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ABSTRACT
In this article, we study the composition of simple and strict
service curves in network calculus for two operations: the
concatenation of servers and the residual service curves.
Whereas strict service curves enable more operations, the
strict character of the curves is not stable by those two op-
erations. We show that, beyond the already known results
about stability for those two classes of service, no stable class
of service curve can be defined in between. We compare this
result to some classes of service curves that has been defined
in the literature.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques; G.m [Mathematics of Computing]: Miscella-
neous—Queueing theory ; C.3 [SPECIAL-PURPOSE AND
APPLICATION-BASED SYSTEMS]: Real-time and
embedded systems

General Terms
Theory

1. INTRODUCTION
Network Calculus is a theory that has been developed to

study deterministic worst-case performance bounds in com-
munication networks [5, 9] and has been applied in various
domains of embedded networks (the Avionic Full Duplex
(AFDX), [4] and Ethernet networks [8] for example). Net-
work calculus uses functions (named curves) to describe con-
straints on system. More precisely, arrival curves shape the
incoming traffic by bounding the amount of data that can ar-
rive during any interval of time and service curves give some
guarantee about the minimal amount of data that is served.
Its first developments were purely based on the (min,plus)
algebra [6, 7], and can be seen as a tropical version of the
filtering theory, making intensive use of the (min,plus) con-
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volution: the output process can be computed as the convo-
lution of the input process by the service curve.

The main advantages if this notion of service curve are:

• the computation of the worst-case performances (de-
lay and backlog) is purely algebraic, algorithmically
efficient and can be performed with the arrival and
the service curves only;

• the concatenation of servers is simple: due to the asso-
ciativity of the (min,plus) convolution, servers in tan-
dem can be replaced by one system whose service curve
is the (min,plus)-convolution of the service curves of
the servers.

But this notion has also some drawbacks:

• multiple flow networks cannot be handled this way: for
many service policies (arbitrary [11], fixed priorities
[12]), it is not possible to compute individual service
curves for each flow [9];

• the physical interpretation is not so clear: the output
process depends too strongly on the input process’s
past. Indeed, even if at time t the system is empty, the
output process after time t will depend on the input
process before time t. This usually does not happen
for real systems, where the output process at time t
depends only on the last busy period.

To overcome these drawbacks, some other classes of ser-
vice curves have been defined. One can cite the variable
capacity nodes, the strict service curves, the adaptive ser-
vice curves [9], the weakly strict service curves [3] or the
sufficiently strict service curves [10]. Among them the strict
service curves, where the output process only depends on
the current backlogged period (interval of time during which
the system is never empty) are the most widely used (this
is more or less equivalent to the notion of service curves in
real-time calculus [12]. On each backlogged period, the ser-
vice is at least equal to that of the curve. Despite having a
better physical interpretation and the ability to handle with
multiple flows, strict service curves is not a stable class:

• the strictness property is lost by the convolution (hence
the concatenation);

• individual service curves can be computed by removing
the maximal arrival of the cross traffic (i.e. its arrival
curve) from the service curve. In some cases (arbi-
trary multiplexing for example), the individual service
curves that are computed are not strict.



This induces a careful use of the results of the network
calculus and prevents to make advantage of the strict service
curves by using basics results in cascade.

The questions we answer in this article are the following.

1. Is it possible to compute individual strict service curves?

2. It it possible to define a new operation of concatenation
that preserves the strictness of the service curve?

3. Is there a class of service curve (between the service
curves and the strict service curves) that is stable by
the concatenation and the individual service curves?

We will answer by Yes to the first question and No to the
others. In this view, we will also compare those results with
some of classes enumerated above.

The remaining of the paper is organized as follows. In Sec-
tion 2, we will recall the Network Calculus framework and
the notations. Then, Section 3 deals with the problem of
individual service curves and Section 4 deals with the prob-
lem of the concatenation. Finally, in Section 5, we comment
on these results and the other classes of service curves. We
conclude with Section 6.

2. NETWORK CALCULUS FRAMEWORK
In network calculus, flows of data are represented by non-

decreasing functions and left-continuous functions, that model
the cumulative processes. More precisely, if A represents a
flow at a certain point in the network, A(t) is the amount of
data of that flow that crossed that point until time t, with
the convention A(0) = 0. More formally, let

F = {f : R+ → Rmin | f(0) = 0, f non-decreasing

and left-continuous},

where Rmin = R ∪ {+∞}. The structure (Rmin,min,+) is a
dioid and called the (min,plus) dioid.

Let us define the following operations on F : let f, g ∈ F ,
∀t ∈ R+,

• minimum: f ∧ g(t) = min(f(t), g(t));

• (min,plus)-convolution: f ∗g(t) = inf0≤s≤t f(s)+g(t−
s);

• (min,plus)-deconvolution: f � g(t) = supu∈R+
f(t +

u)− g(u).

The (min,plus) dioid can be lifted to the space of functions
into the (F ,∧, ∗) dioid and � is the residuation operator of
the convolution (see [1] for more details about residuation).

The following lemma is a small generalization of Theo-
rem 3.1.8 in [9] will be useful later.

Lemma 1. Let f, g ∈ F . Then, ∀t ∈ R+, ∃s ∈ [0, t] such
that f ∗ g(t) = f(s) + g(t− s).

Proof. Fix t ∈ R+ and define F : s 7→ f(s) + g(t − s).
Let (un) a sequence converging to u ∈ [0, t]. One can assume
without loss of generality (by taking a sub-sequence and if
needed exchanging the role of f and g by replacing (un) by
(t− un) that (un) is increasing.

As f is left-continuous, limn→∞ f(un) = f(u) and, as g is
left-continuous and non-decreasing, limn→∞ g(un) ≥ g(u).
Then limn→∞ F (un) ≥ F (u). As a consequence, F reaches
its minimum on [0, t].

A system S is a non-deterministic relations between some
input flows and output flows, where the number of inputs
is the same as the number of outputs: S ⊆ Fm × Fm and
there is a one-to-one relation between the inputs and the
outputs of the system, such that to each input flow corre-
sponds one and only one output flow that is causal - no
data is created inside one flow in the system - meaning that
for ((Ai)

m
i=1, (Bi)

m
i=1) ∈ S, ∀i ∈ {1, . . . ,m}, Ai ≥ Bi. The

vector ((Ai)
m
i=1, (Bi)

m
i=1) is an (admissible) trajectory of S if

((Ai)
m
i=1, (Bi)

m
i=1) ∈ S.

In order to compute the performances, one must give the
characteristics of the system. Those characteristics concern
two objects, the flows and the servers, and are respectively
named the arrival curves and the service curves.

Arrival curves.
The notion of arrival curve is quite simple: the amount of

data that arrived during an interval of time is a function of
the length of this interval. More formally, let α ∈ F . A flow
is constrained by the arrival curve α, or is α-constrained if
∀s, t ∈ R+, s ≤ t,

A(t)−A(s) ≤ α(t− s).

Let α be an arrival curve. We call A the single input/single
output system of the α-constrained arrivals:

A(α) = {(A,B) ∈ F × F | A ≥ B and A is α-constrained}.

A typical example of such arrival curves is the pseudo-
affine functions: ασ,ρ : 0 7→ 0; t 7→ σ + ρt, if t > 0, where σ
can be interpreted as the maximal amount of data that can
arrive simultaneously and ρ as a maximal long-term arrival
rate.

Service curves.
As mentioned in the introduction, several notions of ser-

vice curve coexist. The role of the service curve is to con-
strain the relation between the input of a system and its
output. Let A be an arrival cumulative process in a system
and B its departure cumulative process. We say that an in-
terval I is a backlogged period for (A,B) ∈ F ×F if ∀t ∈ I,
A(t) > B(t). Let t ∈ R+. The start of the backlogged period
of t is start(t) = sup{u ≤ t | A(u) = B(u)}. As A and B are
left-continuous, A(start(t)) = B(start(t)), and ]start(t), t]
is a backlogged period.

Let us define the following systems:

• Simple service curve: Ssimple(β) = {(A,B) ∈ F ×
F | A ≥ B ≥ A ∗ β};

• Strict service curve: Sstrict(β) = {(A,B) ∈ F×F |A ≥
B, and ∀ backlogged period ]s, t], B(t)−B(s) ≥ β(t−
s)}.

We say that a system S offers (or guarantees) a simple
(resp. strict) service curve β if S ⊆ Ssimple(β) (resp. S ⊆
Sstrict(β)).

It is well-known that Sstrict(β) ⊆ Ssimple(β), but that
the reverse is not true. A more precise study about the
comparisons between simple and strict service curves can
be found in [3]. In particular, those two notions are not
equivalent and a simple service curve cannot be expressed as
a strict service curve. In addition, we only study in the next
two sections those two main definitions of service curves.
Variable capacity nodes have been proved to be equivalent



to strict service curves in most of the cases and the study of
other notions is postponed to Section 5.

Two common families of service curves are

• the pure delay curve δT : t 7→ 0 if t ∈ [0, T ]; t 7→ +∞
otherwise. For simple service curves, this means that
the sojourn time of each bit of data is at most T . For
strict service curves, this means that each backlogged
period lasts at most T ;

• the guaranteed rate curve λρ : t 7→ ρt. For every ar-
rival process, the minimal admissible trajectory is such
that either the service rate is exactly ρ or the server
is empty. The interpretation is the same for simple
or strict service curves. The only difference is that
for strict service curves, the service rate is guaranteed,
whereas for simple service curves, serving data at a
faster rate allows can be compensate by a slower rate
service.

Finally, we say that a trajectory (A,B) satisfy the exact
service β if B = A ∗ β for a simple service curve or if, for a
strict service curve, there is a start of a backlogged period
as soon as possible, and during a backlogged period, B(t) =
A(start(t)) + β(t − start(t)) (note that β should then be
super-additive, but β can always be replaced by its super-
additive closure, see [3]).

Performance guarantees.

Theorem 1. [5] Let (A,B) ∈ Ssimple(β) and suppose
that A is α-constrained. Then

(i) ∀t ∈ R+, the backlog of the trajectory at time t is
bounded by A(t)−B(t) ≤ α� β(0) (the vertical maxi-
mal distance between α and β);

(ii) ∀t ∈ R+ the delay of data arrived at time t, assuming
a FIFO per flow service policy, is bounded by sup{d ∈
R+ | A(t) ≥ B(t+ d)} ≤ sup{d ∈ R+ | ∀t ∈ R+α(t) ≥
β(t + d)}(the horizontal maximal distance between α
and β);

(iii) B is α� β-constrained.

This result only concerns the case of a single server with a
single input and output. In the next sections, we will detail
results for multiple inputs/outputs and the concatenation
of servers. We will often use the following notation: x+ =
max(x, 0) and f↑ : R+ → Rmin; t 7→ sup0≤s≤t(f(s)+), the
non-negative and non-decreasing closure of f .

3. INDIVIDUAL SERVICE CURVES
This section is dedicated to systems with multiple input/

output flows. Consider a system with m input flows and m
output flows. Let S ∈ Fm ×Fm. The aggregated system if
S is Ag(S) = {(

∑m
i=1Ai,

∑m
i=1Bi) | ((Ai)

m
i=1, (Bi)

m
i=1) ∈

S} and the projection of this server on I ⊆ {1, . . . ,m}
is PI(S) = {((Ai)i∈I , (Bi)i∈I) | ((Ai)

m
i=1, (Bi)

m
i=1) ∈ S}.

Those notations are illustrated on Figure 1.
We say that the system S ∈ Fm × Fm offers a simple

(resp. strict) service curve β if Ag(S) ∈ Ssimple(β) (resp.
Ag(S) ∈ Sstrict(β)). In the following, we only consider the
case m = 2 as for more general cases it suffices to consider
Ag(PI) and Ag(P (Ic)).

(a) (c)(b)

A1

A2

B1

B2

S
B1A1

P1(S)

B1 +B2

Ag(S)

A1 +A2

Figure 1: (a) system with two input and two output
flows; (b) aggregated system; (c) projection of the
system on the first input/output.

Theorem 2. Let S ∈ F2×F2 and β ∈ F . The following
statements hold.

(i) If ∃T > and β(T ) = 0, Ag(S) ⊆ Ssimple(β) ; ∃β′ 6= 0
such that P1(S) ⊆ Ssimple(β′);

(ii) Ag(S) ⊆ Sstrict(β) and P2(S) ⊆ A(α2) ⇒ P1(S) ∈
Ssimple((β − α2)↑);

(iii) Ag(S) ⊆ Sstrict(β) and P2(S) ⊆ A(α2) ; P1(S) ⊆
Sstrict((β − α2)↑);

(iv) Ag(S) ⊆ Sstrict(β) and P2(S) ⊆ A(α2) and P1(S) ⊆
A(α1)⇒ P1(S) ⊆ Sstrict((β − (α2 � (β − α1)↑))↑).

By definition of an aggregate and a projection, we here
deal with arbitrary, or blind multiplexing. That is, we make
no assumption about the service policy and consider the
worst-case of them. More precise results exist when dealing
with a precise service policy, for example, it is possible to
define an infinite family of individual service curves in FIFO
systems when the initial service curve is simple, or when
static priorities are considered, the strict character of the
service curves is preserved in fluid systems (otherwise, the
maximum size of a packet has to be considered).

Proof. The first three statements are now classical how-
ever, for sake of completeness, we give the proof or examples
to invalidate the implications.

Let A1, B1, A2, B2 ∈ F such that (A1 + A2, B1 + B2) ∈
Ssimple(β). For every t ∈ R+, there exist s ≤ t such that
B1(t) +B2(t) ≥ A1(s) +A2(s) + β(t− s). Then,

B1(t) ≥ A1(s) + [A2(s)−B2(t)] + β(t− s). (1)

Suppose that β(t) = 0, ∀t ∈ [0, T ]. Then, β ≤ δT . Take
A2(t) = ρt and A1(t) = ρT ∀t > 0. A possible output for
the aggregated server is B1(t) +B2(t) = (A1 +A2)∗ δT (t) =
(A1 +A2)((t−T )+) ≤ A2(t). Then, a possible trajectory for
system S is (A1, A2, 0, (A1 +A2) ∗ δT ), and the only service
offered to flow A1 is 0. This example can be found in [9],
Section 7.2.

If the server offers a strict service curve, then Equation (1)
is valid for s = start(t) and we conclude by remarking that
A2(s)−B2(t) ≤ α2(t− s) and B1(t) ≥ B1(s) = A1(s).

Now, let us give an example of trajectory to show that the
individual service curve is not a strict service curve. Con-
sider a server offering a strict service curve β(t) = 3t. Let
two flows cross this node with respective cumulative arrival
functions A1(t) = t + 2 and A2(t) = t. An arrival curve of
Flow 2 is α2(t) = t. Since the sum A1(t)+A2(t) = 2t+2, in
the interval [0, 2[, it is possible to choose B1(t) +B2(t) = 3t
and the system is backlogged. Figure 2 shows the trajectory
of the system for the following policy: at first, for 0 ≤ t ≤ 1,
Flow 1 is given top priority, then for t > 1, Flow 2 is given



top priority. But (β − α2)+(t) = 2t is not a strict service
curve: during the period 1 ≤ t ≤ 2, Flow 1 has some data
backlogged in the node but this data is not served at all. A
similar example can be found in [2].

0 1
0

1 1

1
0
0

A1

B1

t t

#
b
it
s

A2

B2

#
b
it
s

Figure 2: Residual service curves are not necessarily
strict.

Let s < t ∈ R+ in the same backlogged period as regards
arrival process A2, and thus as regards A1 + A2. As the
server offers a strict service curve β,

B2(t) ≥ B2(s)− [B1(t)−B1(s)] + β(t− s).

Applying Theorem 1 and statement (ii) of this proof leads
to

B1(t)−B1(s) ≤ α1 � (β − α2)↑(t− s),

hence the result.

Using the example in the proof : β(t) = 3t, α1(t) = 2 + t
and α2(t) = t, one gets (β−α1)↑(t) = (t−1)+ and α2�(β−
α1)↑ = t+ 1 and finally (β − (α2 � (β − α1)↑))↑(t) = 2(t−
1/2)+. For this example, it seems that it is the best possible
curve, as it is reached on the interval [1, 2]. Strict service
curves obtained this way are not tight for more general cases.
Also remark that this kind of strict residual service curve
should only be used when necessary, as there is no chance
that the delays and backlogs computed with it are tight.

4. COMPOSITION OF SERVICE CURVES
In the previous section, we proved that it is possible to

define an individual service curve that preserves the strict
character of the service curves. We now attempt to get the
same kind of results for the composition. We will see that
this is not possible, either by changing the operation of com-
position, either by defining a new notion of service curve
(and keeping the convolution as the composition).

4.1 Composition of strict service curves
We first consider consider two servers in tandem and de-

fine the composition of two servers: let S1,S2 ∈ F × F , the
concatenation of S1 and S2 is S2 ◦ S1 = {(A,C) | ∃B ∈
F such that (A,B) ∈ S1 and (B,C) ∈ S2}. Set S1 = S and
∀n ≥ 1, Sn+1 = S ◦ Sn.

C(t)A(t) B(t)

β1 β2

Figure 3: servers in tandem

Theorem 3. The following statements hold.

(i) Ssimple(β2) ◦ Ssimple(β1) ⊆ Ssimple(β1 ∗ β2);

(ii) Let β1 and β2 such that there exist T1, T2 > 0 with
β1(T1) = 0 and β2(T2)=0. Then @β > 0 such that
Sstrict(β2) ◦ Sstrict(β1) ⊆ Sstrict(β).

Proof. Statement (i) of this theorem is a classical prop-
erty of the concatenation of servers, which can be found in
[9, 5].

However, this inclusion may be strict: Let β1 = δ3 and
β2 = λ1, A = α2,1/2 and C : 0 7→ 0; t ∈]0, 4] 7→ 2; t > 4 7→
A(t). It is easy to check that C ≥ A ∗ β1 ∗ β2. Now, given
A and C the minimal admissible departure process from
the first server is B = max(C,A ∗ β1). But, B ∗ β2(4) =
2.5 > 2 = C(4). Those functions are depicted on Figure 4.
As the convolution is a non-decreasing operator, one can
conclude that @B ∈ F such that (A,B) ∈ Ssimple(β1) and
(B,C) ∈ Ssimple(β2).

0

B ∗ β2
t

0
0

1

1 t 1

1

A

A ∗ β1

A ∗ β1 ∗ β2

C

A

#
b
it
s

#
b
it
s

B

Figure 4: An example for which Ssimple(β2) ◦
Ssimple(β1) ( Ssimple(β1 ∗ β2). On the left, A, A ∗ β1
and A ∗ β1 ∗ β2; one the right, A, a possible output C
for the system with service curve β1 ∗ β2. Then, the
smallest possible B is B = max(C,A ∗ β1). Between
times on the interval ]3, 4[, C(t) < B ∗ β2.

Let us focus on statement (ii). We restrict ourselves to
the family of pure delay curves and try to compute a strict
service curve for the concatenation of those two curves. In-
deed, if β ≥ β′, then Sstrict(β) ⊆ Sstrict(β′) there is no need
to consider more general cases.

Consider two servers in tandem with respective strict ser-
vice curves δT1 and δT2 and the arrival cumulative process
A defined by : fix σ > 0 and T ∈] max(T1, T2), T1 +T2[, then
∀t ∈ R+,

A(t) =

{
0 if t = 0,
kσ if ∃k ∈ N, t ∈](k − 1)T, kT ].

Note that A(t) is constrained by ασ,σ/T .
Now let us compute a departure process from the first

server, B, and then a departure process from the second
server, C.

Since T > T1, a possible departure process is B(t) =
A((t − T1)+), ∀t ∈ R+. Then, since T > T2, a possible
departure process is C(t) = (B(t−T2)+) = A((t−T1−T2)+),
∀t ∈ R+. The trajectory is depicted on Figure 5.

We now prove that the system is always backlogged: ∀t ∈
R+, A(t) − C(t) = A(t) − A((t − T1 − T2)+) > 0 since by
definition, A(t) > A((t− T )+) ≥ A((t− T1 + T2)+).

So, if β is a strict service curve for the system, β ≤ C ≤
A ≤ ασ,σ/T . When T is fixed, this must hold for all σ > 0.
Then, the only possible strict service curve is β = 0.
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Figure 5: No strict service curve for two servers in
tandem.

4.2 A new notion of service curve?
Let us recall the properties that our service should satisfy

to be preserved by concatenation (we denote by Ŝ(β) the
relation between trajectories that must be satisfied for an
intermediate service curve β):

1. Sstrict(β) ⊆ Ŝ(β) ⊆ Ssimple(β);

2. Ŝ(β2) ◦ Ŝ(β1) = Ŝ(β1 ∗ β2).

Let us first define the closure of a systems: Let S ⊆ F×F .
The closure of S is

S = {(A,B′) ∈ F × F | ∀ε > 0, ∃(A,B) ∈ S such that

∀t ∈ R+, A(t) ≥ B′(t) ≥ B(t− ε)}.

S is the smallest system of F×F containing S, closed and
such that ∀A ∈ F , if (A,B) ∈ S, then ∀B′ ≥ B, (A,B′) ∈
S. With this definition, the problem of the strict inclu-
sion of the composition exposed in Theorem 3 is avoided:
Ssimple(β2) ◦ Ssimple(β1) = Ssimple(β1 ∗ β2).

Lemma 2. Let T ∈ R+. Then,⋃
n∈N

(Sstrict(δT/n))n = Ssimple(δT ).

Proof. This case is a special case of Lemma 3, but gives
a good intuition of it.

Fix n ∈ N and T ∈ R+. Consider the system composed
of n servers in tandem, each of them offering a service curve
δT/n. Let A : R+ → Rmin be a cumulative arrival process
in that system. We denote by Ai the cumulative departure
process of the i-th server when the service is strict and exact
with the convention A0 = A. When the service offered are
simple and exact, the global cumulative departure process
is B = A ∗ (δT/n)n = A ∗ δT = A((.− T )+).

Now, let us compute the delay of each bit of data when the
services are strict and exact. After the first server, each bit
of data has a delay that lays between 0 and T/n: ∀t ∈ R+,
A0(t) ≥ A1(t) ≥ A0((t − T/n)+). Indeed, each backlogged
period is of length exactly T/n. The cumulative process A1

is purely made of bursts, and the inter-arrival time between
two bursts is at least T/n. Then, every bit of data in the
second server has a delay exactly T/n: ∀t ∈ R+, A2(t) =
A1((t− T/n)+). The same holds for the next n− 2 servers:
∀i ∈ [2, n], ∀t ∈ R+, Ai(t) = Ai−1((t−T/n)+). So, ∀t ∈ R+,

A(t−(n−1)T/n) = B(t+T/n) ≥ An(t) ≥ A(t−T ) = B(t).

Figure 6 illustrates the proof for n = 1 and n = 4.

(a)

(b)

t

#
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s

BA1

#
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t

B

A

A A4

Figure 6: Example of output service curve after 1
and 4 servers in tandem. (a) one server: the arrival
process A (blue) and departure processes for strict
A1 (red) and non strict B (green) service curves.
(b) Arrival A and departure process for non strict
service curve B. From light to dark, the departure
process after each server with strict service curve
δT/4. A1, A2 and A3 are dashed and A4, the output
process of the system is plain.



For λ, ρ ≥ 0, let βρ,T = max(δT , λρ).

Lemma 3. Let ρ, T ∈ R+. Then,⋃
n∈N

(Sstrict(βρ,T/n))n = Ssimple(βρ,T ).

Proof. First, remark that, as in the previous lemma,
βρ,T = βnρ,T/n. Let A be a cumulative arrival process. Set
B = A ∗ βρ,T as the cumulative departure process of the
system when the servers offer simple service curves.

Now, consider the system of n servers in tandem where
each server offers a strict and exact service curve βρ,T , and
denote by Bi the output departure process after the i-th
server.

Let us focus on B1. Each backlogged period is of length
at most T/n, and for s ≤ t in the same backlogged period,
B(t) − B(s) = ρ(t − s). A backlogged period is of length
less than T/n when ∃t such that A(t) − A(start(t−)) =
ρ(t − start(t−)). Let R = {t ∈ R+ | A(t) = B1(t)} be the
set of the start of backlogged period (of possibly null length).
We have

B1(t) = min
s∈R∩[0,t]

A(s) + βρ,T/n(t− s).

Note that ∀t ∈ R+, ∃s ≤ t such that t−s < T/n and s ∈ R.
In addition, on each interval ]s, t[ where B1 is continuous, B1

is derivable and dB1
dt

(t) ≤ ρ. Figure 7 gives an illustration
of the different possible behaviors of B1.

t
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B1

A

10
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Figure 7: Different cases for elementary segment
strict service curves β1,1, represented in bold. 1:
the backlogged period is exactly d/n, the slope of
the departure process during this period is λ and
there is a burst at the end of the backlogged period.
2: the backlogged period is strictly less than d/n, as
the segment of slope λ and of length d/n intersects
A. After the intersection, the segment is above the
curves or segments that begin the next backlogged
period. 3: the slope of the arrival process is less
than λ at the end of a backlogged period, then, the
departure process is not delayed.

Now focus on B2. The only beginning of backlogged pe-
riod in the second server is when there is a burst (or dis-
continuity) in B1. Every backlogged period is of length
exactly T/n except when there exist t such that B1(t) −
B1(start(t−)) = ρ(t − start(t−)). But this happens only
when dB1

dt
< ρ: then B1(t) = A(t). As a consequence, we

have

B2(t) = min
s∈R∩[0,t]

A(s) + βρ,2T/n(t− s).

The same argument, we have ∀i ≤ n,

Bi(t) = min
s∈R∩[0,t]

A(s) + βρ,iT/n(t− s)

and

Bn(t) = min
s∈R∩[0,t]

A(s) + βρ,T (t− s).

Fix t ∈ R+. From Lemma 1, there exists s ≤ t such that
B(t) = A(s) + βρ,T (t − s). Let u = max{v ∈ R ∩ [0, s]}.
We know that 0 ≤ s− u < T/n and Bn(t− T/n) ≤ A(u) +
βρ,T (t− T/n− u). But then

Bn(t− T/n)−B(t) ≤ A(u)−A(s)

+βρ,T (t− T/n− u)− βρ,T (t− s)
≤ A(u)−A(s)

+ρ(t− T/n− u)− ρ(t− s)
≤ 0.

Theorem 4. To each convex and piecewise affine func-
tion β in F , associate Ŝ(β) a system such that Sstrict(β) ⊆
Ŝ(β) ⊆ Ssimple(β). If ∀β1, β2 convex piecewise affine func-

tions Ŝ(β2)◦Ŝ(β1) ⊆ Ŝ(β1∗β2), then ∀β, Ŝ(β) = Ssimple(β).

Proof. We prove the theorem when Ŝ = Sstrict, and
the general result will follow by inclusion. The idea is to
decompose one server with a service curve β into a sequence
of servers with of strict service curves βi, i ∈ I, where I is a
finite set such that β = ∗iβi, and to compare the departure
processes when servers are used as strict service curves or as
simple service curves using Lemmas 2 and 3.

Let β be a convex and piece-wise affine service curve, com-
posed of k finite segments of respective slope ρi (possibly
+∞) and length Ti and of one semi-infinite segment of slope
ρ. We know that β = ∗ki=1βρi,Ti ∗ λρ. One can decompose
that service curve into k+ 1 systems, with respective global
service curve: λρ, and βρi,Ti . Fix ε > 0. System 0 is com-
posed of 1 server of service curve λρ. For i ∈ {1, . . . , k},
system i is composed of ni servers in tandem, each of them
of service curve βρi,Ti/ni

. From Lemmas 2 and 3 (and the
proofs), for any arrival cumulative process, the departure
processes when the services are simple and exact, A, and
when the services are strict and exact, B satisfy the relation
B ≥ A ≥ B(. − Ti/ni). Then, one can set ni such that
ni ≥ kTi/ε. The system of servers in tandem is depicted
on Figure 8. Let A be an arrival process in the system. We
denote by A0 (resp. B0) the departure process after the first
server when the service offered is simple (resp. strict), Ai
(resp. Bi) the departure process after system i when the
service is simple (resp. strict). One has A0 = B0.

Bi−1 Bi

syst i

βρi,Ti/ni
βρi,Ti/ni

βρi,Ti/ni

A B0

syst 1 syst k

λρ

B1 BkBk−1

Figure 8: Decomposition of a server with convex
service curve into a concatenation of elementary
servers.

We now prove by induction on i that Bi ≥ Ai ≥ Bi(. −
iε/k). We have A0 = B0. Suppose that the result is true



for i. We prove it for i + 1 segments using the following
properties of the convolution:

• for f, g ∈ F , for every d ∈ R+, [f(. − d) ∗ g](t) =
[f ∗ g](t − d) (with the convention that for all t < 0,
f(t) =∞);

• For f1, f2, g ∈ F , if f1 ≥ f2, then f1 ∗ g ≥ f2 ∗ g.

We have

Ai+1 = Ai ∗ βρi,Ti

≥ Bi(.− iε/k) ∗ βρi+1,Ti+1

≥ [Bi ∗ βρi+1,Ti+1 ](.− iε/k)

≥ Bi+1(.− (i+ 1)ε/k).

The last inequality holds considering Bi as the arrival pro-
cess in system i + 1. When i = k, on gets Bk ≥ Ak ≥
Bk(.− ε), hence the result.

5. CONSEQUENCES FOR OTHER MODELS
OF SERVICE CURVES

In the previous paragraphs, we dealt only with two no-
tions of service curves, that can somewhat be considered as
extremal: usually, simple service curves is the weakest model
whereas strict service curves are the strongest model. In or-
der to avoid the drawbacks describes above, there has been
several attempts to define intermediate service curves. We
will focus here on adaptive service curves [9], on weakly strict
service curves [3] and on sufficiently strict service curves [10].

5.1 Adaptive service curves
Adaptive service curves have been defined in [9], Sec-

tion 7.4, in order to deal with both strict and simple service
curves with only one definition. Let β, β̃ ∈ F .

• Sasc(β, β̃) = {(A,B) ∈ S × S | A ≥ B and ∀t ∈
R+, ∀s ≤ t, B(t) ≥ (B(s)+ β̃(t−s))∧ infs≤u≤tA(u)+
β(t− u)}.

• Sasc(β) = {(A,B) ∈ S×S | A ≥ B and ∀t ∈ R+, ∀s ≤
t, B(t) ≥ (B(s)+β(t−s))∧ infs≤u≤tA(u)+β(t−u)}.

Until now, we have only considered servers described by
only one curve, so we may here favor the second definition.

Proposition 1. Let S ∈ F2 ×F2, let β, β̃ ∈ F and sup-
pose that there exist T, T̃ such that β(T ) = 0 and β̃(T̃ ) = 0.
Then Ag(S) ⊆ Sasc ; ∃β′ 6= 0 such that P1 ⊆ (β′).

Proof. We only need to prove this result for β = β̃ = δT ′

with T ′ = min(T, T̃ ) and the rest will follow by inclusion.
From [9], Example 1, p. 203, this adaptive service curve
coincide with the pure delay δT ′ , which is a simple service
curve. So the example given in the proof of Theorem 2 can
be applied in this case.

This notion of service curve cannot be a candidate for our
notion of intermediate service curve. Furthermore, Theo-
rem 4 implies that Sasc(β) = Ssimple(β). We shall indeed
now prove that in many cases (A,A ∗ β) ∈ Sasc(β).

Proposition 2. Let β ∈ F be a piecewise affine convex
function. Then ∀A ∈ F , (A,A ∗ β) ∈ Sasc(β).

Proof. The output process is at least A ∗ β: with s = 0,
an output process B is such that B(t) ≥ B(0) + β(t) ∧ A ∗
β(t) = A ∗ β(t).

We prove that ∀t ∈ R+, ∀s ≤ t, A ∗ β(t) ≤ A ∗ β(s) +
β(t − s) ∧ infs≤u≤tA(u) + β(t − u). Let v ≤ t such that
A ∗ β(t) = A(v) + β(t− v). If s ≤ v, the inequality trivially
holds. If s > v, let u ≤ s such that A ∗ β(s) = A(u) + β(s−
u). Suppose that A ∗ β(t) < A ∗ β(s) + β(t − s). Then,
A(v) + β(t− v) < A(u) + β(s− u) + β(t− s). Moreover, by
definition of u, A(u) + β(s − u) ≤ A(v) + β(s − v). Then,
β(s−u)−β(s−v) ≤ A(v)−A(u) < β(s−u)+β(t−s)−β(t−v)
and β(t−v) < β(t−s)+β(s−v). This is impossible since β
is convex with β(0) = 0, so A∗β(t) ≥ A∗β(s)+β(t−s).

5.2 Weakly strict service curves
A natural intermediate class of service curves to consider

would be the following: for β ∈ F :

• weakly strict service curve: Swstrict(β) = {(A,B) ∈
F × F | ∀t ∈ R+, A(t) ≥ B(t) ≥ A(start(t)) + β(t −
start(t))}.

In this paragraph, we see that this notion does not bring
much to the theory, concerning the issue of this article.

Indeed, Theorem 4 asserts this class of service curves is not
stable by composition. Second, the proof of Theorem 3 can
be transposed to weakly service curves, thanks to Theorem 3
in [3]: the class of weakly strict and strict service curves
coincide on pure delay curves.

Finally, Theorem 2 can be adapted:

Theorem 5. The following statements hold:

(i) Ag(S) ⊆ Swstrict(β) and P2(S) ⊆ A(α2) ⇒ P1(S) ∈
Ssimple((β − α2)↑);

(ii) Ag(S) ⊆ Swstrict(β) and P2(S) ⊆ A(α2) ; P1(S) ⊆
Swstrict((β − α2)↑);

(iii) Ag(S) ⊆ Swstrict(β) and P2(S) ⊆ A(α2) and P1(S) ⊆
A(α1) ⇒ P1(S) ⊆ Swstrict(((β − α2)�α1))↑), where
∀t > 0, f�g(t) = infu≥0 f(t+ u)− g(t).

Proof. The proof of the two first statements is the same
as in Theorem 2.

Equation (1) is valid for s = start(t). Let u = sup{v ≤
t | A1(v) = B1(v)} the start of the backlogged period for t
regarding Flow 1 only. Then, u ≥ s and

B1(t) ≥ A1(u)− [A1(u)−A1(s)]− [B2(t)−A2(s)]

+β(t− s)
≥ A1(u)− α1(u− s)− α2(t− s) + β(t− s)
≥ A1(u) + inf

0≤s≤u
β(t− s)− α2(t− s)− α1(u− s)

≥ A1(u) + inf
v≥0

(β − α2)(t− u+ v)− α1(v).

One can now conclude by remarking that A1(u) = B1(u) ≤
B1(t) and that B1 is non-decreasing.

With the same example as in Section 3: β(t)1 = 3t, α1(t) =
2 + t and α2(t) = t, ((β − α2)�α1))↑ = 2(t− 1)+.

5.3 Sufficiently strict service curves
Recently a new notion of service curves has been defined,

in order to deal with non-FIFO flows and their performance
evaluation. Those sufficiently strict service curves are de-
fined as follows.



• Ss3c(β) = {(A,B) ∈ F × F | ∀t ∈ R+, A(t) ≥ B(t) ≥
A(t−D(t)) + β(D(t))},

where D(t) is the maximum achievable dwell period (MADP)
at time t, that is, D(t) = t−t0(t) where t0 is the arrival time
of the oldest bit of data in the system at time t under all
possible processing orders. Under our assumptions, and for a
simple server, t0(t) = start(t). Then this definition seems to
be the same as weakly strong service curves. However, the
authors showed in [10], Theorem 5, that their curve has the
concatenation property whereas weakly strict service curves
do not have that property.

In appearance, this notion of service curve is in contra-
diction with Theorem 4, and appears as a good candidate
for intermediate service curves. In fact, this is not, because
of the definition of the MADP, that depends on how the
system is made: when a system is composed of servers in
tandem, then the overall service curve is the concatenation
of the services, but the MADP of the system does not coin-
cide with the start of the backlogged period of a server that
guaranties the sufficiently strict overall service curve. So,
because of that, Ss3c(β2) ◦ Ss3c(β2) * Ss3c(β1 ∗ β2).

On the other hand, Theorem 4 suggests that the descrip-
tion of a system by a service curve is not precise enough
to describe a system, and lots of information is lost by the
concatenation and by computing individual service curves.
Then, adding the information contained in the MADP may
lead to the right notion: let D : Ss3c(β)→ P(F); (A,B) 7→
D((A,B)) ⊆ {D ∈ F |D is a possible dwell period for (A,B)}
(a possible dwell period must be such that ∀t ∈ R+, D(t) ≤
t − start(t)). Then, one can define another class of service
curve:

• S(β,D) = {(A,B) ∈ F × F | ∃D ∈ D(A,B), ∀t ≥
0, A(t) ≥ B(t) ≥ A(t−D(t))}.

Then the following theorem is straightforward:

Theorem 6. Let β, β1, β2 ∈ F , D : Ss3c(β) → P(F),
D1 : Ss3c(β1)→ P(F) and D2 : Ss3c(β2)→ P(F) be possible
dwell periods for respectively β,β1 and β2. Then,

• Ss3c(β2,D2) ◦ Ss3c(β1,D1) ⊆ S(β1 ∗ β2,D′) with ∀t,
D′(A,C) = {D | ∃B ∈ F ,∃D1 ∈ D1(A,B), D2 ∈
D2(B,C), such that D2(t) +D1(t−D2(t))};

• If S ∈ F2×F2, then Ag(S) ⊆ Ss3c(β,D) and P2(S) ⊆
A(α2)⇒ P1(S) ⊆ Ss3c((β − α2)↑,D).

Proof. The first statement is a reformulation of Theo-
rem 5 in [10] and the second statement is straightforward
from Equation (1).

This notion of service curve is an intermediate between
simple and strict service curves, with the nice properties we
targeted. But, if this curve is obtained after several steps
of computations, the topology of the network being studied
is hidden in D. Moreover, up to our knowledge, there is no
nice representation for the MADP.

6. CONCLUSION
In this article we compared the behavior of strict and sim-

ple service curves with two operations: individual service
curves and composition. It seems that no more restrictive
class than that of simple service curve can be stable with

the composition, whereas, it is possible to define strict in-
dividual service curve. Following the example of sufficiently
strict service curves, any notion of service curve that is stable
with composition and individual service curves must contain
more information that only one function.
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