DEVOIR MAISON

Exercice 1

Inégalité de l'espérance conditionnelle

Soit $X = \sum_{i=1}^{n} X_i$, où les X_i sont des variables aléatoires à valeurs dans $\{0,1\}$. On veut montrer que

$$P(X > 0) \ge \sum_{i=1}^{n} \frac{P(X_i = 1)}{E(X \mid X_i = 1)}.$$

Soit Y = 1/X si $X \neq 0$ et Y = 0 sinon.

- 1. Montrer que P(X > 0) = E(XY).
- 2. Montrer que $E(X_iY) \ge \frac{P(X_i=1)}{E(X \mid X_i=1)}$. On pourra utiliser le fait que 1/x est convexe et l'inégalité de Jensen.
- 3. Conclure.

Exercice 2

Nombre de triangles d'un graphe

On note $G_{n,p}$ l'espace probabilisé des graphes Erdös-Renyi à n somments et de probabilité p pour chaque arête. Considérons un graphe de $G_{n,p}$ avec p=1/n. Soit X son nombre de triangles.

- 1. Montrer que $P(X \ge 1) \le 1/6$.
- 2. Montrer que $\lim_{n\to\infty} P(X\geq 1)\geq 1/7$. Indication : Utiliser l'exercice précédent

Exercice 3 Marche aléatoire

Soit $\{X_i\}$, $i \ge 1$ une suite de variables aléatoires indépendantes et équidistribuées à valeur dans $\{-1,1\}$ avec $P(X_i=1)=P(X_i=-1)=1/2$. On considère la marche aléatoire $\{N_n\}$ sur $\mathbb Z$ définie par $N_0=0$ et

$$N_{n+1} = N_n + X_{n+1}, \ n \ge 0.$$

1. Montrer que pour tout a > 0 et tout x > 0,

$$P(N_n > a) < e^{-ax} \mathbb{E}(e^{xN_n}).$$

2. Utiliser le fait que $\cosh x \le e^{x^2/2}$ pour en déduire que

$$P(N_n \ge a) \le e^{-a^2/2n}.$$

3. Poser $a_n = c(2n\ln(n))^{1/2}$ avec c > 1. Déduire du lemme de Borel-Cantelli que

$$P(\limsup_{n} N_n((2n\ln(n))^{-1/2}) < c) = 1.$$

En déduire que

$$P(\limsup_{n} N_n((2n\ln(n))^{-1/2}) \le 1) = 1.$$

Exercice 4

Lemme local de Lovász général

Le but de cet exercice est de montrer le théorème suivant :

Soient E_1, \ldots, E_n des événements dans un espace de probabilité arbitraire, et G = (V, E) le graphe de dépendance de ces événements. S'il existe des nombres $x_1, \ldots, x_n \in [0, 1[$ tels que pour tout $1 \le i \le n$,

$$P(E_i) \le x_i \prod_{j:(i,j)\in E} (1 - x_j),$$

alors

$$P(\cap_{i=1}^n \bar{E}_i) \ge \prod_{i=1}^n (1 - x_i) > 0.$$

Soit $S \subseteq \{1, ..., n\}$. On va montrer par récurrence sur s que si $|S| \le s$, alors $P(\cap_{j \in S} \bar{E}_j) \ge \prod_{j \in S} (1 - x_j) > 0$ et pour tout k,

$$P(E_k \mid \cap_{j \in S} \bar{E}_j) \le x_k.$$
 (H

- 1. Montrer que ceci est vrai pour s = 0.
 - On suppose que la propriété est vraie pour s, et on considère un ensemble S de cardinal s+1.
- **2.** Montrer que $P(\cap_{j\in S}\bar{E}_j) \geq \prod_{j\in S} (1-x_j) > 0$.

On fixe k, on pose $S_1 = \{j \in S \mid (k, j) \in E\}$ et $S_2 = S - S_1$, ainsi que $F_1 = \bigcap_{j \in S_1} \bar{E}_j$, $F_2 = \bigcap_{j \in S_2} \bar{E}_j$ et $F = F_1 \cap F_2$.

- **3.** Montrer que (H) est satisfaite si $S_2 = S$.
- **4.** Montrer que $P(E_k \mid F) = \frac{P(E_k \cap F_1 \mid F_2)}{P(F_1 \mid F_2)}$
- **5.** Montrer que $P(E_k \cap F_1 \mid F_2) \leq x_k \prod_{j:(k,j)\in E} (1-x_j)$ et que $P(F_1 \mid F_2) \geq \prod_{j:(k,j)\in E} (1-x_j)$. En déduire que (H) est satisfaite.
- 6. Conclure.
- 7. En déduire le corollaire suivant (Lemme local de Lovász asymétrique) : Soient E_1, \ldots, E_n des événements dans un espace de probabilité arbitraire, et G = (V, E) le graphe de dépendance de ces événements. pour tout $1 \le i \le n$, $\sum_{j:(i,j)\in E} P(E_j) \le 1/4$, alors $P(\bigcap_{i=1}^n \bar{E}_i) > 0$. Indication : prendre $x_i = 2P(E_i)$.

Exercice 5 Coloriage maigre

Un coloriage β -maigre d'un graphe est un coloriage propre (deux sommets adjacents ne peuvent avoir la même couleur), où pour chaque sommet v, dans le voisinage de v, au plus β sommets ont la même couleur.

Le but de l'exercice est de montrer que si Δ , le degré maximum d'un graphe G, satisfait $\Delta \geq \beta^{\beta}$, alors G a un coloriage β -maigre utilisant au plus $16\Delta^{1+1/\beta}$ couleurs.

- 1. Montrer le résultat pour $\beta=1$. Indication : pas de probabilités dans cette question
- On suppose maintenant que $\beta \geq 2$. On pose $C=16\Delta^{1+1/\beta}$. Pour chaque arête (u,v), on pose $A_{u,v}$ l'événement « u et v ont la même couleur » et pour chaque $\beta+1$ uplets $v_1,\ldots,v_{\beta+1}$ de voisins d'un même sommet, $B_{v_1,\ldots,v_{\beta+1}}$ l'événement « $v_1,\ldots,v_{\beta+1}$ ont la même couleur ».
- 2. Calculer la probabilité des événements de type A et B, lorsque le coloriage est effectué de manière uniforme et indépendante pour chaque sommet, sur C couleurs.
- **3.** De combien d'événements de type A (resp. de type B) dépendent les événements de type A (resp. de type B)?
- 4. Conclure en appliquant la version asymétrique du lemme local de Lovász.