CHAÎNES DE MARKOV (3)

Exercice 1

Retour à l'état initial

Soit τ le temps de retour à l'état initial d'une chaîne de Markov homogène irréductible et récurrente positive $\{X_n\}$ d'espace d'état E, c'est-à-dire $\tau = \inf\{n \mid X_n = X_0\}$.

- 1. Calculer l'espérance de τ quand la distribution initiale est la distribution stationnaire de $\{X_n\}$. En déduire que cette espérance est finie si et seulement si E est fini.
- **2.** Est-ce contradictoire avec le fait que $\{X_n\}$ soit récurrente positive?

Exercice 2

Théorème de Kolmogorov pour les chaînes périodiques

Soit $\{X(n)\}_{n\in\mathbb{N}}$ une chaîne de Markov irréductible, récurrente positive et de période d et de probabilité stationnaire π .

- 1. Montrer que la chaîne $\{X_{nd}\}_{n\in\mathbb{N}}$ possède d classes de communication $\mathcal{C}_1,\ldots,\mathcal{C}_d$, toutes apériodiques.
- **2.** Que vaut $\sum_{i \in C_1} \pi(i)$?
- 3. Quelle est la probabilité stationnaire de la classe de communication C_1 ?
- **4.** En déduire le comportement de la suite $p_{i,j}(n)$ quand $n \to \infty$.

Exercice 3

Marche aléatoire sur un cube

On définit la marche aléatoire sur les sommets d'un cube représenté sur la figure suivante : si $\{X_n\}$ est la chaîne de Markov la représentant, alors $P(X_{n+1}=j\mid X_n=i)=1/3$ si i et j sont voisins, et 0 sinon.

On note T_x le temps d'atteinte du sommet $x: T_x = \min\{n \ge 0 \mid X_n = x\}$.

- **1.** Calculer $\mathbb{E}_O[T_U]$.
- **2.** Calculer $P_A(T_U < T_O)$.
- **3.** Calculer p_k la probabilité que partant de O, la chaîne visite exactement k fois U avant le premier retour en O.

Exercice 4

La chaîne serpent

Soit $\{X_n\}_{n\geq 0}$ une chaîne de Markov homogène d'espace d'état E et de matrice de transition P. Pour $L\geq 1$, on définit $Y_n=(X_n,X_{n+1}\ldots,X_{n+L})$.

- 1. Le processus $\{Y_n\}_n$ prend ses valeurs dans $f = E^{L+1}$. Montrer que c'est une chaîne de Markov homogène et donner sa matrice de transition.
- **2.** Montrer que si $\{X_n\}$ est irréductible, il en est de même pour $\{Y_n\}$ si on restreint l'espace de cette dernière à $F = \{(i_0, \dots, i_L) \in E^{L+1} \mid p_{i_0 i_1} \cdots p_{i_{L-1} i_L} > 0\}.$
- **3.** Montrer que $\{Y_n\}$ est récurrent positive si et seulement si $\{X_n\}$ l'est. Quelle est alors la distribution stationnaire de $\{Y_n\}$ en fonction de celle de $\{X_n\}$?