t) = x, U(t) = µ} = µ(x′) , x, x′ ∈ X, µ ∈ U . (7.4)

This modeling assumption presents a significant limitation, as pointed out in [133]: “It pre-
vents us from modeling systems subject to disturbances outside the actuation space”. The
optimal solution cannot take the form (7.3) when this additional randomness is included in
the model, since this would mean our control action would modify the weather.

Contributions The main contribution is broadening the K-L cost framework to include
constraints on the pmf µ appearing in (7.4). The new approach to computation is based on
the solution of an entire family of MDP problems, parameterized by a scalar ζ appearing as a
weighting factor in the one-step reward function. Letting Xt denote the state, and Rt denote
the randomized policy at time t, this one-step reward is of the form

w(Xt, Rt) = ζU(Xt)− cKL(Xt, Rt) (7.5)
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in which cKL denotes relative entropy with respect to nominal dynamics (see (7.14)).
The main results are contained in Theorems 7.3.1 and 7.4.2, with parallel results for the

total- and average-reward control problems. In each case, it is shown that the solution to an
entire family of MDPs can be obtained through the solution of a single ordinary differential
equation (ODE).

The ODE solution is most elegant in the average-reward setting. For each ζ, the solution
to the average-reward optimization problem is based on a relative value function h∗ζ : X→ R.

For the MDP with d states, each function is viewed as a vector in Rd with entries {h∗ζ(xi) :

1 ≤ i ≤ d}. A vector field V : Rd → Rd is constructed so that these functions solve the ODE

d
dζh
∗
ζ = V(h∗ζ) , with boundary condition h∗0 ≡ 0.

One step in the construction of V is differentiating each side of the dynamic programming
equations; a starting point of the 50 year old sensitivity theory of [122], and more recent [128].
More closely related is the sensitivity theory surrounding Perron-Frobenius eigenvectors that
appears in the theory of large deviations [89, Prop. 4.9]. The goals of this prior work are
different, and we are not aware of comparable algorithms that simultaneously solve the family
of control problems.

The optimal control formulation is far more general than in the aforementioned work
[132, 64, 107], as it allows for inclusion of exogenous randomness in the MDP model. The
dynamic programming equations become significantly more complex in this generality, so that
in particular, the Perron-Frobenious computational approach used in prior work is no longer
applicable.

In addition to its value as a computational tool, there is a significant benefit to solve the
entire collection of optimal control problems for a range of the parameter ζ. For example,
this provides a means to understand the tradeoff between state cost and control effort. Simul-
taneous computation of the optimal policies is also an essential ingredient of the distributed
control architecture introduced in [107] and that was presented in Section 6.3.3.

The remainder of the chapter is organized as follows. Section 7.2 describes the new
Kullback–Leibler cost criterion. Section 7.3 provides an overview of numerical techniques
for the MDP solutions for finite time horizon and Section 7.4 for average cost criterion.
Conclusions and future discussion are contained in Section 7.5.

7.2 MDPs with Kullback–Leibler cost

7.2.1 MDP model

The dynamics of the MDP are assumed of the form (7.4), where the action space consists of
a convex subset of probability mass functions (pmf) on X. An explanation of the one-step
reward (7.5) will be provided after a few preliminaries.

A transition matrix P0 is given that describes nominal (control-free) behavior. It is as-
sumed to be irreducible and aperiodic. It follows that P0 admits a unique invariant pmf,
denoted π0. For any other transition matrix, with unique invariant pmf π, the Donsker-
Varadhan rate function is denoted,

K(P‖P0) =
∑
x,x′

π(x)P (x, x′) log
( P (x, x′)
P0(x, x′)

)
(7.6)
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under the usual convention that “0 log(0) = 0”. It is called a “rate function” because it
defines the relative entropy rate between two stationary Markov chains, see [51].

As in [132, 64, 107], the rate function is used here to model the cost of deviation from the
nominal transition matrix P0. The two control objectives surveyed in the introduction will be
specialized as follows, based on the utility function U : X→ R and a scaling parameter ζ ≥ 0.
For the finite-horizon optimal control problem,

W∗T (x, ζ) = max

T∑
t=0

Ex[ζU(X(t))− cKL(X(t), Pt)] , (7.7)

where the expectation is conditional on X(0) = x, and

cKL(x, P ) = D(P (x, · )‖P0(x, · )) :=
∑
x′

P (x, x′) log
( P (x, x′)
P0(x, x′)

)
for any x ∈ X and transition matrix P .

The average reward optimization problem is analogous:

η∗(ζ) = max
(

lim inf
T→∞

1

T

T−1∑
t=0

Ex [ζU(X(t))− cKL(X(t), Pt)]
)
. (7.8)

In each case, the maximum is over all transition matrices {Pt}. The average reward optimiza-
tion problem can be cast as the solution to the convex optimization problem,

η∗ζ = max
π,P

{
ζπ(U)−K(P‖P0) : πP = π

}
(7.9)

where the maximum is over all transition matrices.
In this context, the one-step reward appearing in (7.1, 7.2) is a function of pairs (x, P ):

w(x, P ) := ζU(x)− cKL(x, P ) (7.10)

for any x ∈ X and transition matrix P . There is practical value to considering a parameterized
family of reward functions. For one, it is useful to understand the sensitivity of the control
solution to the relative weight given to utility and the penalty on control action. This is well
understood in classical linear control theory – consider for example the celebrated symmetric
root locus in linear optimal control [59].

Nature & nurture Exogenous randomness from nature imposes additional constraints in
the optimal control problem (7.7) or (7.8).

It is assumed that the state space is the cartesian product of two finite sets: X = Xu×Xn,
and the state is similarly expressed X(t) = (Xu(t), Xn(t)). At a given time t it is assumed
that Xn(t + 1) is conditionally independent of the input at time t, given the value of X(t).
This is formalized by the following conditional-independence assumption:

P (x, x′) = R(x, x′u)Q0(x, x′n), x = (xu, xn) ∈ X, x′u ∈ Xu, x′n ∈ Xn (7.11)

The matrix R defines the randomized decision rule for Xu(t+ 1) given X(t). The matrix Q0

is fixed and models the distribution of Xn(t+ 1) given X(t) = x, and each are subject to the
pmf constraint:

∑
x′u
R(x, x′u) =

∑
x′n
Q0(x, x′n) = 1 for each x.
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Subject to the constraint (7.11), the two optimal control problems (7.8, 7.10) are trans-
formed to the final forms considered here:

W∗T (x, ζ) = max

T∑
t=0

Ex[w(X(t), R(t))] (7.12)

η∗(ζ) = max
{

lim inf
T→∞

1

T

T−1∑
t=0

Ex[w(X(t), R(t))]
}

(7.13)

where in each case the maximum is over sequences of randomized decision rules {R(0), . . . , R(T )},
w(x,R) := ζU(x)− cKL(x,R)

and cKL(x,R) :=
∑
x′

P (x, x′) log
( P (x, x′)
P0(x, x′)

)
=
∑
x′u

R(x, x′u) log
( R(x, x′u)

R0(x, x′u)

) (7.14)

7.2.2 Notation

For any transition matrix P , an invariant pmf is interpreted as a row vector, so that invariance
can be expressed πP = π. Any function f : X → R is interpreted as a d-dimensional column
vector, and we use the standard notation Pf (x) =

∑
x′ P (x, x′)f(x′), x ∈ X. The fundamental

matrix is the inverse,
Z = [I − P + 1⊗ π]−1 (7.15)

where 1 ⊗ π is a matrix in which each row is identical, and equal to π. If P is irreducible
and aperiodic, then it can be expressed as the power series Z =

∑∞
n=0[P − 1 ⊗ π]n, with

[P − 1⊗ π]0 := I (the d× d identity matrix), and [P − 1⊗ π]n = Pn − 1⊗ π for n ≥ 1.
Any function g : X × X → R is regarded as an unnormalized log-likelihood ratio: Denote

for x, x′ ∈ X,
Pg(x, x

′) := P0(x, x′) exp
(
g(x′ | x)− Λg(x)

)
, (7.16)

in which g(x′ | x) is the value of g at (x, x′) ∈ X×X, and Λg(x) is the normalization constant,

Λg(x) := log
(∑
x′

P0(x, x′) exp
(
g(x′ | x)

))
(7.17)

The rate function can be expressed in terms of its invariant pmf πg, the bivariate pmf
Πg(x, x

′) = πg(x)Pg(x, x
′), and the log moment generating function (7.17):

K(Pg‖P0) =
∑
x,x′

Πg(x, x
′)
[
g(x′ | x)− Λg(x)

]
=
∑
x,x′

Πg(x, x
′)g(x′ | x)−

∑
x

πg(x)Λg(x)
(7.18)

The unusual notation is introduced because g(x′ | x) will take the form of a conditional
expectation in all of the results that follow: given any function h : X→ R we denote

h(x′u | x) =
∑
x′n

Q0(x, x′n)h(x′u, x
′
n) . (7.19)

In this case the transformation only transforms the dynamics of Xu:

Ph(x, x′) = Rh(x, x′u)Q0(x, x′n) , Rh(x, x′u) :=R0(x, x′u) exp
(
h(x′u | x)− Λg(x)

)
.
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7.3 ODE for finite time horizon

Here an ODE is constructed to compute the value functions {W∗τ (x, ζ) : 1 ≤ τ ≤ T , ζ ≥ 0}. To
aide exposition it is helpful to first look at the general problem: Assume that the state space
X is finite, the action space U is general, and let {Pu(x, x′)} denote the controlled transition
matrix. The one-step reward on state-action pairs is of the form w(x, u) = ζU(x) − c(x, u),
where c : X× U→ R+. Assume that c(x, u) ≡ 0 for a unique value u = u0.

For each 1 ≤ τ ≤ T denote, as in (7.1),

W∗τ (x, ζ) = max
τ∑
t=0

Ex[w(X(t), U(t))] (7.20)

where the maximum is over all admissible inputs {U(t) = φt(X(0), . . . , X(t))}. Each value
function can be regarded as the maximum over functions {φt} (subject to measurability
conditions and hard constraints on the input). It is assumed that the maximum (7.20) is
finite for each (x, ζ).

The dynamic programming equation (principle of optimality) holds: for τ ≥ 1,

W∗τ (x, ζ) = max
u

{
ζU(x)− c(x, u) +

∑
x′

Pu(x, x′)W∗τ−1(x′)
}

(7.21)

Assume that a maximizer φ∗τ−1,ζ(x) exits for each τ ,ζ, and x.

A crucial observation is that for each x, the value function appearing in (7.20) is the
maximum of functions that are affine in ζ. It follows that W∗τ (x, ζ) is convex as a function of

ζ, and hence absolutely continuous. Consequently, the right derivative H∗τ (x, ζ):= d+

dζW∗τ (x, ζ)
exists everywhere. A recursive equation follows from (7.21):

H∗τ (x, ζ) = U(x) +
∑
x′

P̌τ−1,ζ(x, x
′)H∗τ−1(x′, ζ) (7.22)

where P̌τ−1,ζ(x, x
′) = Pu∗(x, x

′) with u∗ = φ∗τ−1,ζ(x).

In matrix notation this becomes H∗τ = Žτ−1,ζU , where Ž0,ζ = I, and for any 1 ≤ τ ≤ T ,

Žτ−1,ζ = I + P̌τ−1,ζ + P̌τ−1,ζP̌τ−2,ζ + P̌τ−1,ζP̌τ−2,ζ · · · P̌0,ζ (7.23)

This is similar to a truncation of the power series representation of the fundamental matrix
(7.15).

Denote W∗ζ (x) = {W∗k(x, ζ) : 0 ≤ k ≤ T}, regarded as a vector in R|X|×(T+1), param-
eterized by the non-negative constant ζ. The following result follows from the preceding
arguments:

Theorem 7.3.1. The family of functions {W∗ζ } solves the ODE d+

dζW∗ζ = V(W∗ζ ), ζ ≥ 0, with
boundary condition W∗0 = 0. The vector field can be described in block-form as follows, with
T + 1 blocks:

d+

dζW∗k( · , ζ) = Vk(W∗ζ ) , 0 ≤ k ≤ T .
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The identity V0(W) = U holds for any W. For k ≥ 1, the right hand side depends on its ar-
gument only through the associated policy: for any sequence of functions W = (W0, . . . ,WT ),

Vk(W) = Zk−1U
where Zk−1 = I + Pk−1 + Pk−1Pk−2 + Pk−1Pk−2 · · ·P0

Pi(x, x
′) = Pφi(x)(x, x

′) , all i, x, x′,

φi(x) = arg max
u

{
−c(x, u) +

∑
x′

Pu(x, x′)Wi(x
′)
}
, 1 ≤ i, k ≤ T.

ut

The theorem provides valuable computational tools for models of moderate cardinality
and moderate time-horizon. Two questions remain:

(i) What is φi for the problem under study ?

(ii) Can a tractable ODE be constructed in infinite-horizon optimal control problems?

The answer to the second question is the focus of Section 7.4. The answer to (i) is contained
in the following. For any function W : X→ R, denote

RW(x, · ) = arg max
R

{
w(x,R) +

∑
x′

P (x, x′)W(x′)
}
, x ∈ X ,

subject to the constraint that P depends on R via (7.11), and with w defined in (7.14).

Proposition 7.3.2. For any function W the maximizer RW is unique and can be expressed

RW(x, x′u) = R0(x, x′u) exp
(
W(x′u | x)− Λ(x)

)
where W(x′u | x) =

∑
x′n
Q0(x, x′n)W(x′u, x

′
n) for each x ∈ X, x′u ∈ Xu, and Λ(x) is a normal-

izing constant, defined so that RW(x, · ) is a pmf for each x.

It follows from the proposition that the vector field is smooth in a neighborhood of the
optimal solution {W∗ζ : ζ ≥ 0}. These results are central to the average-reward case considered
next.

7.4 Average reward formulation

We consider now the case of average reward (7.13), subject to the structural constraint (7.11).
The associated average reward optimization equation (AROE) is expressed as follows:

max
R

{
w(x,R) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗(ζ) (7.24)

In which η∗(ζ) is the optimal average reward, and h∗ζ is the relative value function. The
maximizer defines a transition matrix:

P̌ζ = arg max
P

{
ζπ(U)−K(P‖P0) : πP = π

}
(7.25)
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Recall that the relative value function is not unique, since a new solution is obtained by
adding a non-zero constant; the normalization h∗ζ(x

◦) = 0 is imposed, where x◦ ∈ X is a fixed
state.

The proof of Theorem 7.4.1 (i) is a consequence of Prop. 7.3.2. The second result is
obtained on combining Lemmas B.2–B.4 of [27].

Theorem 7.4.1. There exist optimizers {π̌ζ , P̌ζ : ζ ∈ R}, and solutions to the AROE
{h∗ζ , η∗(ζ) : ζ ∈ R} with the following properties:

(i) The optimizer P̌ζ can be obtained from the relative value function h∗ζ as follows:

P̌ζ(x, x
′) := P0(x, x′) exp

(
hζ(x

′
u | x)− Λhζ (x)

)
(7.26)

where for x ∈ X, x′u ∈ Xu,

hζ(x
′
u | x) =

∑
x′n

Q0(x, x′n)h∗ζ(x
′
u, x
′
n), (7.27)

and Λhζ (x) is the normalizing constant (7.17) with h = hζ .

(ii) {π̌ζ , P̌ζ , h∗ζ , η∗(ζ) : ζ ∈ R} are continuously differentiable in the parameter ζ.

Representations for the derivatives in Theorem 7.4.1 (ii), in particular the derivative of
Λh∗ζ with respect to ζ, lead to a representation for the ODE used to compute the transition

matrices {P̌ζ}.
It is convenient to generalize the problem slightly here: let {h◦ζ : ζ ∈ R} denote a family

of functions on X, continuously differentiable in the parameter ζ. They are not necessarily
relative value functions, but we maintain the structure established in Theorem 7.4.1 for the
family of transition matrices. Denote,

hζ(x
′
u | x) =

∑
x′n

Q0(x, x′n)h◦ζ(x
′
u, x
′
n), x ∈ X, x′u ∈ Xu (7.28)

and then define as in (7.16),

Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x

′
u | x)− Λhζ (x)

)
(7.29)

The function Λhζ : X→ R is a normalizing constant, exactly as in (7.17):

Λh◦ζ (x) := log
(∑
x′

P0(x, x′) exp
(
hζ(x

′
u | x)

))
We begin with a general method to construct a family of functions {h◦ζ : ζ ∈ R} based on

an ODE. The ODE is expressed,

d
dζh
◦
ζ = V(h◦ζ) , ζ ∈ R, (7.30)

with boundary condition h◦0 ≡ 0. A particular instance of the method will result in h◦ζ = h∗ζ
for each ζ. Assumed given is a mapping H◦ from transition matrices to functions on X.
Following this, the vector field V is obtained through the following two steps: For a function
h : X→ R,
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(i) Define a new transition matrix via (7.16),

Ph(x, x′) := P0(x, x′) exp
(
h(x′u | x)− Λh(x)

)
, x, x′ ∈ X, (7.31)

in which h(x′u | x) =
∑

x′n
Q0(x, x′n)h(x′u, x

′
n), and Λh(x) is a normalizing constant.

(ii) Compute H◦ = H◦(Ph), and define V(h) = H◦. It is assumed that the functional H◦ is
constructed so that H◦(x◦) = 0 for any h.

We now specify the functional H◦, whose domain consists of transition matrices that
are irreducible and aperiodic. For any transition matrix P in this domain, the fundamental
matrix Z is obtained using (7.15), and then H◦ = H◦(P ) is defined as

H◦(x) =
∑
x′

[Z(x, x′)− Z(x◦, x′)]U(x′), x ∈ X (7.32)

The function H◦ is a solution to Poisson’s equation,

PH◦ = H◦ − U + Ū , where Ū := π(U) :=
∑
x

π(x)U(x). (7.33)

Theorem 7.4.2. Consider the ODE (7.30) with boundary condition h◦0 ≡ 0, and with H◦ =
H◦(P ) defined using (7.32) for each transition matrix P that is irreducible and aperiodic. The
solution to this ODE exists, and the resulting functions {h◦ζ : ζ ∈ R} coincide with the relative

value functions {h∗ζ : ζ ∈ R}. Consequently, P̌ζ = Phζ for each ζ.

7.5 Discussion and related results

The ODE approach for solving MDPs has simple structure for the class of models considered
in this chapter. An interesting possible extension are approaches to approximate dynamic
programming as has been successful in the unconstrained model [133].

It is likely that the ODE has special structure for other classes of MDPs, such as the
“rational inattention” framework of [127, 125]. The computational efficiency of this approach
will depend in part on numerical properties of the ODE, such as its sensitivity for complex
models. Applications to distributed control were the original motivation for this work, with
particular attention to “demand dispatch” [41], presented in Chapter 6.



Chapter 8

Kullback-Leibler-Quadratic optimal
control

This chapter presents approaches to mean-field control, motivated by distributed control of
multi-agent systems. Control solutions are based on a convex optimization problem, whose
domain is a convex set of probability mass functions (pmfs). The main contributions follow:

Kullback-Leibler-Quadratic (KLQ) optimal control is a special case, in which the objective
function is composed of a control cost in the form of Kullback-Leibler divergence between a
candidate pmf and the nominal, plus a quadratic cost on the sequence of marginals. Transform
techniques are introduced to reduce complexity of the KLQ solution, motivated by the need
to consider time horizons that are much longer than the inter-sampling times required for
reliable control.

Infinite-horizon KLQ leads to a state feedback control solution with attractive properties.
It can be expressed as either state feedback, in which the state is the sequence of marginal
pmfs, or an open loop solution is obtained that is more easily computed.

A main application is to distributed control of residential loads, with objective to provide
grid services, similar to utility-scale battery storage. The results show that KLQ optimal
control enables the aggregate power consumption of a collection of flexible loads to track a
time-varying reference signal, while simultaneously ensuring each individual load satisfies its
own quality of service constraints.

This chapter is based on the publications [C8, J1], that contain more details and the
proofs of the results summarized in this chapter.

8.1 Introduction

The goal of this work is to obtain control solutions for mean-field models. The optimiza-
tion problems considered are generalizations of standard Markov Decision Process (MDP)
objectives, in both finite-horizon and average-cost settings.

8.1.1 Mean field control

The mean-field control problem is an approach to distributed control of a collection of N
homogeneous “agents”, with N � 1, modeled as discrete-time stochastic systems, with state
processes at time k denoted {Xi

k : 1 ≤ i ≤ N}. To avoid a long detour on notation it is

124
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assumed that the common state space X is finite. For a single value k and time horizon
K ≥ 1, the empirical distributions are denoted

pN (~x) =
1

N
N∑
i=1

I{(Xi
0, . . . , X

i
K) = ~x} ~x ∈ XK+1 (8.1a)

ν Nk (x) =
1

N
N∑
i=1

I{Xi
k = x} , x ∈ X , (8.1b)

where ~x = (x0, . . . , xK) denotes an arbitrary element of XK+1. The set of pmfs on XK+1 is
denoted by S(XK+1) for K ≥ 1, and S(X) for K = 0.

The integer N is regarded as a parameter in mean-field theory, and assumptions imply
that there is convergence as N →∞,

lim
N→∞

pN (~x) = p(~x) , lim
N→∞

ν Nk (xk) = νk(x) ,

where νk ∈ S(X) is the kth marginal of p ∈ S(XK+1) for 0 ≤ k ≤ K.
This limit is achieved by assuming homogeneity of the statistics of each agent: for each i

the state evolution is consistent with p:

P{Xi
k+1 = xk+1 | (Xi

0, . . . , X
i
k) = ~x k0 } = p(xk+1 | ~x k0 ) (8.2)

where the conditional pmfs are obtained from Bayes rule.
We propose a design of p to balance two objectives, based on a reference signal {rk}, and

function Y : X→ R:

(i) νk ∼ ν0
k , where {ν0

k} models nominal behavior.

(ii) 〈νk,Y〉 :=
∑
x∈X

νk(x)Y(x) ≈ rk.

The agents considered in Section 8.3 represent a population of residential water heaters,
and Y : X→ R+ is chosen so that 〈ν Nk ,Y〉 is the average power consumption over the popu-
lation of loads.

Two approaches to design are developed.

Feedforward control: A sequence {Ck : 1 ≤ k ≤ K} of real-valued cost functions on the
marginals is specified, and p∗ is obtained as the solution to

J?(ν0
0) = min

p

K∑
k=1

Ck(νk) (8.3)

where the minimum is over all pmfs with first marginal ν0
0 . The two goals motivate the

following objective function,

Ck(ν) = D(ν, ν0
k) +

κ

2

[
〈 ν,Y 〉 − rk

]2
, ν ∈ S(X) , (8.4)

in which κ > 0 is a penalty parameter, and D penalizes deviation from nominal behavior.
The finite-horizon optimal control problem is thus

J?(ν0
0) = min

p

K∑
k=1

ï
D(νk, ν

0
k) +

κ

2

[
〈 νk,Y 〉 − rk

]2ò
(8.5)
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This finite horizon optimal control problem can be a component of a model predictive
control (MPC) strategy, with time horizons for computation updates dictated by performance
requirements and model accuracy.

Feedback control: If the nominal model is Markovian, then the evolution of the marginals
follow the dynamics of a controlled nonlinear state space model,

νk+1 = fk(νk, φk) , k ≥ 0 , ν0
0 given (8.6)

where {φk} is the input sequence, evolving on an abstract set Φ. A feedback policy takes the
form φk = Kk(νk).

Design choices for Kk are proposed in [J1] based on an infinite-horizon solution of (8.5).
Justification requires further assumptions, including time-homogenous dynamics for (8.6),
which holds if the nominal model is a time-homogeneous Markov chain.

We survey in this chapter only the results on feedforward control, and refer the reader to
[J1] for feedback control design.

8.1.2 MDPs and mean-field control

The Markovian assumption for the nominal model is based on the standard controlled Markov
chain model used in MDPs.

The model considered here is specified by a state space denoted S, input space U, and we
denote X := S × U (assumed finite). The joint state-input process is denoted X = {Xk =
(Sk, Uk) : k ≥ 0}. In finite-horizon optimal control the model includes a sequence of controlled
transition matrices {Tk : k ≥ 0} and cost functions {ck : k ≥ 0}, with ck : X→ R for each k.

The dynamics of X = (S,U) = {Sk, Uk : k ≥ 0} are determined by the transition
matrices as follows. It is assumed that X is adapted to a filtration {Fk : k ≥ 0} (so that Xk

is Fk-measurable for each k), and

P{Sk+1 = s′ | Fk; Sk = s , Uk = u} = Tk(x, s
′) , x = (s, u) ∈ X , s′ ∈ S (8.7)

The set of functions from S to the simplex S(U) is denoted Φ, and we let φ denote a generic
element of Φ. The decision rule defining the input sequence is assumed to be Markovian:

P{Uk = u | Fk−1; Sk = s} = φk(u | s) , x = (s, u) ∈ X (8.8)

with φk ∈ Φ for each k.
The finite-horizon optimal control problem of MDP theory is a special case of (8.3), in

which Ck linear for each k; in this case Ck(νk) = 〈νk, ck〉 =
∑

x∈X νk(x)ck(x) for each k, and
the sum on the right hand side of (8.3) may be expressed

K∑
k=1

〈νk, ck〉 =
K∑
k=1

E[ck(Xk)] , Xk ∼ νk ,

where X evolves according to the controlled Markovian dynamics. This interpretation is the
first step in the linear programming (LP) approach to MDPs introduced by Manne [18, 99].
The second step is to recognize that the dynamics can be expressed as a sequence of linear
constraints on the marginals,∑

u′

νk(s
′, u′) =

∑
s,u

νk−1(s, u)Tk−1(x, s′) , s′ ∈ S , 1 ≤ k ≤ K , ν0
0 given. (8.9)
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Another special case of (8.3) is variance-penalized optimal control, for which Ck(νk) =
〈νk, c〉+κ

[
〈νk, c2〉−〈νk, c〉2

]
, with κ > 0 a penalty parameter. The solution to the optimization

problem (8.3) can be expressed using a randomized state feedback policy of the form (8.8)
[6, 119, 106].

8.1.3 Kullback-Leibler-Quadratic control

In this approach to feedforward control we choose a Markovian model of the form (8.7,8.8)
to define nominal behavior: for a collection {φ0

k} ⊂ Φ,

p0(~x) = ν0
0(x0)P 0

0 (x0, x1)P 0
1 (x1, x2) · · ·P 0

K−1(xK−1, xK) (8.10a)

P 0
k (x, x′) = Tk(x, s

′)φ0
k+1(u′ | s′) , x, x′ ∈ X (8.10b)

Any other {φk} ⊂ Φ defines a Markov chain X with transition matrices,

Pk(x, x
′) := P{Xk+1 = x′ | Xk = x} = Tk(x, s

′)φk+1(u′ | s′) . (8.11)

The marginals evolve according to linear dynamics, similar to (8.9):

νk = νk−1Pk−1 , 1 ≤ k ≤ K (8.12)

in which νk is interpreted as an n-dimensional row vector, with n = |X|.
We obtain a convex program by optimizing over {νk}, similar to the LP approach of [99].

Scalar variables {γk} are introduced to simplify the objective, in anticipation of a Lagrangian
decomposition:

J?(ν0
0):= min

ν,γ

[ K∑
k=1

D(νk, ν
0
k) +

κ

2

K∑
k=1

γ2
k

]
(8.13a)

s.t. γk = 〈 νk,Y 〉 − rk , (8.13b)∑
u′

νk(s
′, u′) =

∑
s,u

νk−1(s, u)Tk−1(x, s′) , 1 ≤ k ≤ K (8.13c)

The relative entropy rate is adopted as the cost of deviation:

D(νk, ν
0
k) :=

∑
s,u

νk(s, u) log
(φk(u | s)
φ0
k(u | s)

)
(8.14)

The terminology is justified through the following steps. First, we have seen that any ran-
domized policy gives rise to a pmf p ∈ S(XK+1) that is Markovian:

p(~x) = ν0
0(x0)P0(x0, x1)P1(x1, x2) · · ·PK−1(xK−1, xK)

The relative entropy (Kullback-Leibler divergence) is the mean log-likelihood:

D(p‖p0) =
∑

L(~x) p(~x) (8.15)

where L = log(p/p0) is an extended-real-valued function on XK+1. The expression for Pk in
(8.11) and the analogous formula for P 0

k using φ0
k+1 gives

L(~x) = log
( p(~x)

p0(~x)

)
=

K−1∑
k=0

log
(Pk(xk, xk+1)

P 0
k (xk, xk+1)

)
=

K∑
k=1

log
(φk(uk | sk)
φ0
k(uk | sk)

)
(8.16)

Consequently, D(p‖p0) =
∑K

k=1D(νk, ν
0
k).
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Proposition 8.1.1. With D chosen as the relative entropy rate (8.14), the optimization
problem (8.13) is convex in {νk, γk : 1 ≤ k ≤ K}. Furthermore, the linear constraints in
(8.13c) are equivalent to (8.12).

8.1.4 Main contributions

KLQ optimal control. Consideration of the dual of the convex optimization problem
(8.13) leads to many insights. The main conclusions summarized here are a special case of
Theorem 8.2.1:

Theorem 8.1.2. [KLQ solution]. Consider the convex program (8.13). An optimizer {φ?k :
1 ≤ k ≤ K} exists, is unique, and is of the form:

φ?k(u | s) = φ0
k(u | s) exp

(∑
s′

Tk(x, s
′)g?k+1(s′) + λ?kY(s, u)− g?k(s)

)
, (8.17a)

where g?k(s) = log
(∑

u

φ0
k(u | s) exp

(∑
s′

Tk(x, s
′)g?k+1(s′) + λ?kY(s, u)

))
(8.17b)

and {λ?k : 1 ≤ k ≤ K}, {g?k(s) : 1 ≤ k ≤ K} are the Lagrange multipliers for the constraints
(8.13b) and (8.13c), respectively, and gK+1 ≡ 0.

Proposition 8.2.2 motivates a two-step approach in which λ? is obtained as the solution to
a convex program that maximizes the dual function ϕ?, and then g? are computed through
the nonlinear recursion (8.17b). Hence the larger computational challenge is computing λ?.
Expressions for the derivatives of ϕ? involve means and variances of Y(Xk), which invites the
application of Monte-Carlo techniques when the state space is large or even uncountable—see
Section 8.2.3.

Application to Demand Dispatch. The original motivation for the research surveyed
here is application to distributed control of power systems. The term Demand Dispatch was
introduced in the conceptual article [22] to describe the possibility of distributed intelligence
in electric loads, designed so that the population would help provide supply-demand balance
in the power grid.

The numerical results surveyed in Section 8.3 illustrate the application of KLQ to control
a large population of residential loads. As expected, tracking error can be made arbitrarily
small with large κ > 0, provided the reference signal is feasible.

It is found in numerical experiments that the histograms defining the state of the mean-
field model rapidly “forget” their initial conditions. For example, Figure 8.1 shows the evolu-
tion of the histograms over time from six different degenerate initial conditions; within a few
hours, they become nearly identical. If this phenomenon holds under general conditions, then
it has important implications for control design. Further discussion is contained in Section 8.4.

Organization The remainder of this chapter is organized as follows: Section 8.2 describes a
relaxation technique motivated by the desire to reduce computational complexity, along with
a full analysis of the convex program (8.13) and its dual. Results from numerical experiments
are collected together in Section 8.3. Conclusions and directions for future research are
contained in Section 8.4.
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Figure 8.1: Evolution of the marginals {ν?k} of individual agents with κ = 150, from six different
initial conditions. The histograms nearly coincide after about three hours.

8.2 Kullback-Leibler-Quadratic Optimal Control

8.2.1 Subspace relaxation

A relaxation of the convex program (8.13) is described here. Motivation is most clear from
consideration of distributed control of a collection of residential water heaters. These loads
are valuable as sources of virtual energy storage since they in fact are energy storage devices
(in the form of heat rather than electricity), and are also highly flexible. Flexibility comes
in part from their extremely non-symmetric behavior: a typical unit may be on for just five
minutes, and off continuously for more than six hours. The inter-sampling time at the load
should be far less than five minutes to obtain a reliable model for control.

On the other hand, it is valuable for the time horizon to be on the order of several hours.
For example, peak-shaving is more effective when water heaters have advance warning to
pre-heat the water tanks. To obtain a useful control solution will thus require a very large
value of K in (8.13). To reduce complexity, an approach is proposed here based on lossy
compression of {rk} using transform techniques.

The transformations are based on a collection of functions {wn : 1 ≤ n ≤ N}, with
wn : {0, 1, . . . ,K} → R for each n, and N � K. The transformed signal is the N -dimensional
vector r̂ with r̂n =

∑
k wn(k)rk for each n, and the transformed function on XK+1 is denoted

Ŷn(~x) =
K∑
k=1

wn(k)Y(xk) , 1 ≤ n ≤ N

The goal is to achieve the approximation 〈 p, Ŷn 〉 ≈ r̂n for each n, while maintaining
p ≈ p0. For example, a Fourier series can be used, with frequency ω > 0, and N is necessarily
odd:

{wn(k) : 1 ≤ n ≤ N} = {1, sin(ωmk), cos(ωmk) : 1 ≤ m ≤ (N − 1)/2}
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The degenerate family is defined by

wn(k) = I{n = k} , 1 ≤ n, k ≤ K (8.18)

so that N = K in this case.
The optimal control problem with subspace relaxation is defined as the optimal control

problem

J?(ν0
0) := min

ν,γ

K∑
k=1

D(νk, ν
0
k) +

κ

2

N∑
n=1

γ2
n (8.19a)

s.t. γn = 〈 p, Ŷn 〉 − r̂n , 1 ≤ n ≤ N (8.19b)∑
u′

νk(s
′, u′) =

∑
s,u

νk−1(s, u)Tk−1(x, s′) , 1 ≤ k ≤ K , s′ ∈ S (8.19c)

This reduces to (8.13) in the degenerate case (8.18).
The theory that follows is based in part on a relaxation of the dynamical constraints

(8.19c), through the introduction of a Lagrange multiplier for each k. This is precisely the
first step in the construction of the Hamiltonian in the Minimum Principle approach to optimal
control [95].

8.2.2 Duality

Structure for the solution of (8.19) will be obtained by consideration of a dual, in which
λ ∈ RN and g ∈ RK×J? denote the vectors of Lagrange multipliers for the first and second set
of constraints, respectively. The matrix g is interpreted as a sequence of functions gk : S→ R
that are entirely analogous to the co-state variables in the Minimum Principle (the Lagrange
multipliers for the dynamical constraints) [95].

The Lagrangian is denoted

L(ν, γ, λ, g) =
K∑
k=1

D(νk, ν
0
k) +

κ

2

N∑
n=1

γ2
n +

N∑
n=1

λn

(
γn +

K∑
k=1

wn(k)
[
rk − 〈νk,Y〉

])
+

K∑
k=1

∑
s′

(∑
u′

νk(s
′, u′)−

∑
s,u

νk−1(s, u)Tk−1(x, s′)
)
gk(s

′) (8.20)

and the dual function is defined to be its minimum:

ϕ?(λ, g) := min
ν,γ
L(ν, γ, λ, g)

The dual of the optimization problem (8.19) is defined as the maximum of the dual function
ϕ? over λ and g (see [95] for a complete and accessible treatment of this theory). We will see
that there is no duality gap, so that for a quadruple (ν?, γ?, λ?, g?),

J?(ν0
0) = L(ν?, γ?, λ?, g?) = ϕ?(λ?, g?) .

In the following subsections a representation of the dual function is obtained that is suit-
able for optimization, which results in a valuable representation for the optimal policy. Prop-
erties of the dual function are contained in Theorem 8.2.1 and Proposition 8.2.2 that follow.
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The statement of these results requires additional notation: define a function T λk : R|S| → R|S|,
for f : S→ R and λ ∈ RN , via

T λk (f ; s) = log
(∑

u

φ0
k(u | s) exp

(∑
s′

Tk(x, s
′)f(s′) + λ̌kY(s, u)

))
, s ∈ S ,

where λ̌k =

N∑
n=1

λnwn(k)

(8.21)

The maximum of the dual function over g is denoted

ϕ?(λ) := max
g
φ?(λ, g) = ϕ?(λ, gλ)

where gλ is a maximizer, gλ ∈ arg max
g

φ?(λ, g). It is shown in Proposition 8.2.2 that the

vector valued function gλ satisfies the recursion

gλk = T λk (gλk+1) , 1 ≤ k ≤ K , where gλK+1 ≡ 0 . (8.22)

This forms part of the proof of Theorem 8.2.1, with complete details postponed to ??.

Theorem 8.2.1. There exists a maximizer {λ?n, g?k : 1 ≤ n ≤ N, 1 ≤ k ≤ K} for ϕ?, and
there is no duality gap:

ϕ?(λ?, g?) = J?(ν0
0)

The optimal policy is obtained from {g?k} via:

φ?k(u | s) = φ0
k(u | s) exp

(∑
s′

Tk(x, s
′)g?k+1(s′) + λ̌?kY(s, u)− g?k(s)

)
where g?k(s) = T λk (g?k+1; s) for 1 ≤ k ≤ K, and g?K+1 ≡ 0 ,

(8.23)

and {λ̌?k} are obtained from {λ?n} via (8.21).

Denote for each k,

Gλk(x) =
∑
s

Tk−1(x, s)gλk (s) (8.24)

Proposition 8.2.2. The following hold for the dual of (8.19): for each λ ∈ RN ,

(i) A maximizer gλ is given by (8.22)

(ii) The maximum of the dual function over g is the concave function

ϕ?(λ) = λT r̂ − 1

2κ
‖λ‖2 − 〈 ν0

0 , G
λ
1 〉 (8.25)

(iii) The function (8.25) is continuously differentiable, and

∂

∂λn
ϕ?(λ) = r̂n −

1

κ
λn −

K∑
k=1

wn(k)〈 νλk ,Y 〉 , 1 ≤ n ≤ N (8.26)

where {νλk } is the sequence of marginals obtained from the randomized policy defined in
(8.23), substituting {g?k} by {gλk} defined in (i).
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r r∗

ϕ∗(λn + rv)

Figure 8.2: Dual function along a line-segment

To conclude this section, we provide representations of the log-likelihood ratio, L(~x), rel-
ative entropy D(pλ‖p0), and primal objective function for the pmf pλ ∈ S(XK+1) obtained
from the randomized policy defined in (8.23), substituting {g?k} by {gλk} defined in Proposi-
tion 8.2.2, part (i).

Corollary 8.2.3. The following hold for all {λ̌k, gλk : 1 ≤ k ≤ K}:

(i) The log-likelihood ratio can be expressed:

L(~x) =
K∑
k=1

{∆k(xk−1, sk) + λ̌kY(xk)} −Gλ1(x0) (8.27)

where for each k (recalling xk = (sk, uk)),

∆k(xk−1, sk) = Gλk(xk−1)− gλk (sk) (8.28)

(ii) The relative entropy is given by

D(pλ‖p0) =
K∑
k=1

λ̌k〈 νλk ,Y 〉 − 〈 ν0
0 , G

λ
1 〉 (8.29)

(iii) The value of the primal is given by

J(pλ, ν0
0) :=D(pλ‖p0) +

κ

2

N∑
n=1

γ2
n (8.30a)

= −〈 ν0
0 , G

λ
1 〉+

K∑
k=1

λ̌k〈 νλk ,Y 〉+
κ

2

N∑
n=1

γ2
n (8.30b)

with γn = 〈 pλ, Ŷn 〉 − r̂n.

The stochastic process {∆k(Xk−1, Sk)} is a martingale difference sequence; it vanishes
when nature is deterministic, reducing to the solution obtained in [34].
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8.2.3 Algorithms

Given the simple form of the derivative (8.26), it is tempting to apply gradient ascent to
obtain λ?. The difficulty with standard first-order methods is illustrated in Figure 8.2. This
is a plot of a typical example in which λn ∈ RN is given, v = ∇ϕ? (λn), and the plot shows
ϕ? (λn + rv) for a range of positive r. We have found in examples that using gradient ascent
on this cone-shaped curve may be slow to converge, likely due to a large “overshoot” when
applying standard first-order methods.

In the numerical results that follow we opt for proximal gradient methods [114].

Monte Carlo methods. The gradient of the dual function may be expressed in terms of
the first-order statistics of the random variables {Ŷn( ~X) : 1 ≤ n ≤ N} when ~X ∼ pλ:

E[Ŷn( ~X)] =
∑
~x

pλ(~x)

K∑
k=1

wn(k)Y(xk)

=

K∑
k=1

wn(k)
∑
xk

∑
xi,i 6=k

pλ(~x)Y(xk) =

K∑
k=1

wn(k)〈 νλk ,Y 〉
(8.31)

Lemma 8.2.4 follows from (8.26) combined with (8.31):

Lemma 8.2.4. For any λ ∈ RN and 1 ≤ n ≤ N ,

∂

∂λn
ϕ?(λ) = r̂n −

1

κ
λn − E[Ŷn( ~X)] , in which ~X ∼ pλ. (8.32)

See [28] for more on Monte Carlo methods and KLQ.

8.3 Applications to Demand Dispatch

An application of the control framework described in the previous sections is Demand Dis-
patch: an evolving science for automatically controlling flexible loads to help maintain supply-
demand balance in the power grid. The goal of demand dispatch (DD) is to modify the be-
havior of flexible loads such that the aggregate power consumption tracks a reference signal
that is broadcast by a balancing authority (BA).

In the numerical examples here we focus entirely on the mean-field model. We know from
prior work that evolution of the empirical distributions does closely track this idealization: for
reasonably large N , following the notation (8.1b), the approximation ν Nk ≈ νk holds and the
covariance of the error grows slowly with k (error is reduced with feedback [37, 39]). Although
the control architecture in this prior work is very different, it should not surprise the reader
that the law of large numbers and associated central limit theorem hold in this setting.

Although these techniques can be applied to any flexible load, the experiments in this
section demonstrate distributed control of a population of residential water heaters or refrig-
erators. An MDP model is constructed in which the state is the standard used to capture
hysteresis control, Sk = (θk, Uk−1), in which θk ∈ R is the temperature, and Uk ∈ {0, 1}
denotes power mode for each k. Remember the physical system operates in continuous time,
and k represents the kth sampling time. This means that Uk−1 represents the power mode
during the sampling interval ending at the kth sampling time.
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8.3.1 Designing the nominal model

Construction of the nominal model with transition matrices {P 0
k } of the form (8.10b) requires

specification of dynamics of nature and the nominal policy. In the case of water heaters, the
sequence of transition matrices {Tk} for nature were based on input-output data obtained
from Oak Ridge National Laboratories [41]. For refrigerators, T was taken independent of k,
constructed based on simulations of the standard linear TCL model:

θk+1 = θk + α[θa − θk]− βUk +Dk+1 , (8.33)

in which α, β > 0, θa denotes the (time-invariant) ambient air temperature, and the distur-
bance process D captures modeling error and usage.

In all cases the nominal policy was chosen time-homogeneous: φ0
k ≡ φ0 is a fixed ran-

domized policy, designed to approximate deterministic hysteresis control. We describe the
construction for water heaters, following [107, 41].

The upper and lower temperature limits that define a deadband are denoted Θ−, Θ+,
respectively. A standard residential water heater switches deterministically when it reaches
the limits, but φ0 is constructed so that the power mode will switch stochastically, often
before reaching one of the two limits. The randomized decision rule is represented by two
CDFs: F⊕ is the CDF for the temperature at which power turns on, and F	 is the CDF for
the temperature at which power turns off.

A particular design for these CDFs, already discussed in Section 6.4 and shown in Fig-
ure 6.3, is obtained on fixing parameters θ⊕0 , θ

	
0 ∈ [Θ−,Θ+], ς ∈ (0, 1) and η > 1:

F	(θ) = ς(θ − θ	0 )η+,

F⊕(θ) = 1− ς(θ⊕0 − θ)η+ , θ ∈ [θ−, θ+) .

Without loss of generality it is assumed that the sampling interval is 1 unit. At time instance
k, the decision rule is:

(i) If Uk = 0 then Uk+1 = 1 with probability φ0
k(1|s) =

[F⊕(θk−1)− F⊕(θk)]+
F⊕(θk−1)

.

(ii) If Uk = 1 then Uk+1 = 0 with probability φ0
k(0|s) =

[F	(θk)− F	(θk−1)]+
1− F	(θk−1)

.

8.3.2 Tracking

In practical applications the aggregate power is of interest, which is approximated by %N yk
at time k, where % is the rated power of a single load. Hence the total population size N
must be taken into account in any tracking problem. In plots that follow, we choose to focus
on the “normalized” response, defined as follows: yref

k = rk/% , ŷ
ref
k = r̂k/% , yk = 〈νk,Y〉/%. In

this context, yk can be interpreted as the probability of a load being on.
The two sets of plots in Figure 8.3 are distinguished by the reference signal. In each case

the reference signal is a square wave. In (a) the signal is feasible, and in (b) it violates the
energy limits of the collection of water heaters [69]. In Figure 8.3 (a) it is seen that tracking
is nearly perfect for sufficiently large κ. Tracking of the larger reference signal would require
temperature deviations to exceed the deadband of the water heater. Instead, we observe in
Figure 8.3 (b) a graceful truncation of the reference signal.
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Figure 8.3: Evolution of N〈νk,Y〉: (a) reference signal is feasible; (b) reference signal is infeasible.
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Figure 8.4: The normalized duality gap approaches zero in each experiment.

Figure 8.1 displays the results of a tracking experiment comparing six different initial
conditions. Observe how their marginal distributions become nearly identical within a few
hours. Recall that this control problem requires knowledge of the initial distribution ν0.
These results suggest that an accurate estimate of the global marginal distribution can be
readily available at each load.

8.4 Discussion and related results

Literature review

Mean field control. The optimization problem (8.3) is inspired by mean-field game theory
[91, 73, 74, 29, 65, 140] (see [35, 36, 30, 129] for recent surveys).

Mean-field control differs from mean-field game theory only because of greater control
at the microscopic layer: we do not assume that an individual in the population is free to
optimize based on its local objective function, so we avoid the fragility of Nash equilibria.
This description is similar to ensemble control in physics (see [92] for history), and many in
the power systems area opt for this term rather than mean-field control (see [42, 41] and their
references).

Demand Dispatch. The goal of Demand Dispatch is to modify the behavior of loads so
that their aggregate power consumption tracks a reference signal {rk} that is synthesized by
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a balancing authority (BA). Randomized control techniques have been proposed in [104, 130,
107, 5, 42, 12] based on various control architectures.

The following control strategy is common to the approaches described in [107, 41]. It
is assumed that a family of transition matrices {Pζ : ζ ∈ R} is available at each load. A
sequence {ζ0, ζ1, . . . } is broadcast from the BA, based on measurements of the grid, and at
time k the ith load transitions according to this law:

P{Xi
k+1 = x′ | Xi

k = x, ζk = ζ} = Pζ(x, x
′)

IPD. The paper [107] re-interprets the control solution of [132] as a technique to create the
family {Pζ} through the solution to the nonlinear program:

Pζ := arg max
{
ζ〈π,Y 〉 −R(P‖P 0)

}
, ζ ∈ R , (8.34)

where R denotes the rate function of Donsker and Varadhan [51, 90],

R(P‖P 0) :=
∑
x,x′

π(x)P (x, x′) log
( P (x, x′)
P 0(x, x′)

)
(8.35)

in which π is the invariant pmf for P . The maximum in (8.34) is over all (π, P ) subject to the
invariance constraint πP = π [107, 26]. The convex program (8.34) is called the Individual
Perspective Design (IPD) in [26].

The finite-horizon version of (8.34) is also considered in [107, 26], similar to the KLQ
formulation:

pζ := arg max
p

{
ζEp

[ K∑
k=1

Y(xk)
]
−D(p‖p0)

}
. (8.36)

Provided the entries of Tk(x, s) take on only binary values, the finite-horizon IPD solution is
obtained as a tilting of the nominal model:

pζ(~x) = p0(~x) exp
(
ζ

K∑
k=1

Y(xk)− Λ(ζ)
)
, with Λ(ζ) a normalizing constant. (8.37)

Further research

This chapter provides a complete theory for KLQ, without the restriction to deterministic
dynamics imposed in [34, 42]. Plans for future research include:

(i) Monte-carlo approaches for both feedforward and feedback control designs.

(ii) Investigate alternative transform techniques.

KLQ and optimal transport. Extensions of the KLQ objective will likely provide useful
relaxations of the classical optimal transport problem, in which the goal is to steer p0 to
a given target pmf p? [136, 115, 40]. Rather than match the target pmf, we might match
M generalized moments, minimizing D(p‖p0) subject to 〈p,Gi〉 = 〈p?,Gi〉 for each i, with
Gi : XK+1 → R.

A special case is the tracking problem,

min
p

{
D(p‖p0) subject to Ep

[
Y(Xk)

]
= rk , 1 ≤ k ≤ K

}
(8.38)
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This optimization problem is proposed in [42, Section 5], along with the explicit solution

p?(~x) = p0(~x) exp
( K∑
k=1

βkY(xk)− Λ(β)
)

(8.39)

in which β ∈ RK are Lagrange multipliers corresponding to the K constraints, and Λ(β) a
normalizing constant.

Preliminary results are summarized in [50].

Information architectures. On the application side, the choice of information architec-
ture is an interesting topic for future research. Here are three possibilities:

(i) Smart BA: The BA uses the reference signal {rk} and its estimate of ν0
0 to compute λ?

and broadcast it to the loads.

(ii) Smart Load : The BA broadcasts {rk} to the loads. Each load computes λ? based on its
internal model and ν0

0 = δx0 , with x0 ∈ X its current state.

(iii) Genius Load : The BA broadcasts {rk} to the loads. Each load computes λ? based on its
internal model and its estimate of ν0

0 .

Each approach has its strengths and weaknesses. Approaches (i) and (iii) require knowl-
edge of the initial marginal pmf of the population, ν0

0 . If a perfect estimate is assumed, then
the total cost in cases (i) and (iii) is equal to J?(ν0

0). But, how can a load estimate the
marginal pmf of the population? Recall the coupling shown in Figure 8.1: the histograms are
nearly identical after about three hours, regardless of the initial condition. If enough time
has passed since the latest MPC iteration, the pmfs {νk} computed locally can be used to
approximate the marginal pmf of the population (perhaps smoothed using the techniques of
[37, 39]).

In contrast, the total cost for case (ii) is the sum,
∑d

i=1 ν
0
0(xi)J?(δxi) since each load

optimizes according to its own initial state, xi. Even when the aggregate can easily track
{rk}, the cost J?(δxi) may be very large for individuals that are at odds with the reference
signal. For example, an increase in power consumption could be requested while a water
heater is near its upper temperature limit and must turn off. So, it is possible that approach
(ii) will impose greater stress on the loads as compared to the other two options, or will lead
to reduced capacity.
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ABSTRACT 
 
This manuscript summarizes one part of my research. The focus is on the decision and 
control in networks with stochastic demand and supply that have to be balanced by a 
central entity, or using a distributed control design. Two different settings are considered: 
stochastic matching systems and real-time balancing of stochastic demand and supply in 
power grids. The objective is similar, yet the models differ considerably and use 
techniques from various fields including queueing systems and network flows from graph 
theory for stochastic matching, and mean-field approximations and control theory for real-
time demand-supply balancing. Both settings use Markov decision processes.   
 
The manuscript is organized in two parts: Part I covers stochastic matching systems and 
Part II balancing of stochastic demand and supply in power grids. The two parts can be 
read independently of each other.  
 
 

RÉSUMÉ 
 
Ce manuscrit résume une partie de mes travaux de recherche. L'accent est mis sur la 
décision et le contrôle dans les réseaux avec une demande et une offre stochastiques qui 
doivent être équilibrées par une entité centrale, ou en utilisant une architecture de 
contrôle distribuée. Deux contextes différents sont considérés : les systèmes 
d'appariement stochastique et l'équilibrage en temps réel de la demande et de l'offre 
stochastiques dans les réseaux électriques. L'objectif est similaire, mais les modèles 
diffèrent considérablement et utilisent des techniques issues de divers domaines, 
notamment les systèmes de files d'attente et les réseaux de flot de la théorie des graphes 
pour l'appariement stochastique, ainsi que les approximations du champ moyen et la 
théorie du contrôle pour l'équilibrage de l'offre et de la demande en temps réel. Les deux 
utilisent des processus markoviens de décision. 
 
Le manuscrit est organisé en deux parties : la première partie traite les systèmes 
d'appariement stochastique et la deuxième, l'équilibrage de la demande et de l'offre 
stochastiques dans les réseaux électriques. Les deux parties peuvent être lues 
indépendamment l’une de l’autre. 
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