Critères de Foster, temps de couverture

Exercice 1

Comparaison de deux politiques de partage d'un canal

Un canal de communication est partagé entre K > 1 classes d'utilisateurs. Les utilisateurs de classe k offrent un trafic i.i.d. de A_n^k paquets dans la case n. Les trafics offerts sont indépendants. Les deux politiques suivantes sont considérées.

- (a) La case de temps n est attribuée à la classe k avec probabilité p_k , avec $\sum_{k=1}^K p_k = 1$, les attributions étant indépendantes. Dans ce cas un paquet de la classe k est transmis s'il y a des paquets de cette classe en attente au début de la case et ce dernier n'est pas utilisé sinon.
- (b) La case n est attribuée de manière équiprobable à l'une des classes ayant des paquets en attente au début de la case.

Soit X_n^k le nombre de paquets de classe k en attente au début de la case n et soit $X_n = (X_n^1, \ldots, X_n^K)$.

- 1. Montrer que pour chaque politique, $\{X_n\}$ est une chaîne de Markov homogène sur \mathbb{N}^K en donnant des représentations de la forme $X_{n+1} = f(X_n, \xi_{n+1})$, où $\{\xi_n\}$ est une suite i.i.d.
- **2.** Montrer que si pour tout k, $p_k > 0$, $\mathbf{P}(A_0^k = 0) > 0$ et $\mathbf{P}(A_0^k = \ell) > 0$ pour un ℓ qui ne dépend pas de k, alors il y a irréductibilité.
- 3. Pour la politique (b), montrer que la chaîne est récurrente positive si $\sum_{k=1}^K \mathbf{E}[A_0^k] < 1$. Donner une borne sur le temps de retour de $\{X_n\}$ au point $(0,\ldots,0)$ en fonction de la condition initiale.
- **4.** Montrer que pour la politique (a), il ne peut y avoir récurrence positive si $\mathbf{E}[A_0^k] \geq p_k$ pour un k.
- 5. Montrer que pour la politique (a), il ne peut y avoir récurrence si $\mathbf{E}[A_0^k] < p_k$ pour un k.

Exercice 2

Temps de couverture

Soit $\{X_n\}_{n\in\mathbb{N}}$ une marche aléatoire sur le cycle de longueur n. Le temps de couverture τ_{cov} d'une chaîne de Markov est le premier temps auquel tous les états ont été visités. Le pire temps de couverture moyen est

$$t_{cov} = \max_{x \in E} \mathbf{E}_x(\tau_{cov}).$$

Le but de cet exercice est de calculer le temps de couverture pour le cycle de longueur n. Considérons tout d'abord la marche aléatoire sur \mathbb{Z} . On note c_k le premier temps auquel k états ont été visités.

- 1. Donner une relation de récurrence entre $\mathbf{E}[c_k]$ et $\mathbf{E}[c_{k-1}]$.
- **2.** En déduire $\mathbf{E}[c_n]$.
- 3. En déduire le temps de couverture du cycle de longueur n.

Exercice 3

Temps d'atteinte et de couverture

Soit $\{X_n\}$ une chaîne de Markov sur un espace d'états fini E. Le temps d'atteinte d'un état x est noté τ_x . On définit t_{hit} le pire temps d'atteinte moyen comme

$$t_{hit} = \max_{x,y \in E} \mathbf{E}_x(\tau_y).$$

1. Montrer que $t_{hit} \leq t_{cov}$.

Soient x l'état initial et σ une permutation sur E choisie de manière uniforme et indépendante de la chaîne. Soit T_k le premier temps auquel les états $\sigma(1), \ldots, \sigma(k)$ ont tous été visités.

2. Montrer que $\mathbf{E}_x(T_1) \leq t_{hit}$.

Soit $L_k = X_{T_k}$. Étant donnés deux états r et s distincts, on définit l'événement $A_k(r,s) = \{\sigma(k-1) = r$ et $\sigma(k) = L_k = s\}$, ainsi que $A_k = \bigcup_{r \neq s} A_k(r,s)$.

- **3.** Calculer $\mathbf{E}_x(T_k T_{k-1} \mid A_k^c)$ et borner $\mathbf{E}_x(T_k T_{k-1} \mid A_k)$.
- **4.** En déduire que $t_{cov} \le t_{hit} (1 + \frac{1}{2} + \dots + \frac{1}{n})$.
- 5. Calculer t_{hit} pour le cycle de longueur n.