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Abstract— In this paper, we show how to design a
perfect sampling algorithm for stochastic Free-Choice
Petri nets by backward coupling. For Markovian
event graphs, the simulation time can be greatly re-
duced by using extremal initial states, namely block-
ing marking, although such nets do not exhibit any
natural monotonicity property. Another approach for
perfect simulation of non-Markovian event graphs is
based on a (max,plus) representation of the system
and the theory of (max,plus) stochastic systems. Next,
we show how to extend this approach to one-bounded
free choice nets to the expense of keeping all states.
Finally, experimental runs show that the (max,plus)
approach needs a larger simulation time than the
Markovian approach.

I. I NTRODUCTION

Petri nets can be used as alternatives to queueing
systems with fork and join nodes to model commu-
nication networks involving some synchronization
schemes such as networks with window control,
Kanban systems or finite queues with general
blocking [2]. Under Markovian assumptions, it can
be shown that such networks are multidimensional
Continuous Time Markov Chains. In the presence
of fork and join nodes the steady state distribution
is not a product form in general and the only
general technique to compute the stationary dis-
tribution is to solve the Kolmogorov equations.
When the number of nodes on the net grows,
the state space explodes exponentially and the
computation of the stationary distribution cannot
be done numerically.

Simulation approaches are alternative methods
to estimate the stationary behavior of such systems
by providing samples distributed according to the
stationary distribution, even when it is impossible
to compute this distribution numerically. Propp and
Wilson used backward coupling ([13]) to derive
an algorithm to get perfect sampling (i.e. which
distribution is exactly stationary) of the state of
discrete time finite Markov chains. In this paper,
we adapt their algorithm forMarkovian free choice
Petri nets. When the network is anevent graph,

we show how to improve drastically simulation
time by reducing the number of initial states to
be simulated. Event graphs do not have classical
monotonicity properties: the state space does not
contain any natural minimal state (e.g. all buffers
are empty) nor a maximal state (e.g.all buffers are
full), unlike open networks with blocking and re-
jection (see [14]). However, it is possible to exhibit
extremal initial states (calledblocking markings
later) such that whenever coupling from the past
occurs starting from those states, the coupling state
is distributed according to the stationary distribu-
tion of the net. When the network hasQ transitions,
these extremal states are obtained by blocking one
transition (no firing is allowed) and let the system
evolve until a deadlock is reached. Doing this, one
gets theQ blocking states of the network.

A second method for perfect sampling, based
on a (max,plus) representation of the dynamics of
network, is also given. This method works under
more general stochastic assumptions (basically un-
der i.i.d. assumptions with general distributions)
and does not need the network to be Markovian. In
this case, numerical computation of the stationary
distribution is in general impossible even when
the net has a small number of nodes, and getting
stationary samples is even more critical.

The perfect sampling algorithm presented here
uses the theory of (max,plus) stochastic systems
developed in [7], [12], [3]. This theory has been
used mainly to proveexistence theorems in full
generality [3]. To the best of our knowledge, this
is the first time it is applied to design perfect
simulation algorithms.

We compare the two methods for perfect simula-
tion of event graphs. It is interesting to notice that
while the (max,plus) algorithm couples faster than
the Markov chain algorithm, the simulation lasts
longer with the (max,plus) method because each
step involves large matrix products.

The (max,plus) method is also generalized to the
simulation of stochasticheaps of pieceswith gen-



eral distributions (keeping the same low complexity
as for event graphs) and finally tosafe free choice
nets. However, for safe free choice nets, we lose
the feature that only a small number of trajectories
have to be simulated. It is interesting to notice that
this is the same gap as between Markovian event
graphs and Markovian free choice nets, studied in
the first part of the paper.

II. PERFECT SAMPLING OFFINITE MARKOV

CHAINS

In this section, we recall the main ingredients for
perfect sampling of finite Markov chains useful for
the following.

Let {Xn}n∈N be an irreducible and aperiodic
discrete time Markov chain with a finite state space
S and a transition matrixP = (pi,j). The evolution
of the Markov chain can always be described by a
stochastic recurrence sequence

Xn+1 = φ (Xn, un+1) , (1)

with Xn the state of the chain at timen and
{un}n∈N an independent and identically distributed
sequence of real random variables, uniformly dis-
tributed over[0, 1]. The transition functionφ : S ×
E → S verifies the property thatP (φ(i, u) = j) =
pi,j for every pair of states(i, j) ∈ S and for any
u, a real random variable.

Let φn : S×En → S denote the function whose
output is the state of the chain aftern iterations
and starting in states ∈ S. That is,

φn (s, u1→n) = φ (. . . φ (φ (s, u1) , u2) , . . . , un) .

This notation can be extended to set of states. So
for a set of statesA ⊂ S we note

φn (A, u1→n) = {φn (s, u1→n) , s ∈ A} .

In the following, |X| denotes the size of setX.
Theorem 1 ([13]): Let φ be a transition function

on S × E . There exists an integerl∗ such that

lim
n→∞

|φn (S, u−n+1→0)| = `∗ almost surely.

The systemcouples if `∗ = 1. The coupling
property is closely related to renovation properties
of Markov chains [8] In particular, the main result
of the backward scheme is the following theorem,
justifying the name “Perfect Sampling”.

Theorem 2 ([13]): Provided that the system
couples, the state when coupling occurs for the
backward scheme, is steady state distributed.

From this fact, a general Perfect Sampling Al-
gorithm (PSA) (1) sampling the steady state can
be constructed. The perfect simulation algorithm
that we will be using in Sections II, III and IV

Input A recurrent representationφ of an
ergodic finite Markov chain:Xn+1 =
φ(Xn, Un+1), a sequence of increas-
ing integers N1, N2 . . . and a sequence
U0, U−1, U−2, . . .of i.i.d. r.v. uniformly dis-
tributed over[0, 1].
m := 1
repeat

for all states ∈ S do
Compute Xn+1 = φ(Xn, Un+1),
starting at time−Nm with initial state
s, up to time 0 using the random
variablesU−Nm+1, · · · , U0.

end for
m := m + 1

until all simulations end up in the same
state (X)
Output X

Fig. 1. Perfect Simulation Algorithm (PSA) of Markov chains

is given in Figure 1. Note that the same variables
U0, U−1, U−2, · · · are used for all the simulations.

Note that a given Markov chain has many con-
structions under the form of a recurrence equation
xn+1 = φ(xn, un+1). Using Borel-Cantelli argu-
ments, it is possible to show [11] that for each
construction, the perfect simulation algorithm will
terminate with a fixed probabilityT , whereT is
1 (or 0). Therefore, for a given representation,φ,
it is usually possible to show that the algorithm
terminates for each run (or never stops) so that it
is well suited (or not) for PSA.

III. SAMPLING OF MARKOVIAN FREE-CHOICE

PETRI NETS

A Stochastic Free-ChoicePetri net is a tuple
N = (P,Q,F ,M0, τ) where (P,Q,F) is a di-
rected bipartite graph with nodesP∪Q, P∩Q = ∅,
and arcsF ⊂ (P × Q) ∪ (Q × P) and where
M0 ∈ NP . The elements ofP are calledplaces
and those ofQ, transitions, andM0 is called the
initial marking of N . The set of all reachable states
from M0 is R(M0). For a nodex ∈ P ∪ Q, we
denote by•x the set of its predecessors and by
x• the set of its successors. The net is free-choice
when for all q1, q2 ∈ Q, •q1 ∩ •q2 ∈ {∅, •q1}.
The firing times in the transitionsτ = (τq)q∈Q
are random sequencesτq = (τq(n))n∈N∗ of i.i.d.
variables with finite expectations (E(τq(1)) < ∞).

We consider a Free-Choice Petri net withP
places,Q transitions andΓ clusters (i.e. minimal
sets of placesG and transitionsH such thatH =



G• ) which isbounded(the total number of tokens
present in the system cannot exceed some bound
B) and live (no deadlock or starvation can ever
occur). In particular, the boundedness assumption
implies that the net is closed. To model the mono-
server case, we assume that all transitions have self
loops and firings occur using therace policy (i.e
if two transitions are in the same cluster, the one
with the smallest firing time fires the tokens in their
common input places). For more details and precise
definitions on Petri nets, we refer to [6].

In the following, we consider exponentially dis-
tributed firing times for transitions with parameters
λq, q ∈ Q. In this case, the evolution of the mark-
ing M of the system can be written under the form
of a finite continuous time Markov chain which in-
finitesimal generator isW = (WM1,M2)M1,M2∈R
with WM1,M2 = λq if M1

q→ M2

0 otherwise
−

∑
M ′ 6=M1

WM1,M ′ if M1 = M2.

To construct a perfect simulation, this
continuous time Markov chain can be
uniformized. The usual uniformization coefficient
supM{

∑
M ′ 6=M WM,M ′} does not provide a

discrete time Markov chain easily amenable
to perfect simulation. The trick here is to
choose Λ =

∑
q λq (the total event rate)

instead. Although this may result into a loss
of efficiency for the uniformization (in general
Λ > supM{

∑
M ′ 6=M WM,M ′} ), this choice

makes it possible to find a recurrence equation
that defines a discrete time Markov chain with
the same stationary distribution as the initial
continuous time chain and for which PSA
terminates in finite time with probability one.

Let us consider a Markov chainZn defined over
R(M0) such that

Zn+1 = φ(Zn, un+1), (2)

with (un)n∈N i.i.d. uniformly distributed over
[0, 1] andφ is defined as follows. After numbering
all transitions,

if u ∈

[∑i−1
j=1 λj

Λ
,

∑i
j=1 λj

Λ

)
, then

φ(M,u) =
{

M ′ if M
qi→ M ′

M if qi is not enabled inM.

Using this definition ofφ, each transitionqi is asso-

ciated with an intervalIi =
[Pi−1

j=1 λj

Λ ,
Pi

j=1 λj

Λ

)
.

At stepk, a firing of qi occurs ifuk ∈ Ii and if qi

is enabled under stateMk−1.
Theorem 1:The Perfect Simulation Algorithm

in Figure 1 based on recurrence equation (2) ter-
minates in finite time, with probability one.

Proof: First, it should be clear that the
Markov chainZn has a finite state space by bound-
edness. This chain is aperiodic becauseφ(M,u) =
M with positive probability and is irreducible
because the network does not contain any deadlock.
HenceZn is ergodic.

The rest of the proof is based on the following
property of the chainZn. For any couple of states
M1, M2 in R(M0), there exists a finite variablek
such that the chain starting inM1 and the chain
starting inM2 reach the same state afterk steps
with positive probability. Since the state space is
finite, this means that starting with all possible
states, the simulation reaches a unique state after a
finite number of steps with positive probability (by
coupling the states one by one). The result then
follows using Borel-Cantelli arguments (see [14]
for more on this).

To prove convergence afterk steps of two chains,
starting withM1 andM2, one can use the notion of
blocking states. The blocking stateBa for transi-
tion (server)a is the state reached eventually, after
blocking transitiona.

It has been proved in [10] that for the class of
bounded Petri nets used here with no deadlocks,
such states are unique, no firing is possible under
Ba except at transitiona, and thatBa is reachable
from any state inR without ever using transitiona.
For more on blocking states (in particular on their
regeneration properties, see [10]).

Here is the end of the proof. Picka arbi-
trarily, and consider the associated blocking state
Ba. There exists a sequence of firing events that
leads fromM1 to Ba. Let us consider the corre-
sponding sequence of intervalsI1, . . . I`. If u1 ∈
I1, . . . , u` ∈ I` then φ`(M1, u1, . . . , u`) = Ba.
Under the same exogenous sequence, but starting
from M2, we get φ`(M2, , u1 . . . u`) = M3 for
someM3. Now, starting fromM3, there exists a
sequence of firings (not includinga) that leads
to Ba. The corresponding sequence of intervals
I`+1 . . . Ik are such that ifu`+1 ∈ I`+1, . . . , uk ∈
Ik,

φk(M2, u1 . . . uk) = φk−`(M3, u`+1 . . . uk) = Ba

and

φk(M1, u1 . . . uk) = φk−`(Ba, u`+1 . . . uk) = Ba,



since under the sequenceu`+1, . . . , uk, transition
a never serves so that no state change happens
starting in stateBa.

Such a sequenceu1, . . . , uk occurs with positive
probability (

∏k
i=1 |Ii|). This finishes the proof.

The problem with this perfect simulation scheme
is that one needs to start with all states inR and
look for coupling at time0. The size ofR can be
exponential in the size of the net so that only small
nets can be sampled using this approach. In the
following, we will show how to reduce the number
of starting states. This only works for event graphs.

IV. SAMPLING OF EVENT GRAPHS

Here, we consider a Markovian event graph
which is bounded and has no deadlock. Since every
place has a single input transition (q) and a single
output transition (s), we denote byM(q, s) the
number of tokens in that place under stateM .

We will show in the following that starting
the simulation with the blocking states only,
{Ba, a transition}, will provide a perfect sampling
when coupling occurs.

A. Blocking states

Theorem 2:Consider a bounded event graph
with no deadlock, with exponential firing times.
The perfect simulation algorithm given in 1 using
only blocking markings as starting points termi-
nates in finite time with probability one and out-
puts a state distributed according to the stationary
distribution ofZn.

Before we prove this theorem, which is the main
result of this section, let us first make several
comments.

First, this result means that one can run the per-
fect simulation algorithm starting with the blocking
states only. This decreases the number of sample
paths from an exponential number to a linear
number (there is one blocking state per transition).

Another remark is that, although event graphs do
not exhibit usual monotonicity properties (such as
open networks with finite queues, see [14]), they do
possess extremal states in some sense: the blocking
markings.

The proof of the theorem comes in several steps.
Let us first state a structural lemma. Ifσ is a
sequence of firing,s a transition andM a state of
the net, we denote byNs(σ,M) is the number of
times firing actually occurs ats, when starting from
M and trying to proceed through the sequence of
firing σ in that order (afterk steps, if firing σk

is allowed, then it is performed, otherwise nothing

happens and the next firing is tried). This is also
calledfiring σ from M .

Let M be a state under which only two transi-
tions are enabled, saya and b. Let us denote by
σa the shortest sequence of firings that leads from
M to Ba, not includinga and byσb the shortest
sequence of firings that leads fromM to Bb, not
including b. One knows that two such sequences
exist according to [10].

Lemma 3:Under the foregoing notations, ifσ is
an arbitrary sequence of firings ands an arbitrary
transition,

Ns(σ,M) = Ns(σa,M) + Ns(σ,Ba)
∧ Ns(σb,M) + Ns(σ,Bb).

Proof: The proof goes by induction on the
length ofσ. If |σ| = 0, then it is enough to show
that the supports ofσa and ofσb are disjoint. First,
since onlya and b are allowed underM , the first
firing in σa must beb becauseσa does not contain
a and and the first firing inσb must bea for similar
reason. Lets be the first firing inσa common
with σb. Sinces was not allowed underM , then
some other firings must have brought packets in
the incoming buffers ofs. But these firings must
have occurred in bothσa andσb, contradicting the
fact thats was the first common firing. This ends
the case|σ| = 0.

Now, we assume that the lemma holds for all
sequences of lengthn, and we consider a sequence
σ such that|σ| = n + 1. Let σ = σ′s.

If

min
t∈•s

(Nt(σ′,M) + M(t, s)) > Ns(σ′,M), (3)

thenNs(σ,M) = Ns(σ′,M)+1 elseNs(σ,M) =
Ns(σ′,M).

By induction,

min
t

(Nt(σ′,M) + M(t, s))

= min
t

(Nt(σ′, Ba) + Nt(σa,M) + M(t, s)

∧Nt(σ′, Bb) + Nt(σb,M) + M(t, s))
= min

t
(Nt(σ′, Ba) + Ns(σa,M) + Ba(t, s)

∧Nt(σ′, Bb) + Ns(σb,M) + Bb(t, s))
= Ns(σa,M) + min

t
(Nt(σ′, Ba) + Ba(t, s))

∧Ns(σb,M) + min
t

(Nt(σ′, Bb) + Bb(t, s)).

Using this equation, it should be clear that
Ns(σ,M) increases by one if and only if the
minimum of Ns(σ,Ba) and Ns(σ,Bb) increases
by one.



Now, we generalize to the general case: under
state M an arbitrary number of transitions are
allowed. We partition the set of all allowed transi-
tions into two disjoint setsS1 andS2. Starting from
M , let σ1 (resp.σ2) the shortest firing sequence
(containing no transition inS1 (resp.S2) that leads
to a blocking stateB1 (resp.B2 ) for S1 (resp.S2),
where only firings inS1 (resp.S2) are allowed.

The same method used in the proof of Lemma
3 can be used to show the following result.

Lemma 4: If σ is an arbitrary sequence of firings
ands an arbitrary transition,

Ns(σ,M) = Ns(σ1,M) + Ns(σ,B1) (4)

∧Ns(σ2,M) + Ns(σ,B2) (5)
We are now ready for the proof of the theorem.

Proof: (of Theorem 2) First, it should be
obvious that the simulation starting with blocking
states terminates with probability one, since they
form a subset of all states, and then by using
Theorem 1. Let us assume that coupling from the
past occurs for all blocking states afterk steps. The
corresponding sequence of firings is denotedσ and
the coupling state is denoted byC.

Let denote byM any initial state. The proof that
the simulation starting fromM also couples ink
steps holds by induction on the numberm of firings
allowed underM .

If m = 1 then M is a blocking state and the
result holds by definition ofk.

If m > 1 we split the setS of transitions allowed
underM into S1 = {a} andS2 = S \ {a}. As in
lemma 4, we consider the statesB1 andB2. Using
the induction assumption, the simulation starting in
B2 ends up inC after running the sequenceσ from
B2. Using the fact thatB1 is the blocking state of
transitiona, the simulation starting inB1 has also
reachedC after running the sequenceσ.

Lemma 4, says that after runningσ from M or
from B1 (andB2), a new firing occurs in both cases
together or for none of them. This is true for any
new sequence of firings. This means that all three
states are equal after runningσ. This common state
must beC.

One interesting corollary of this result is the
fact that one can get all stationary functionals of
interest with a good confidence interval using the
central limit theorem by merely running several
independent simulations.

B. Counter examples for more general cases

In this section, we show that blocking states
are no longer extremal states for the simulation in
more general cases. They may couple into a state

which is not distributed according to the stationary
distribution.

1) Event graphs without self-loops:While the
general simulation scheme can be readily adapted
for transitions with no self-loops (taking into ac-
count the enabling degree of a transition) the block-
ing markings are not extremal anymore. Consider
the example displayed in Figure 2.

1 2

3

a b

c

Fig. 2. An event graph without self-loops for which PSA
starting in blocking markings may not yield a stationary output

The blocking markings are
(2, 0, 0), (0, 2, 0), (0, 0, 2). Now, consider
the following sequence of firings (the
corresponding rates are given in parenthesis)
3(λ3), 3(λ3), 2(λ2), 1(2λ1), 3(λ3), where a firing
with rate2λ1 means that transition 1 has enabling
degree 2 because there are two tokens in place
a. Firing this sequence starting from all blocking
states ends up in state(1, 1, 0) while starting from
the initial state given in the figure, the net reaches
(2, 0, 0). This happens with a positive probability
for firing times exponentially distributed.

2) Free choice nets with self-loops:If the net-
work is not an event graph, blocking states (associ-
ated with clusters this time) are not extremal either
as shown by the example displayed in Figure 3.

c

b

a

de
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67

1 3

2

4

Fig. 3. A free choice net for which PSA starting in blocking
markings may not yield a stationary output

The network in Figure 3 is a free choice net
but not an event graph. We will now show that
running a given firing sequence starting from the



blocking states of all clusters may lead to a state
which is not reached from some other states using
the same firing sequence. Here, the blocking states
are all of the form(0, . . . , 0, 2, 0, . . . , 0). Let us fire
the sequence1, 1, 2, 2, 7, 5, 2, 4, 4, 2, 3, 7, 2, 4. All
blocking states end in the state with two packets
in placea, while starting with the initial state given
in Figure 3, the net reaches the state with one token
in placea and one token in placeb. This happens
with a positive probability under exponential firing
times assumptions.

Actually, a counter example can also be found
for a one-bounded free choice net (the previous
example is bounded by two) In [4], a one-bounded
free choice net is given where all blocking states
couple with positive probability in a marking which
may be steady state distributed. This example is
rather large (20 transitions and 20 places) and the
firing sequences involved in the counter example
are also long) and is not reported here due to the
lack of space.

V. PERFECTSIMULATION USING THE

(MAX ,PLUS) ALGEBRA

A second method for perfect simulation of event
graphs will be presented in the following. It is
also based on backward coupling. However, unlike
Propp and Wilson Algorithm, this method does not
need Markovian assumptions. This technique was
used in the past (see for example [12], [7]) to prove
the existenceof stationary regimes for (max,plus)
systems in a non constructive way. We will show
here how they can also be used to get perfect
samplingsof this stationary regime.

In the following we consider a bounded and
live event graph under the following stochastic
assumptions on the firing times:
(H1): τq(n) are i.i.d. and at least one is unbounded:
∃q ∈ Q s.t. ∀x ∈ R+, P(τq > x) > 0 (for example
τ1 is unbounded).

Actually, even more general conditions (in par-
ticular without the unbounded support assumption)
are given in [12]. Everything done in the following
is also true under these more general technical
conditions.

The time evolution of an event graphs can be
written under the form of a (max,plus) linear equa-
tion of sizeQ1. If Xi(n) is the instant of the end of
the nth firing at transitionsi, then there exists a a
sequence of (max,plus) matrices(A(n))n∈N such
that

X(n) = X(n− 1)⊗A(n).

1by definition,(A⊗B)ij =
W

k(Aik + Bkj)

By definition, Aij(n) =
∨

c∈C(i,j)
∑

q∈c τq(n),
whereC(i, j), the set of all paths fromi to j with
all places empty except the last one, containing one
token. For more on this, see [7], for example.

Under assumptionsH1, (A(n))n∈N is a se-
quence of i.i.d. matrices with a fixed support
(P(A(1)ij = −∞) ∈ {0, 1}).

The profile of a vectorv ∈ Rk
max is the vector

γ(v) defined byγ(v)i = vi −minj vj .
Definition 5: A deterministic (max,plus) matrix

D ∈ Rk×k
max is of rank 1 if all lines are equal up to

an additive constant:

∀i, j ∃ cij s.t. cij + D.,i = D.,j .
Alternatively,D is of rank 1 iff

∀i, j, γ(D.i) = γ(D.j) ⇔ ∀i, j, γ(Di.) = γ(Dj.).

Lemma 6: If D is of rank one, then∀u, v ∈ Rk,
γ(u⊗D) = γ(v ⊗D).

Proof: For all i andj, using the definition of
matrices of rank one,(u⊗D)j = cij +(u⊗D)i. If
i0 = argminic1i, then the profileγ(u⊗D)i = cioi

for all i. This does not depend onu.
Let us now consider the sequence(A(n))n∈N of

stochastic matrices corresponding to an event graph
with Q transitions which is live and bounded. The
algorithm for perfect simulation of the correspond-
ing (max,plus) linear system is given in Figure 4.

Input A (max,plus) representationX(n) =
X(n−1)⊗A(n) and a sequence of increas-
ing integersN1, N2, . . .
m := 1
repeat

ComputeBm := A(−Nm)⊗ · · · ⊗A(0)
m := m + 1

until Bm is of rank one
X(0) := X(−Nm)⊗Bm

Output γ(X(0))

Fig. 4. Perfect Simulation Algorithm of (max,plus) linear
systems

Under the foregoing assumptions (H1), it is
proved in [12] that the systemX(n) = X(n−1)⊗
A(n) admits a stationary regime,i.e. that γ(Xn)
converges almost surely to a unique stationary
profile γ∞ (independent of the initial conditions
X(0)). The next theorem shows that the PSA
in Figure 4 provides samples with this stationary
distribution.

Theorem 7:If the (max,plus) perfect simulation
algorithm terminates, then its output has the dis-
tribution of the stationary profile of the (max,plus)
system.



Proof: Using Lemma 6, if the matrixBm has
rank one, and ifX∞ is a state with a stationary
profile (γ(X∞) = γ∞ in distribution), thenX ⊗
Bm = X∞ ⊗ Bm for all X. Since γ(X∞) is
stationary, so isγ(X∞ ⊗Bm) = γ(X ⊗Bm).

The rest of this section is devoted to the proof
that under conditions (H1), the (max,plus) perfect
simulation algorithm terminates with probability
one.

Lemma 8:Under the foregoing assumptions, the
product A(1) ⊗ · · · ⊗ A(k) is of rank one with
positive probability, as soon ask > Q.

Proof: For all k, eventEk,ε is defined by

Ek,ε = {ω | Ai,j(n) ∈ [hij − ε, hij + ε] ∀n ≤ k},

where hij is in the support ofAi,j(n) for all
n ∈ N and the set{hij | i ≤ Q, j ≤ Q} does
not satisfy any linear equation with coefficients
in {1,−1} involving hij whenever the support of
Ai,j(n) is continuous athij . Finally, h11 is such
that h11 > Q(max(i,j) 6=(1,1) hij + ε).

By construction of the deterministic matrix
H = (hij), and using the theory of deterministic
(max,plus) matrices (see [7], [5]), for alli there
exists a sequencei1 . . . i` and for allj there exists
a sequencej1 . . . jr such that for allk > Q,
Hk

ij = hii1 +· · ·+hi`1+(k−`−r−2)h11+h1j1 +
· · ·+ hjrj . Using this form of the matrixHk, it is
straightforward to show thatHk is of rank one,
indeed the differenceHk

ij −Hk
i′j does not depend

on j.
Now, if k > Q and ε is small enough, the

product A(1) ⊗ · · · ⊗ A(k) will also be of rank
one, for the same reason:

(A(1)⊗ · · · ⊗A(k))ij

= A(1)ii1 + · · ·A(` + 1)i`1

+ A(` + 2)11 + · · ·+ A(k − r − 1)11
+ A(k − r)1j1 + · · ·+ A(k)jrj ,

so that(A(1)⊗· · ·⊗A(k))ij−(A(1)⊗· · ·⊗A(k))i′j

does not depend onj.
To finish the proof, it is enough to notice that

under Conditions (H1), P (Ek,ε) > 0 for all k ∈ N
and allε > 0.

Using Lemma 8 and Borel-Cantelli theorem, it
is now direct to show the following result.

Theorem 9:Under assumptions (SC), the
(max,plus) perfect simulation algorithm terminates
with probability one.

From a stationary profileγ∞, it is possible to
get a stationary state of the fork-join network by
appending the following steps in the (max,plus)

simulation algorithm. The output is a state dis-
tributed according to the stationary distribution.

Sample of a real non-negative r. v.d inde-
pendent of everything
k := 0,M := M0 (initial marking)
X(0) := γ(X∞) (stationary profile)
repeat

X(k) := X(k − 1)⊗A(k)
k := k + 1

until Xi(k) > maxj Xj(0) + d, ∀i
for all transitionsi do

ni := max{n | Xi(n) < maxj Xj(0) +
d}
UpdateM firing ni times transitionsi.

end for
Output M

VI. COMPARISON OF THE TWO METHODS

We have implemented the two methods pre-
sented above to simulate a simple event graph.
Although the (max,plus) algorithm is more gen-
eral (does not need exponential firing times), we
have used exponential firing times to be able to
compare both methods over the same example.
The programs are both written in Caml, using
in both cases the most efficient methods known
to us. In particular, in the Markovian case, the
sequence of integersNm used at each step is
Nm = 2m which was proved optimal in average for
the Markov chain algorithm in [13]. The Markov
chain algorithm also uses an aliasing technique
that enables one to computeφ(X, U) in almost
constant time for anyU ∈ [0, 1]. This technique
replaces the real-valued random variableU by a
couple (U, V ) where U is real-valued, uniformly
distributed over[0, 1/Q] and V is integer valued,
uniformly distributed over{1, . . . , Q}. It was first
developed in [15] and has been used in [14], for
perfect simulation.

In the experiments given below, the (max,plus)
algorithm computes a stationary profile. The addi-
tional matrix products needed to get a stationary
state are not included. They should increase the
simulation time by a rather small quantity.

The event graph used in the simulations is a sim-
ple circuit made ofK transitions (andK places)
and W tokens in total. The (max,plus) represen-
tation of such a network uses a matrixA(n) with
sizeQ = max(K, W ). The total number of states
is (K+W−1

K−1 ). In the experiments,K = 40 andW
ranges from 1 to 80, so that the number of states
goes up to3.819 1031.

Figure 5 displays the number of iterations for
both algorithms, while Figure 6 displays the total
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Fig. 5. Average number of iterations for a circuit withK = 40
transitions when the number of tokens varies
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Fig. 6. Average simulation time for a circuit withK = 40
transitions when the number of tokens varies

simulation time. Each point is the average of many
simulations (enough to guarantee confidence inter-
vals smaller than 1 % of the empirical value).

While the number of iterations before coupling
is much smaller for the (max,plus) case, the actual
simulation time however is much larger. This is
because one step in the (max,plus) algorithm is a
product of a large matrix (of sizeK). One can
notice that the time complexity of the (max,plus)
algorithm starts to increase rapidly when the num-
ber of packetsW becomes larger than the number
of transitions K. One explanation is that from
that point on, the size of the matrices starts to
increase fromK to W . The same kind of behavior
(fewer iteration but larger simulation time) has
been observed when the number of transitionsK
changes. The corresponding curves are similar to
those in Figures 5 and 6 and are not reported here.

While the Markov chain method is faster, the
(max,plus) one is more general in terms of firing
distributions. The (max,plus) method can also be
used to simulate perfectly the stationary distribu-
tion of (max,plus) systems where the support of the

matrices is not fixed as shown below.

VII. SEVERAL EXTENSIONS: HEAPS OF PIECES

AND SAFE FREE-CHOICE NETS

A. Heaps of pieces

Consider a finite setC of computing resources
(or columns) and a finite setA of tasks(or pieces)

For a ∈ A, C(a) is the set of resources used
to execute taska. The lower contourl(a) of a is a
vector defined onC giving the relative starting time
of the execution ofa on C (minr∈C(a) l(a)r = 0)
with the convention thatl(a)r = −∞ if r 6∈ C(a).
The upper contour of taska is a vector defined onC
giving the relative completion time of the execution
of a on C. with the convention thatu(a)r = −∞
if r 6∈ C(a).

It is shown in [9], that the total execution time of
the sequence of tasksa0 . . . an over the resources
is given by the vector

X(n) = X(0)⊗ T (a1)⊗ · · ·T (an),

where X(0) = (0,. . . ,0) and for alla ∈ A, the matrix

T (a)sr =

 0 if s = r, r 6∈ C(a)
u(a)r−l(a)s if s ∈ C(a), r ∈ C(a)
−∞ otherwise.

For stochastic heaps, there are two types of
randomness. First, for a givena, l(a) and u(a)
are sequences of iid random vectors with a given
support (C(a) is fixed). Second, at each step, one
chooses which task to execute next. by pickinga in
A according to an iid Bernoulli distribution (with
probability pa > 0).

Here are some technical assumptions on the set
of task matricesT (a), a ∈ A.

(H2) :


∀a ∈ A, {T (a)(n)}n∈N is iid
∀r ∈ C, ∃a ∈ A | r ∈ C(a)
∀r, s ∈ C,∃ a1 . . . ak ∈ A,
∃r0(=r) . . . rk(=s) | ri−1, ri ∈ C(ai).

In words, this assumptions correspond to the fact
that all r.v. are iid, all resources are used and that
the heap cannot be split into two independent sub-
heaps.

Theorem 10 ([9]): Under assumptions(H2),
the sequenceγ(Xn) converges in law to a unique
stationary profile.

The goal of the rest of this section is to provide
an algorithm to sample this stationary profile with
no bias.

Theorem 11:Algorithm 7 terminates in finite
time w.p. 1 and its outputγ(X(0)) has the sta-
tionary distribution of the heap of pieces.



Input An infinite Bernoulli sequence
in A, a1, . . . , an, . . ., matrices
T (a1), . . . T (an), . . . and a sequence
of increasing integersN1, N2, . . . .
m := 1
repeat

ComputeBm := T (a−Nm)⊗· · ·⊗T (a0)
m := m + 1

until Bm is of rank one
X(0) := X(−Nm)⊗Bm

Output γ(X(0))

Fig. 7. Perfect sampling of the stationary distribution of a heap
of pieces

Proof: Consider a finite sequencea1 . . . an

of pieces such thatC(a1) ∪ · · · ∪ C(an) = C
and such thatC(ai) ∩ C(ai+1) 6= ∅ for all 1 ≤
i ≤ n − 1. Such a sequence exists because of
assumption(H2). Then the sequenceT (a1)⊗· · ·⊗
T (an)⊗ T (an)⊗ · · · ⊗ T (a1) is a matrix of rank
one ([9]). Since the probability of each piece is
positive and since the selection process is iid, The
probability that the sequencea1 . . . anan . . . a1 oc-
curs is also positive. Using Borel-Cantelli Lemma,
such a sequence will occur w.p. 1 in any infinite
sequence. Now, once the matrix is of rank one, any
additional product remains of rank one. Therefore,
the algorithm stops w.p. 1. , at step, saym. As
for the output, letX∞ be a heap with a stationary
profile. Thenγ(X0⊗Bm) = γ(X∞⊗Bm) because
Bm is of rank 1, and γ(X∞ ⊗ Bm) = γ(X∞)
becauseX∞ is stationary.

B. Safe free choice nets

In this section we consider one-bounded (or safe)
free choice nets (SFCNets) with iid stochastic firing
times with arbitrary distributions, underBernoulli
routing (Tokens are routed to output transitions
according to fixed positive probabilities:cpq is the
probability to route a token in placep to transition
q ∈ p•). SFCNets can be seen as heaps of pieces
(see for example [9]). Here a piece corresponds to
a transition and the ressources are the places. The
ressources used by transitionq, C(q) are all the
input and output places of the transition.

More precisely,C = P,A = Q and for any
transitionq, C(q) = •q ∪ q• and

T (q)ij =

 0 if i = j, j 6∈ C(q)
φ(q) if i ∈ C(q), j ∈ C(q)
−∞ otherwise.

If the firing times are iid in all transitions and if
the net is strongly connected, then assumptionsH2

are verified for the corresponding heap of pieces.
However, one main difference with free heaps is
that only sequences of pieces corresponding to
enabled transitions can possibly be stacked. One
way to deal with this restriction is to construct
a new heap of pieces by considering the tensor
products of the (max,plus) matrices corresponding
to the pieces with a matrix modelling the reacha-
bility graph of the free choice net. This approach
has a major drawback: the size of the matrices
is O(P |R(M0)|) so one loop of the simulation
algorithm is inO(P 3|R(M0)|3) which may be too
large to be handled by a computer.

Another way, detailed below, is to consider only
the initial heap of pieces and at each step, check
whether a given new piece can be stacked. The
overall complexity of one loop of the simulation
algorithm will be inO(P 3|R(M0)|).

The main ingredient of this approach is the
following lemma, relating the profile of the heap of
pieces to the corresponding marking in the original
SFCNets.

Lemma 12:Consider a SFCNet and the corre-
sponding heap of pieces. After firing transitions
q1 . . . qn, the heap has reached the stateX(n) =
X(0)T (q1) ⊗ · · · ⊗ T (qk). Then the marking in
the SFNetMark(Xn) can be recovered from the
profile γ(X(n)).

Proof: A SFCNet is covered by one-bounded
P -components [6]. For eachP -component, when
firing transitionsq1 . . . qn, the latest event within
theP -component has moved its only token to some
place p. Therefore, this place corresponds to the
highest value ofX(n) among all the places in the
P -component. Knowing the position of the tokens
in all the P -components covering the SFCNet
determines the marking.

Here is the main result of this section.
Theorem 13:i- Algorithm 8 terminates in finite

time w.p.1.
ii - Its output is sampled according to the stationary
distribution of the heap.

Proof: Before proving termination, one must
convince himself that each trajectory simulated by
this algorithm is valid. This is because for any
given initial markingM , the choice of the next
transition to fire is such that it is either invalid (in
which case nothing happens) or follows the good
Bernoulli proportions.

For i, the first step is to show convergence of the
marking. Using Lemma 12, the marking associated
with heap X(n) is unique so that this part can
be proved in the same way as Theorem 1. Next,
one needs to show that the profiles also converge.



Input (P,Q, τ, C) a SFCNet with firing
timesT = {τq}, Bernoulli routings{cpq},
a matrixB := Id
for all Marking M ∈ R(M0) do

Compute a heapXM (0) such that
Mark(XM (0)) = M .

end for
repeat

Pick a transitionq w.p. c•qq/Γ
for all reachable markingM do

If q is enabled inMark(XM (k− 1))
then B := T (q)⊗B end if
XM (k) := XM (0)⊗B
k := k + 1

end for
until B is of rank one andMark(XM (k))
is the same for all markingsM ∈ R(M0).
Output γ(XM (k)), for oneM ∈ R(M0).

Fig. 8. PSA of the stationary profile of the heap of a SFCNet

Consider a sequence of pieces that first assure
coupling of the marking. Once a common marking
is reached for all heaps, one only needs to exhibit a
firing sequence such that the corresponding pieces
form of matrix of rank one. The construction used
in Theorem 11 cannot be used directly here because
a sequenceq1 . . . qnqn . . . q1 may not be enabled.
Instead, one must construct a similar sequence
by parts. starting from the common marking, a
blocking markingMq (for an arbitrary transition
q) can be reached w.p.p. FromMq there exists
a valid firing sequenceσ1 involving transition
q1, leading back to markingMq. The same can
be done for all the transitions in the SFCNet.
Combining all sequences enables a firing sequence
σ1 . . . σQσQ . . . σ1 which can be fired w.p.p. This
yields a matrix with rank one.

As for ii , the proof is similar to the proof of
Theorem 7.

To recover a marking for the SFCNet, with a sta-
tionary distribution, one simply needs to compute
Mark(XM (k)).

Unlike for heaps of pieces, this PSA needs to
compute one trajectories per marking inR(M0).
Therefore, it may only be used for nets of moderate
size. Note that computing the stationary distribu-
tion is already very hard with two or three nodes,
so that sampling remains interesting.

Several generalizations are possible.
- If conflicts are solved using therace policy(the
transition with the smallest firing time wins the
conflict), this is also amenable to Bernoulli routings

by modifying the distribution of the firing times
according to the following transformation. The
distribution of the new firing timeτ ′q of transition
q becomes

P(τ ′q ≤ x) = P(τq ≤ x|∀y ∈ (•q)•, τy ≤ τq).

- Iid assumptions for firing times can be replaced
by more general stationary and ergodic assump-
tions. However this introduces several technical
difficulties similar to those in [1], which are beyond
the scope of this paper
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