APPROXIMATION POISSONIENNE

Exercice 1

Bornes de Chernoff pour la loi de Poisson

Soit X une v.a. distribuée selon une loi de Poisson de paramètre μ . Montrer que pour tout $x > \mu$,

$$P(X \ge x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}$$

et que pour tout $x < \mu$,

$$P(X \le x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}.$$

Exercice 2

Divisibilité de la loi Poissonnienne

Soit X une variable aléatoire poissonnienne d'espérance μ . Pour chaque $i \in \{1, 2, ..., X\}$ soit B_i une variable aléatoire de Bernoulli d'espérance p. Soit Y le nombre de B_i tel que $B_i = 1$ et Z le nombre de B_i tel que $B_i = 0$.

Montrer que Y et Z sont des variables aléatoires poissonniennes d'espérance μp et $\mu(1-p)$, et qu'elles sont indépendantes.

Exercice 3

Approximation vs. réalité

On jète n balles uniformement et indépendamment dans n urnes. Soit p_n la probabilité que chaque urne contienne exactement 1 balle.

- 1. Donner une borne supérieure pour p_n en utilisant l'approximation poissonnienne.
- **2.** Donner une expression exacte pour p_n .
- 3. Interpréter le quotient de p_n et sa borne supérieure en termes d'une probabilité.

Exercice 4

Collectionneur de coupons

Soit X le nombre de boîtes ouvertes jusqu'à ce que le collectionneur ait obtenu tous les coupons. On veut montrer que

$$\lim_{n \to \infty} P(X > n \log n + cn) = 1 - e^{-e^{-c}}$$

pour tout c > 0.

Pour ça, on interprète l'événement $X > n \log n + cn$ comme une urne étant vide après le jet de $m = \lfloor n \log n + cn \rfloor$ balles dans n urnes. On denote par \mathcal{E} l'événement qu'aucune urne n'est vide si le nombre de balles dans chaque urne est une variable poissonnienne à espérance $\log n + c$ et par Y le nombre total de balles.

1. Montrer que $\lim_{n\to\infty} P(\mathcal{E}) = e^{-e^{-c}}$.

- **2.** Montrer que $P(|Y-m| > \sqrt{2m \log m}) \to 0$ quand $n \to \infty$.
- **3.** Montrer que $P(\mathcal{E} \mid |Y m| \le \sqrt{2m \log m}) P(\mathcal{E} \mid Y = m) \to 0$ quand $n \to \infty$.
- **4.** En déduire que $\lim_{n\to\infty} P(\mathcal{E}) = \lim_{n\to\infty} P(\mathcal{E} \mid Y=m)$.
- 5. Conclure.

Exercice 5 Balles et urnes

On jète n balles dans n urnes.

- 1. Quelle est la probabilité que l'urne 1 ait exactement une balle étant donné que exactement une balle est dans les 4 premières urnes?
- 2. Quelle est l'espérance conditionnelle du nombre de balles dans l'urne 1 étant donné que l'urne 2 est vide?
- **3.** Donner une expression pour la probabilité que l'urne 1 contienne plus de balles que l'urne 2.
- 4. À chaque ronde, on jète les balles uniformement et indépendamment dans les urnes et on retire les balles qui sont seules dans leur urne. S'il y a b balles au début d'une ronde, quel est le nombre espéré f(b) de balles retirées dans cette ronde?

Exercice 6 Processus de branchement sous condition d'extinction

L'historique d'un processus est la séquence $H = (Z_0, Z_1, \ldots, Z_T)$ du nombre d'enfants de chaque individu (parcourt en largeur). En notant $Y_t = \sum_{s=0}^t Z_s$, on doit donc avoir $Y_0 = 1$, $Y_t > t$ pour t < T, et $Y_T = T$ si $T < \infty$.

1. Soit (x_0, \ldots, x_t) un historique fini. Exprimer $P(H = (x_0, \ldots, x_t))$ en fonction de la loi de Z.

On considère désormais que Z suit une loi de Poisson de paramètre $\lambda > 1$. On note p la probabilité d'extinction du processus (rappel : $p = e^{\lambda(p-1)} < 1$) et $\mu = \lambda p$.

- **2.** Montrer que μ est l'unique solution de $\frac{\phi(s)}{s} = \frac{\phi(\lambda)}{\lambda}$ telle que s < 1.
- 3. Montrer que, conditionnellement à l'extinction du processus, la loi de l'historique coïncide avec celle de l'historique pour une loi de reproduction de Poisson de paramètre μ .