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Abstract Network Calculus theory aims at evaluating worst-case performances
in communication networks. It provides methods to analyze models where the
traffic and the services are constrained by some minimum and/or maximum
envelopes (arrival/service curves). While new applications come forward, a
challenging and inescapable issue remains open: achieving tight analyzes of
networks with aggregate multiplexing.

The theory offers efficient methods to bound maximum end-to-end delays
or local backlogs. However as shown in a recent breakthrough paper [28],
those bounds can be arbitrarily far from the exact worst-case values, even in
seemingly simple feed-forward networks (two flows and two servers), under
blind multiplexing (i.e. no information about the scheduling policies, except
FIFO per flow). For now, only a network with three flows and three servers,
as well as a tandem network called sink tree, have been analyzed tightly.

We describe the first algorithm which computes the maximum end-to-end
delay for a given flow, as well as the maximum backlog at a server, for any
feed-forward network under blind multiplexing, with piecewise affine concave
arrival curves and piecewise affine convex service curves. Its computational
complexity may look expensive (possibly super-exponential), but we show that
the problem is intrinsically difficult (NP-hard). Fortunately we show that in
some cases, like tandem networks with cross-traffic interfering along intervals
of servers, the complexity becomes polynomial. We also compare ourselves to
the previous approaches and discuss the problems left open.
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É. Thierry
ENS Lyon (France)
E-mail: eric.thierry@ens-lyon.fr



2 Anne Bouillard, Éric Thierry
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1 Introduction

Network Calculus (NC) is a theory of deterministic queuing systems encoun-
tered in communications networks. With methods to compute deterministic
bounds on delays, backlogs and other Quality-of-Service (QoS) parameters,
it aims at analyzing critical behaviors and usually focuses on worst-case per-
formances, either local performances (i.e. maximum buffer size at a node) or
end-to-end performances (i.e. maximum end-to-end delay). The information
about the system is stored in functions, such as arrival curves shaping the traf-
fic or service curves quantifying the service guaranteed at the network nodes.
Relevant applications range from Internet QoS [16] to the analysis of System-
on-Chip [10], industrial Ethernets [29], critical embedded networks [9]. At the
present time, the theory has developed and yield accomplished results which
are mainly recorded in two reference books [12,19]. It is an alternative to other
approaches for worst-case performance analysis like holistic methods [33], tra-
jectory methods [21] or model checking [17]. It is believed that Network Cal-
culus and its extensions have advantages like modularity and scalability that
will allow valuable analyzes of complex networks [22].

From the beginning [11,13,14], Network Calculus methods have always put
an emphasis on the use of (min,+) or (max,+) tropical algebras, known for
their applications to different discrete event systems [2]. The definitions of ar-
rival curve as well as simple minimum service curve can be easily stated with
the (min,+) convolution. A general scheme consists in combining constraint
curves thanks to algebraic operations like (min,+) convolution or (max,+) de-
convolution. Using a few lemmas, one can either propagate constraints through
the network and then retrieve performance bounds from all those computa-
tions, or express the network behavior with a set of (min,+) functional equa-
tions which must be solved to get the bounds. In this framework, the analysis
of a single flow crossing a sequence of servers is tight. The (min,+) convolution
elegantly captures the Pay Burst Only Once (PBOO) phenomenon in tandems
of servers (burstiness is amortized all along the servers). However as soon as
the network presents some aggregate multiplexing of several flows, providing
a tight analysis becomes much more difficult.

The NC models are usually classified according to the topology of the net-
work, the scheduling policies and the type of service guaranteed at each server.
For general topologies where the flows may interfere with cyclic dependencies,
the complexity of computing worst-case performances is still open. Even the
simpler question of deciding stability, i.e. whether global backlog or end-to-
end delays remain bounded, is unset for many policies. Related results can
be found in the Adversarial Queuing literature where the Permanent Session
Model matches Network Calculus models [4]. A well-known necessary condi-
tion for stability is an utilization factor < 1 at each server. This condition is
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also sufficient for feed-forward networks [14], or unidirectional rings [30]. But,
this condition is not sufficient for FIFO scheduling since there exist unstable
networks at arbitrarily low utilization factors [1]. For general FIFO networks,
the best sufficient conditions and associated bounds on delays are provided
by [24] but they are usually not tight. More thrilling, for simple feed-forward
networks like FIFO tandems, a recent paper [3] improving delays bounds has
shown that those bounds were not tight yet.

In this paper, we investigate the complexity of computing exact worst-case
performances (end-to-end delays and local backlogs) for feed-forward networks
under blind multiplexing, i.e. no information about the policy except FIFO per
flow (also called FIFO per micro-flow [25]). This assumption is weaker than
FIFO scheduling for the aggregated flows. A first study of tandem networks put
forward a new phenomenon called Pay Multiplexing Once (PMOO) (competi-
tion between flows for the resources is amortized all along the servers) [26]. It
presented a new method taking into account PMOO and experiments showed
a significant improvement to the end-to-end delay bounds with regard to pre-
vious NC approaches. This method could be formulated as a new (min,+)
multi-dimensional convolution [5], thus preserving the NC spirit while being
a good candidate for tight analysis of blind multiplexing. However a recent
breakthrough paper [28] showed that those bounds could be arbitrarily far
from the exact worst-case values, even in seemingly simple feed-forward net-
works (two flows and two servers). This paper suggested a new approach using
linear programming, but for now, only a network with three flows and three
servers, as well as sink-tree tandems, could be analyzed tightly.

Our paper describes the first algorithm which computes the maximum end-
to-end delay for a given flow, as well as the maximum backlog at a server, for
any feed-forward network under blind multiplexing, with piecewise affine con-
cave arrival curves and piecewise affine convex strict service curves. It also
provides a critical trajectory of the system, achieving the worst-case value. Its
computational complexity may look expensive (possibly super-exponential),
but we show that the problem is intrinsically difficult (NP-hard). Fortunately
we show that in some cases, like tandem networks i.e. the scenarios studied
in [28,26], the complexity becomes polynomial. Beyond the fact that our so-
lution applies to any feed-forward networks, and although we also use linear
programming, several features distinguish our approach from [28]: we tackle
both worst-case delays and backlogs, we directly compute worst-case perfor-
mances instead of looking first for an end-to-end service curve, we avoid a
decomposition/recomposition scheme for convex/concave curves which may
lead to looser bounds and a more expensive complexity.

This is a long version of the conference paper [6]. In this paper, we (i) give a
simplified approach and complete proofs of the results (ii) prove our conjecture
concerning the NP-hardness of computing the exact worst-case delay.

The paper is organized as follows: after a presentation of the network model
and the main NC notions in Section 2, we describe and analyze our algorithm
in Section 3 where we also set the NP-hardness of the problem. Section 4 shows
how it applies to tandem networks and compares our solution to previous works
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namely [28,27], while experiments are discussed in Section 5 to assess the gain
w.r.t. to older NC methods. Further interesting extensions and open problems
are presented in Section 6.

Our results are relevant to Network Calculus and extensions like Real-
Time Calculus [31] (which uses strict service curves). But we do not address
stochastic extensions like [15,18].

2 Model and assumptions

2.1 Network Calculus framework

2.1.1 NC functions and systems

In Network Calculus, one must distinguish two kinds of objects: the real move-
ments of data and the constraints that these movements satisfy. The real
movements of data are modeled by cumulative functions: a cumulative func-
tion f(t) counts the total amount of data that has achieved some condition
up to time t (e.g. the total amount of data which has gone through a given
place in the network). We consider a fluid model where time is continuous,
data can be divided into arbitrarily small pieces (time and data measures
belong to R+) 1 and cumulative functions will belong to F = {f : R+ →
R+ | f non− decreasing, left− continuous,f(0) = 0} 2. Constraint functions
either shape the traffic (arrival curves) or guarantee some service locally or
globally (service curves). Constraint functions usually allow the +∞ value. In
this paper we will usually assume that they belong to F for commodity, but
a careful look will show that all our solutions can be adjusted with no extra
cost to deal with some +∞ values if necessary.

Beyond usual operations like the minimum or the addition of functions,
Network Calculus makes use of several classical (min,+) operations [2] such
as: let f, g ∈ F , ∀t ∈ R+,

– convolution: (f ∗ g)(t) = inf0≤s≤t(f(s) + g(t− s));
– deconvolution: (f � g)(t) = supu≥0(f(t+ u)− g(u)).

An input/output system is a subset S of {(F in, F out) ∈ F × F | F in ≥
F out}. It models a flow crossing a system where F in (resp. F out) is the cu-
mulative function at the entry (resp. exit) of the system and F in ≥ F out

indicates that the system only transmits data. The system may range from a
single server to a large network with cross-traffic. A trajectory of the system S
is an element (F in, F out) of S.

Note that it is not required to suppose that the system is deterministic. The
system may admit several trajectories (F in, F out), with the same input F in

associated with different outputs F out.

1 we will call bit the data unit of measure.
2 it is not exactly the same fluid model as [19] where functions are continuous rather than

left-continuous
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2.1.2 NC arrival curves

Given a data flow, let F ∈ F be its cumulative function at some point, i.e. F (t)
is the number of bits that have reached this point until time t, with F (0) = 0.
A function α ∈ F is an arrival curve for F if ∀ s, t ∈ R+, s ≤ t, we have
F (t)−F (s) ≤ α(t−s). We also say that F is upper-constrained by α. It means
that the number of bits arriving between time s and t is at most α(t − s). A
typical example of arrival curve is the affine function ασ,ρ(t) = σ+ρt, σ, ρ ∈ R+

(sometimes called leaky-bucket arrival curve), where σ represents the maximal
number of packets that can arrive simultaneously (the maximal burst) and
ρ the maximal long-term rate of arrivals. An usual assumption is that α is
sub-additive (otherwise it can be replaced by its sub-additive closure). Note
that the sub-additive closure of our leaky-bucket curve ασ,ρ is still ασ,ρ except
at t = 0 where the value must be 0.

2.1.3 NC service curves

Two types of minimum service curves are commonly considered: simple ser-
vice curves and strict service curves. Given a trajectory (F in, F out) of an
input/output system, we need to define the notion of backlogged period which
is an interval I ⊆ R+ such that ∀u ∈ I, F in(u)− F out(u) > 0. Given t ∈ R+,
the start of the backlogged period of t is start(t) = sup{u < t|F in(u) =
F out(u)}. Since F in and F out are left-continuous, we also have F in(start(t)) =
F out(start(t)). For instance, for any t ∈ R+, ]start(t), t[ is a backlogged period,
as well as ]start(t), t] if F in(t)− F out(t) > 0.

Let β ∈ F , we define:

– Ssimple(β) = {(F in, F out) ∈ F × F | F in ≥ F out ≥ F in ∗ β};
– Sstrict(β) = {(F in, F out) ∈ F × F | F in ≥ F out and for any backlogged

period ]s, t[, F out(t)− F out(s) ≥ β(t− s)}.
We say that a system S provides a (minimum) simple service curve (resp.
strict service curve) β if S ⊆ Ssimple(β) (resp. S ⊆ Sstrict(β)). A typical ex-
ample of service curve is the rate-latency function: βR,T (t) = R(t−T )+ where
R, T ∈ R+ and a+ denotes max(a, 0). Note that for all β ∈ F , Sstrict(β) ⊆
Ssimple(β) (since for all (F in, F out) ∈ Sstrict(β), we have ∀t ∈ R+, F out(t) ≥
min(F in(t), F in(start(t)) + β(t− start(t))) ≥ (F in ∗ β)(t)). But the converse
is not true [19]. An usual assumption for strict service curves is that β is
super-additive (otherwise it can be replaced by its super-additive closure).

In NC models with multiplexing, the aggregation of all the flows entering
the system is often considered as a single flow to which the minimum service
is applied (i.e. one works with the sum of the cumulative functions). This is
the case here.

2.1.4 Performance characteristics and bounds

Given a input/output system, bounds for the worst backlog and worst delay
can be easily read from arrival and service curves.
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Given a flow going through a network, modeled by an input/output sys-
tem S, let (F in, F out) be a trajectory of S. The backlog of the flow at time t
is b(t) = F in(t) − F out(t), and the delay endured by data entering at time t
(assuming FIFO policy for the flow) is

d(t) = inf{s ≥ 0 | F in(t) ≤ F out(t+ s)}
= sup{s ≥ 0 | F in(t) > F out(t+ s)}.

Beware that d(t) 6= sup{s ≥ 0 | F in(t) ≥ F out(t + s)}. For instance, look
at t = 1 for F in(t) = t and F out(t) = 0 over [0, 2] and = 1 over ]2, 4] and = t
over ]4,+∞[.

For the trajectory, the worst backlog is Bmax = supt≥0

(
F in(t) − F out(t)

)
and the worst delay is Dmax = supt≥0 d(t) = sup{t− s | F in(s) > F out(t)}.

For the system S, the worst backlog (resp. delay) is the supremum over all
its trajectories.

The next theorem explains how to derive performance bounds from con-
straints and how traffic constraints can be propagated.

Theorem 1 ([12,19]) Let S be an input/output system providing a simple
service curve β and let (F in, F out) be a trajectory such that α is an arrival
curve for F in. Then,

1. Bmax ≤ sup{α(t)− β(t) | t ≥ 0} = v(α, β) (vertical distance).
2. Dmax ≤ inf{d ≥ 0 | ∀t ≥ 0, α(t) ≤ β(t + d)} = h(α, β) (horizontal

distance).
3. α� β is an arrival curve for F out.

Fig. 1 illustrates those bounds.

Bmax

α

β

Dmax

Fig. 1 Guaranteed upper bounds on backlog and delay.

2.2 Network model

A network will be modeled, without loss of generality, by a directed graph
where the flows must follow the edges and the servers (switches, transmission
links, routers...) are represented by the vertices.
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Servers and flows will be identified by indices. The set of servers is S =
{1, . . . , n} and each server j offers a strict service curve βj ∈ F which is
piecewise affine (with a finite number |βj | of pieces) and convex. Thus it can
be written βj(t) = max1≤`≤|βj |(rj,`t− hj,`) with rj,`, hj,` ∈ R+.

The set of flows is F = {1, . . . , p}. Each flow i corresponds to a couple
(αi, µi) where µi is the (finite) ordered sequence of servers crossed by the flow
and αi is an arrival curve for the cumulative function before entering the first
server. We suppose that αi is non-negative, non-decreasing, piecewise affine
(with a finite number |αi| of pieces) and concave 3. Thus it can be written
αi(t) = min1≤`≤|αi|(σi,` + ρi,`t) with σi,`, ρi,` ∈ R+. Let i ∈ F, we denote
first(i) (resp. last(i)) the index of the first (resp. last) server encountered by
flow i. We will by abuse of notation write j ∈ i to say that server j belongs to
the sequence µi. Given j ∈ i, we will denote preci(j) the index of the server
preceding j in the sequence µi (by convention, preci(first(i)) = 0). These
notations are illustrated on Fig. 2. Note that in the following indices of flows
will always use the letter i and indices of servers will always use the letter j.
We write i 3 j to say that flow i crosses server j.

i

j ∈ i

j last(i)
first(i) preci(j)

Fig. 2 Notations about flow i.

The overall network N is defined by S, F and the sets {βj , 1 ≤ j ≤ n},
{(αi, µi), 1 ≤ i ≤ p}. The directed graph induced by N is G(N ) = (S,A),
where S is the set of vertices and (j, j′) ∈ A if and only if j and j′ are
consecutive servers for some sequence µi. The sequences µi are paths in the
digraph (the converse is not necessarily true). Any path in G(N ) = (S,A) will
be designated by its ordered sequence of vertices and often written as a word
over the alphabet S (we will often use π to designate a path and for
instance jπ will denote the path starting by vertex j followed by the
path π).

In addition, we will use the following notations (similar to [28]): for all
i ∈ F,

– the cumulative function of flow i at the entry of network is F
(0)
i ;

– for all j ∈ i, the cumulative function of flow i at the output of server j is

F
(j)
i .

A set of cumulative functions {F (j)
i ∈ F | i ∈ F, j ∈ S, j ∈ i} will be

called a trajectory of the network N if it respects the NC constraints of the
network:

3 up to forcing a null value at t = 0, it belongs to F , however we do not force this value
to keep an expression as a minimum of affine functions (it will be useful for the future LP
translation of constraints)
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(T1) ∀i ∈ F, ∀j ∈ i, F (preci(j))
i ≥ F (j)

i ;

(T2) ∀i ∈ F, F
(0)
i is αi-upper constrained;

(T3) ∀j ∈ S, (
∑
i3j F

(preci(j))
i ,

∑
i3j F

(j)
i ) ∈ Sstrict(βj).

Since we work under blind multiplexing, no other relation is imposed. The set
of all trajectories of N is denoted Traj(N ).

Here are our objectives:

1. Worst end-to-end delay. Given a flow i0, we wish to compute the worst
end-to-end delay endured by data of this flow, that is

sup
{F (j)
i }∈Traj(N )

sup
0≤s≤t

{t− s | F (0)
i0

(s) > F
(last(i0))
i0

(t)}.

In fact, we will rather compute

sup
{F (j)
i }∈Traj(N )

sup
0≤s≤t

{t− s | F (0)
i0

(s) ≥ F (last(i0))
i0

(t)}.

This will not change the result, as we always assume that one bit of data
can arrive instantaneously (for example, even if αi0 = 0, we compute the
maximum delay of one bit of data of flow i0 crossing the system).

2. Worst local backlog. Given a server j0, we wish to compute the worst
backlog endured by this server, that is

sup
{F (j)
i }∈Traj(N )

sup
t≥0
{
∑
i3j0

F
(preci(j0))
i (t)−

∑
i3j0

F
(j0)
i (t)}.

Those are supremum over infinite sets, nevertheless they can be computed
as shown next. Note that those supremum are not necessarily reached for some
trajectory or some instants s, t. For example, for a single flow crossing a single

server, let F
(0)
1 (t) = t and F

(1)
1 (t) = 2(t− 1)+ then the worst delay is 1 but it

is not reach for any instants s, t (it occurs when t = 1 and s tends to 0). In

the same way, if F
(0)
1 (0) = 0, F

(0)
1 (t) = 1 for t > 0 and F

(1)
1 (t) = t, the worst

backlog is 1 but it is not reach for any instant t (it occurs when t tends to 0).
Note also that, when dealing with complexity, we will assume that numer-

ical parameters take their values in Q rather than R.

3 Analysis of general feed-forward networks

Theorem 2 Let N be a network with n servers and p flows. If its induced
graph G(N ) is feed-forward, then given a flow i (resp. a server j), there exists
a finite set Λ of linear programs (LP) with respective optimum values optλ, λ ∈
Λ, such that maxλ∈Λ optλ is the worst end-to-end delay for flow i (resp. worst
backlog at server j). Each linear program has O(p|Π|) variables and O(p|Π|2)
linear constraints where Π is the set of paths ending at end(i) (resp. j). We
have |Π| ≤ 2n−1 and |Λ| ≤ |Π|!2|Π|−1.

The description of the different LP instances and the proof of the theorem
will be illustrated with the small but typical example of Fig. 3, the diamond
network.



Tight performance bounds in the worst-case analysis of feed-forward networks 9

β1

β3

β4

t∅

t34

β2

t4

F
(3)
2

F
(2)
1

t24

F
(1)
2

F
(1)
1F

(0)
1

t124

t134

F
(4)
1

F
(4)
2F

(0)
2

Fig. 3 Diamond network: two flows and four servers.

3.1 The LP instances

We present a set of LP instances such that any trajectory satisfies at least one
of them.

3.1.1 Variables

Given the flow of interest i (resp. a server j) for which one wants to compute the
maximum end-to-end delay (resp. the maximum backlog) over all trajectories
of the network, let Π be the set of all paths ending at last(i) (resp j), including
the empty path denoted ∅. Here are the variables names that will appear in
each LP instance:

– tπ for all π ∈ Π. Interpretation: t∅ is the instant at which the worst-case
occurs (output of data having endured the worst delay or instant of worst
backlog). Then for all jπ ∈ Π, tjπ = startj(tπ), the start of the backlogged
period before tπ at the server j.

– F
(j)
i (tπ) for all i ∈ F, j ∈ i, π ∈ Π(j)

i := {π′, jπ′ | jπ′ ∈ Π}. Interpreta-

tion: the value of the cumulative function F
(j)
i at time tπ.

– F
(0)
i (tπ) for all i ∈ F, π ∈ Πi :=

⋃
j∈iΠ

(j)
i . Interpretation: the value of

the cumulative function F
(0)
i at time tπ.

Diamond example

– If we are studying the worst end-to-end delay for flow 1 (or for flow 2, or
the worst backlog at server 4), we have to consider the set of paths ending
at server 4, i.e. Π = {∅, 4, 24, 34, 124, 134}. Thus the temporal variables
are t∅, t4, t24, t34, t124, t134.

– For flow 1 and server 1, the set Π
(1)
1 is {124, 24, 134, 34}. Thus the corre-

sponding variables are F
(1)
1 (t124), F

(1)
1 (t24), F

(1)
1 (t134), F

(1)
1 (t34).

– For flow 1, we have Π1 = {∅, 4, 24, 34, 124, 134}. Thus the correspond-

ing input variables are F
(0)
1 (t124), F

(0)
1 (t24), F

(0)
1 (t134), F

(0)
1 (t34), F

(0)
1 (t4),

F
(0)
1 (t∅).
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Note that one could have introduced the variables F
(j)
i (tπ) for all π ∈ Π,

but many of them do not occur while describing the sequence of events leading
to the worst case and are not necessary to rebuild critical trajectories.

In the text, we will carefully distinguish the expression “the variable x”
which refers to the unassigned variable, from the expression “the value x”
which refers to an assignment of the variable x.

3.1.2 Temporal constraints

A set of temporal constraints T over some subset Π ′ ⊆ Π is a set of equalities
or inequalities of the form tπ1

= tπ2
or tπ1

≤ tπ2
where π1, π2 ∈ Π ′, and such

that its set of solutions Sol(T ) ⊆ RΠ′

+ is non-empty.
To ensure the coherence of the tπ values with their interpretation as starts

of backlogged periods, we introduce two predicates over the tπ variables:

(P1) For all jπ ∈ Π, tjπ ≤ tπ.
(P2) For all jπ1, jπ2 ∈ Π, tjπ1

< tjπ2
⇒ tjπ1

≤ tπ1
≤ tjπ2

≤ tπ2
.

The predicate (P1) comes from the fact that for any trajectory and any in-
stant t, at server j, we have start(t) ≤ t. It is also clear that for any instants
t, t′, at server j, an ordering start(t) < start(t′) ≤ t can not occur, leading to
predicate (P2).

We say that a set of temporal constraints T over Π ′ satisfies the predicates
(P1) and (P2) if any solution to T with real values satisfies both (P1) and (P2).
Note that this definition involves an infinite number of tests, but one can easily
decide whether T satisfies (P1) and (P2) with a O(|T ||Π ′|) algorithm (one can
perform a transitive closure algorithm on T to get all existing comparisons
between the variables tπ, π ∈ Π ′, with complexity O(|T ||Π ′|), then checking
(P1) is immediate and checking (P2) comes to check that there is no tjπ1 <
tjπ2 ≤ tπ1 configuration, it can be done in O(|T |2)).

We say that a set of temporal constraints T is a total order over some subset
Π ′ ⊆ Π if it has the form {tπ1 /1 tπ2 /2 · · · /N−1 tπN } where π1, π2, . . . , πN is a
permutation of all the elements of Π ′ and for all 1 ≤ k ≤ N − 1, /k ∈ {=,≤}.
Note that for all π, π′ ∈ Π ′, by considering the transitive closure, T implies
a comparison between π and π′ which is either =, ≤ or ≥. This comparison
is denoted T (π, π′). The set of all total orders over Π ′ which satisfy (P1)
and (P2) is denoted Tot(Π ′). Here is one way to enumerate all the elements
of Tot(Π ′): generate the set of temporal constraints imposed by predicate
(P1), it corresponds to a tree-like partial order, then generate all its linear
extensions, generate for each linear extension all the possible combinations of
comparisons =, or ≤ and for each one check whether it satisfies (P2). Such an
algorithm works and it has roughly a O(|Tot(Π ′)|3|Π′||Π ′|2) complexity [23].
We have not looked for a faster algorithm, there is probably some ways to speed
up this step, but any algorithm will require at least a |Tot(Π ′)| complexity
which can be exponential w.r.t. |Π ′|.

Now we come back to our network. For each flow i, we have associated
the set of paths Πi = {π, jπ | j ∈ i, jπ ∈ Π} and we know that Π =
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1≤i≤nΠi. Let (T1, . . . , Tp) ∈ Tot(Π1)× · · · × Tot(Πp), we say that the total

orders (T1, . . . , Tp) are mutually compatible if for all 1 ≤ i1, i2 ≤ p and π, π′ ∈
Πi1 ∩Πi2 , we have Ti1(π, π′) = Ti2(π, π′). Note that it can be checked with a
O(p|Π|2) algorithm looking at all pairs π, π′. This condition ensures that there
exists a solution (tπ)π∈Π ∈ RΠ+ to the set of constraints T1∪ . . .∪Tp. Moreover
one can easily prove that this solution will always satisfy the predicates (P1)
and (P2).

Each combination (T1, . . . , Tp) ∈ Tot(Π1)×· · ·×Tot(Πp) of mutually com-
patible total orders will lead to a set of LP instances. The main issue leading to
such a case study is that, unlike (P1), the predicate (P2) cannot be captured
by a single set of linear constraints.

Note that to avoid the analysis of redundant cases, one may only consider
set of constraints Ti such that their set of solutions Sol(Ti) is maximal for
the inclusion (e.g. among two eligible sets T 1 = {t12 = t13 ≤ t2 = t3} and
T 2 = {t12 = t13 ≤ t2 ≤ t3}, only T 2 needs to be considered).

Example The set Π is {∅, 4, 24, 34, 124, 134} and Π1 = Π2 = Π.
To satisfy predicate (P1), one has the relations:

t124 ≤ t24 ≤ t4 ≤ t∅ and t134 ≤ t34 ≤ t4 ≤ t∅.

Now t124 and t134 need to be ordered. There are four maximal total orders
that also satisfy predicate (P2):

– T 1 = {t124 ≤ t24 ≤ t134 ≤ t34 ≤ t4 ≤ t∅};
– T 2 = {t134 ≤ t34 ≤ t124 ≤ t24 ≤ t4 ≤ t∅};
– T 3 = {t124 = t134 ≤ t24 ≤ t34 ≤ t4 ≤ t∅};
– T 4 = {t124 = t134 ≤ t34 ≤ t24 ≤ t4 ≤ t∅}.

3.1.3 Trajectory constraints

Let (T1, . . . , Tp) ∈ Tot(Π1)×· · ·×Tot(Πp) be some mutually compatible total
orders.

Here is the set of equalities and inequalities describing the states of the
system for our selected events:

– Temporal constraints: T = T1 ∪ . . . ∪ Tp.
– Strict service constraints: for all j ∈ S and jπ ∈ Π, add {

∑
i3j F

(j)
i (tπ)−∑

i3j F
(j)
i (tjπ) ≥ βj(tπ − tjπ)} (that is |βj | linear inequalities since βj

is a maximum of affine functions). Moreover for all jπ1, jπ2 ∈ Π such

that T (jπ1, jπ2) is = and T (π1, π2) ∈ {=,≤}, add {
∑
i3j F

(j)
i (tπ2

) −∑
i3j F

(j)
i (tπ1) ≥ βj(tπ2 − tπ1)}.

– Starts of backlogged periods: for all j ∈ S, jπ ∈ Π and i 3 j, add {F (preci(j))
i (tjπ) =

F
(j)
i (tjπ)}.
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– Flow constraints: for all i ∈ F, j ∈ i and jπ ∈ Π, add {F (0)
i (tjπ) ≥

F
(j)
i (tjπ), F

(0)
i (tπ) ≥ F (j)

i (tπ)}.
– Non-decreasing functions: for all i ∈ F, j ∈ i and π1, π2 ∈ Π(j)

i , if T (π1, π2)

is =, then add {F (j)
i (tπ1

) = F
(j)
i (tπ2

)} and if T (π1, π2) is ≤, then add

{F (j)
i (tπ1) ≤ F (j)

i (tπ2)}.
– Arrival constraints: for all 1 ≤ i ≤ p, for all π1, π2 ∈ Πi such that

T (π1, π2) ∈ {=,≤}, add {F (0)
i (tπ2) − F (0)

i (tπ1) ≤ αi(tπ2 − tπ1)} (that is
|αi| linear inequalities since αi is a minimum of affine functions).

Diamond example For T 1 = {t124 ≤ t24 ≤ t134 ≤ t34 ≤ t4 ≤ t∅}, flow
constraints, non-decreasing constraints and starts of backlogged periods for
flow 1, are depicted on Fig. 4.

F 0
1 (t124) ≤ F 0

1 (t24) ≤ F 0
1 (t134) ≤ F 0

1 (t34) ≤ F 0
1 (t4) ≤ F 0

1 (t∅)

= ≥ = ≥ ≥ ≥

F 1
1 (t124) ≤ F 1

1 (t24) ≤ F 1
1 (t134) ≤ F 1

1 (t34)

=

F 2
1 (t24) ≤ F 2

1 (t4)

=

F 4
1 (t4) ≤ F 4

1 (t∅)

Fig. 4 Constraints for flow 1 and T 1 (except service/arrival constraints).

For server 1, strict service constraints are:

– (F
(1)
1 (t24) + F

(1)
2 (t24))− (F

(1)
1 (t124) + F

(1)
2 (t124)) ≥ β1(t24 − t124);

– (F
(1)
1 (t34) + F

(1)
2 (t34))− (F

(1)
1 (t134) + F

(1)
2 (t134)) ≥ β1(t34 − t134).

For flow 1, arrival constraints are:

– F
(0)
1 (t24)− F (0)

1 (t124) ≤ α1(t24 − t124),

– F
(0)
1 (t134)− F (0)

1 (t124) ≤ α1(t134 − t124),

– F
(0)
1 (t134)− F (0)

1 (t24) ≤ α1(t134 − t24), ...

3.1.4 Objective

Worst end-to-end delay for flow i0: maximize the objective function (t∅ − u),
where t∅ − u is the delay endured by data that entered the network at time u
and left at time t∅. Consequently one has to add several constraints linked
to u and possibly to consider several cases depending on the choice of Ti0
in Tot(Πi0):

– Arrival time: {F (0)
i0

(u) ≥ F last(i0)
i0

(t∅)}.
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– Insertion: one must position u within the total order Ti0 . For each π ∈ Πi0 ,
we generate one LP instance by adding the constraints:

– Position and monotony: add {tπ ≤ u, F
(0)
i0

(tπ) ≤ F
(0)
i0

(u)}, and let tπ′

be the successor of tπ in Ti0 (if any), add {u ≤ tπ′ , F
(0)
i0

(u) ≤ F (0)
i0

(tπ′)}.
– Arrival curve constraints: for all π′ ∈ Πi0 , if T (π′, π) ∈ {=,≤}, add

{F (0)
i0

(u)−F (0)
i0

(tπ′) ≤ αi0(u−tπ′)}, otherwise add {F (0)
i0

(tπ′)−F (0)
i0

(u) ≤
αi0(tπ′ − u)}.

Diamond example Some possible particular positions of u are t124 ≤ u ≤ t24,
t24 ≤ u ≤ t134, ...

As a matter of fact, one can consider fewer cases. First there may be
some equal elements in Ti0 which will yield the same additional constraints
for u. Then more significantly, it is not necessary to consider all the possible
positions of u between all the consecutive elements of Ti0 . One only has to
position u between consecutive elements of Start0 = {tfirst(i0)π | first(i0)π ∈
Πi0} the set of all starts of backlogged periods at server first(i0). This general
idea is explained in the particular case of Theorem 4, but to ease a little the
construction of critical trajectories, we keep all the cases mentioned before.

Worst backlog at server j0: maximize the objective function∑
i3j0

F
(preci(j0))
i (t∅)−

∑
i3j0

F
(j0)
i (t∅).

It does not introduce new cases or new linear constraints.

3.2 From network trajectories to LP solutions

Let λ be an LP instance (possibly with strict inequalities) with optimal value optλ,
we call a solution of λ an assignation of the variables satisfying the linear con-
straints, and it is an optimal solution if it achieves optλ (there may be no
optimal solution if λ = +∞ or when there are some strict inequalities in the
constraints).

Lemma 1 Let N be a feed-forward network and a flow of interest i0 (resp. a
server j0). Let Λ be the set of LP instances constructed in Section 3.1. Given a

trajectory {F (j)
i } ∈ Traj(N ) where some data in flow i0 is enduring an end-to-

end delay d (resp. the backlog at j0 becomes b), then there exists an LP instance

λ ∈ Λ admitting a solution such that t∅ − u = d (resp.
∑
i3j0 F

(preci(j0))
i (t∅)−∑

i3j0 F
(j0)
i (t∅) = b).
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Proof Consider {F (j)
i } ∈ Traj(N ), let t∅ be the instant at which the data

enduring the delay d leaves the networks (resp. at which the backlog is b). For
the delay, there also exists in the trajectory a value u such that that u ≤ t∅,

F
(0)
i0

(u) > F
(last(i))
i0

(t∅)} and d = t∅ − u.
Consider the interpretation of the variable tπ given in Section 3.1.1 and find

out their values from the trajectory (it requires to compute for each server j,

the functions
∑
i3j F

(preci(j))
i and

∑
i3j F

(j)
i to detect starts of backlogged

periods). The values {tπ, π ∈ Π} are totally ordered and satisfy the predicates
(P1) and (P2). Thus there exists a family of time constraints (T1, . . . , Tp) ∈
Tot(Π1) × · · · × Tot(Πp) all satisfied by the set of values {tπ, π ∈ Π}, and
which use only = or < constraints (they are just read from the values). As a
consequence those time constraints are mutually compatible. Then for all i, j,

tπ, read the value F
(j)
i (tπ) from the trajectory. The choice of (T1, . . . , Tp) (and

for delays, the position of u in Ti0) corresponds to a LP instance λ ∈ Λ.
By a careful but easy checking, the definition of the values tπ (and u)

and the fact that the trajectory satisfies (T1), (T2), (T3) (defined page 8)
ensures that all the linear constraints in the LP instance λ are satisfied.
Moreover by definition of the value t∅ (and u), we have t∅ − u = d (resp.∑
i3j0 F

(preci(j0))
i (t∅)−

∑
i3j0 F

(j0)
i (t∅) = b).

ut

t∅t3t23

F
(3)
1

F
(1)
1

F
(0)
1

α

F
(2)
1

ut123

Fig. 5 Reading tπ on a trajectory for a 1-flow 3-servers scenario.

3.3 From LP solutions to network trajectories

Lemma 2 Let N be a feed-forward network and a flow of interest i0 (resp.
a server j0). Let Λ be the set of LP instances constructed in Section 3.1.
Consider an instance λ ∈ Λ and one of its solution. Then there exists a tra-

jectory {F (j)
i } ∈ Traj(N ) where the worst end-to-end delay d for flow i0 (resp.

worst backlog b for server j0) satisfies d = t∅ − u (b =
∑
i3j0 F

(preci(j0))
i (t∅)−∑

i3j0 F
(j0)
i (t∅)).
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Proof Before describing the construction of the trajectory {F (j)
i }, we make a

few remarks about our LP instances and their solutions.

Existence of solutions The affectation of variables where every variable is set
to 0 is a solution of the problem.

The date ordering issues Since our LP instances λ uses only non-strict in-
equalities for ordering the dates, the following case can occur: for some π and
π′ and j we have the constraint (P2) tjπ ≤ tπ ≤ tjπ′ ≤ tπ′ with an assignation
of constraints tjπ = tπ = tjπ′ < tπ′ or tjπ < tπ = tjπ′ = tπ′ . In the first
case, the equalities tkjπ = tkjπ′ are not ensured for k = preci(j) thus possibly
lead to solution from which a trajectory cannot be reconstruct. In fact, such
a solution would not lead to the maximum solution, as there is another LP
λ′ ∈ Λ with tjπ = tjπ′ . This LP λ′ only differs from λ, with this constraint
and the removal of the variables tπ̃, where π is a suffix of π̃. The maximal
solution of λ′ is at least a solution of λ where tjπ = tjπ′ . In the second case,
the same trick can be used by setting tjπ = tjπ′ - the service constraints are

still satisfied as F
(j)
i (tπ′) ≥ F (j)

i (tπ) - and removing the variables tπ̃, where π′

is a suffix of π̃. Form now on, we assume that a solution is such that whenever
tπ = tπ′ , tjπ = tjπ′ .

The assignation issue for functions Since our LP instance λ uses some non-
strict inequalities, the following case may occur in a solution to λ: for some

i ∈ F, j ∈ i, π, π′ ∈ Π(j)
i , we may have the values tπ = tπ′ = t while F

(j)
i (tπ) <

F
(j)
i (tπ′). A careful look at our LP instances shows that it can occur only if
{tπ ≤ tπ′} was a time constraint (due to non-decrease constraints). Then

we can transform our solution by replacing F
(j)
i (tπ) by the value F

(j)
i (tπ′).

Another careful look shows that such a transformation will not violate any
constraint, thus we still have a solution to λ. Repeated if necessary, it comes

to say that we will finally choose F
(j)
i (t) = maxtπ=t F

(j)
i (tπ) which is well-

defined for t.

The translation lemma and its application Given a solution to λ and an

arbitrary constant ci ∈ R+, let us replace all values F
(j)
i (tπ) by the val-

ues F
(j)
i (tπ)− ci (we suppose that ci is sufficiently small so that those values

remain non-negative). Then one can easily check that this new assignment of
variables is still a solution to λ.

Given a solution to λ, we use this translation lemma for each flow i. Each
set of values {tπ, π ∈ Πi} admits a minimum tπmin(i). Due to LP constraints,

for all j ∈ i, the value F
(0)
i (tπmin(i)) is lower or equal to all the other values

F
(j)
i (tπ). We set ci = F

(0)
i (tπmin(i)) and subtract ci from all the values F

(j)
i (tπ).

Once done for all flows, we still have a solution to λ, but now for all i ∈ F, we

have F
(0)
i (tπmin(i)) = 0.
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This transformation ensures that one can add the point (0, 0) among the

points (tπ, F
(0)
i (tπ)), π ∈ Πi, and still satisfy the arrival curve constraints

(since F
(0)
i (tπ)−0 = F

(0)
i (tπ)−F (0)

i (tπmin(i)) ≤ α(tπ− tπmin(i)) ≤ α(tπ)−0)).

The linear interpolation lemma

Lemma 3 Let α (resp. β) be a concave (resp. convex) function in F . Let
x1 ≤ x2 ≤ · · · ≤ xk and y1 ≤ y2 ≤ · · · ≤ yk be two sets of values in R+, such
that ∀1 ≤ ` ≤ `′ ≤ k, y`′−y` ≤ α(x`′−x`) (resp. y`′−y` ≥ β(x`′−x`)). Let F
from [x1, xk] into R+ be the linear interpolation of the points (x1, y1), (x2, y2),
. . . , (xk, yk). Then F is non-decreasing and satisfies for all x1 ≤ s ≤ t ≤ xk,
F (t)− F (s) ≤ α(t− s) (resp. F (t)− F (s) ≥ β(t− s)).

Proof We first prove the result for a concave function α.
Let t ∈ [xp, xp+1] for some p ∈ {1, . . . , k−1}. First, ∀i ≤ p, F (t)−F (xi) ≤

α(t−xi): the set Ci = {(x, y) | x ∈ [xi, xp+1], y ≤ yi+α(x−yi)} is convex and
contains (xp, yp) and (xp+1, yp+1). Then, it contains the cord between those
two points and (t, F (t)).

Let s ∈ [xq, xq+1] such that s ≤ t. The set C = {(x, y) | x ∈ [x1, t], y ≥
F (t)−α(t− x)} is a convex set that contains (xq, yq) and (xq+1, yq+1). Then,
it contains the cord between those two points and (s, F (s)).

Then, F (t)− F (s) ≤ α(t− s).
The case of convex function is simply proved by replacing α by −α and F

by −F .
ut

Reconstruction of cumulative functions for each flow Given a solution to λ,
apply first all the transformations described above. Then consider a flow i, all

functions F
(j)
i , j ∈ i or j = 0, will be null from 0 to tπmin(i) the minimum

value of {tπ, π ∈ Πi}. Now we describe each F
(j)
i (t), j ∈ i or j = 0, for

t ≥ tπmin(i).

The function F
(0)
i is the linear interpolation of the points {(tπ, F (0)

i (tπ)) | π ∈
Πi} and remains constant from its maximum point.

Now we construct the functions F
(j)
i by induction while moving forward on

the path µi. Suppose that F
(preci(j))
i has been constructed. To construct F

(j)
i ,

we first have to define some intervals where data from flow i is backlogged at
server j. Consider the values {tjπ | jπ ∈ Πi} which correspond to the starts of
such backlogged periods. Some of these values can be equal, just consider the
distinct values denoted t1 < · · · < tm. By convention we denote tm+1 = +∞.

Then to each tv we associate t+v = max{tπ | tv ≤ tπ < tv+1, π ∈ Π(j)
i } and

the points Pv = {(tπ, F (j)
i (tπ)) | tv ≤ tπ < tv+1, π ∈ Π

(j)
i }. Then F

(j)
i is

defined as the linear interpolation of the points Pv over each interval [tv, t
+
v ]

and is equal to F
(preci(j))
i otherwise.

Let jmax be the last server from which there is a path in Π. Then, for all

the next j on µi, we set F
(j)
i = F

(jmax)
i .
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Once these constructions are done for all the flows, one can carefully check
that this family of functions which belong to F satisfies (T1), (T2), (T3)
(defined 8), thanks to the preceding remarks and lemmas which enable to
extend the trajectory constraints from a finite set of points to functions defined
over R+.

This construction also ensures that the trajectory has a worst end-to-
end delay for flow i0 equal to t∅ − u (resp. worst backlog for server j0 equal

to
∑
i3j0 F

(preci(j0))
i (t∅)−

∑
i3j0 F

(j0)
i (t∅)). It comes from the fact that

F
(last(i0)
i0

(t) = F
(0)
i0

(t) for t ≥ t∅.
ut

Note that the statements of Lemma 1 and Lemma 2 prove Theorem 2 while
avoiding the question of unbounded delays or backlogs. The LP solvers will
output a +∞ result if it is actually the worst-case. However if one wish to state
a theorem characterizing scenarios with such +∞ worst end-to-end delays or
local backlogs, rather than analyzing in details the properties of our set of LP
instances, we prefer to refer to the following classical result: in a feed-forward
network with a FIFO-per-flow policy, for any flow i (resp. server j) the worst
end-to-end delay (resp. local backlog) is bounded if and only if each server on
a path leading to last(i) (resp. j) has an utilization factor (asymptotic service
rate/ sum of asymptotic arrival rates) which is < 1, as already proved in [19].

3.4 Computational hardness

Theorem 3 – Computing the worst backlog at a given server in a feed-
forward network is NP-hard.

– Computing the worst delay at a given server in a feed-forward network is
NP-hard.

Proof We reduce the problem “exact three-cover” (X3C) to our problem. An
instance of X3C is a collection C = {c1, . . . , c3q} of 3q elements and a collection
U = {u1, . . . , us} of s sets of 3 elements of C. The problem is to decide whether
there exists a cover of C by q elements of U . We will reduce this problem to
deciding whether a given backlog or delay can be reached in a server of a
network.

The network we use is as shown in Figure 6. The upper stage consists of 3q
servers C1, . . . , C3q, all with service curve β1 : t 7→ t. The middle stage consists
of s servers U1, . . . , Us, all with service curve β2 : t 7→ 2t. Finally, the lower
stage has only one server V , with service curve β3 : t 7→ Rt with R > 3s. There
are 3s flows, each of them crossing three servers from top to bottom. A flow,
Fi,j crosses servers Cj , Ui, V if and only if cj ∈ ui. Each of those interfering
flows has an arrival curve α : t 7→ min(t, 1) (note that there can be no burst).

NP-hardness of the maximum backlog. One wants to decide whether the
backlog in V can be at least 3s− 2q.
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Cj

Ui

V

Fig. 6 Transformation of an instance of X3C into a network.

The worst-case backlog in server V will be obtained when flows arrive
according to α from time 0, and when servers Cj and Ui are exact servers.

Indeed, fix 0 as the date of arrival of the first bit of data in the system.
The worst-case backlog is obtained at time 1. It cannot be obtained at time
s < 1: every bit of data has not yet been sent into the system, and if some
backlog could be created, some more can be created until time 1. Now, suppose
that the worst case backlog is obtained at time s > 1. Consider the following
transformation: remove a flow among those that send their data first and the
two other flows that share the same server at the upper stage, and make them
arrive from time s − 1. Let q be the quantity of data that is served initially
by these flows. After being delayed, the quantity of data that is served at the
first stage decreases. At the middle stage, less data arrive, and later. Then,
the quantity of data that is served also decreases. As a consequence there is a
worst-case trajectory with s = 1.

Consider an infinitesimal time interval, during which each flow Fi,j at the
upper stage is served at rate ri,j , with

∑
i:cj∈ui ri,j = 1. The service rate of

Ui is min(2,
∑
j:cj∈ui ri,j) and then the increase rate of the backlog during

that time interval at the middle stage is
∑
i∈{1,...s}(

∑
j:cj∈ui ri,j − 2)+. At the

upper stage, the backlog is created at rate 3s−
∑
i,j rij = 3(s− q), which does

not depend on the flows that are served.Maximizing the backlog is equivalent
to maximizing the following function:∑

i∈{1,...s}

[ ∑
j:cj∈ui

ri,j − 2
]
+

with the constraints: ∀j ∈ {1, . . . , 3q},
∑
i:cj∈ui ri,j = 1 and ∀i, j, ri,j ≥ 0.

Our problem boils down to the maximization of a convex function on a
convex set. The maximum values are then obtained at some extremal ver-
tices of the convex set. The extremal vertices of the convex set are such that∑
i:cj∈ui ri,j = 1, ri,j ∈ {0, 1} and then

∑
j:cj∈ui ri,j ∈ {0, 1, 2, 3}. Maximiz-

ing our function is then equivalent to maximizing the number of i such that∑
j:cj∈ui ri,j = 3.
This number is upper-bounded by q, and this maximum is reached if and

only if there is an X3C-cover (in fact there is a point-to-point correspondence
between the set of extremal vertices that reach q and the set of X3C-covers).
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If there exists an X3C-cover, then the backlog in the middle stage increases
at rate q (at rate 1 for each server that receive data at rate 3). If there is no
X3C cover, then the backlog in the middle stage increases at most at rate q−1.

Finally, the reasoning above is valid for the interval of time [0,1]. Indeed,
the backlog is sub-additive: if an arrival cumulative function F1 defined on
the interval [0, s] in a server creates a backlog b1 at time s, and if the arrival
cumulative function F2 such that F2(s) = 0 creates a backlog b2 at time t ≥ s
(when the server is empty at time s), then the process F1+F2 creates a backlog
b ≤ b1 + b2 at time t. As a consequence, there is no advantage in changing the
service rates ri,j during the interval of time [0, 1]. At time 1, servers Cj and
Ui serve all their backlog and the backlog in server V is then at most 3s− 2q.
This maximum is reached if and only if there is an X3C cover. If there is no
X3C-cover, then the backlog is at most 3s− 2q − 1.

NP-hardness of the delay. We keep the same scheme of reduction. There
is an additional flow crossing server V only and we are now interested in
computing the worst-case delay for a bit of data of that flow (one can take
α′(t) = ρt with ρ < R − 3s and the maximum delay can be obtained for the
first bit of data arriving in the system).

The worst-case scenario for that network is first to create a backlog in
server V and then consider every other server as a infinite capacity server. To
create the backlog, we use the previous construction.

Backlog at a server of the upper stage can be created if data arrive at rate
more than one.

Backlog at a server of the middle stage can be created if there is an arrival
rate of r > 2 at a server of the middle stage. The backlog grows at rate r− 2.
If the arrival rate is exactly 3, then the flows arrive at rate 1, blocking the
flows at the upper level, so this is a scenario that builds the greatest backlog.

Suppose that exactly k servers of the middle stage have an arrival rate
of 3 between time 0 and tk. Without loss of generality, the servers that
create backlog are U1, . . . , Uk. The backlog created is (Nk − 2k)tk, where
Nk = #{Fi,` | ∃j ≤ k, ci ∈ uj ∩ u`} and for the other flows, either they are
idle, either data are transmitted, but no backlog is created at the middle stage,
but some backlog can be build at the upper stage at rate

∑
` : cj∈u`(r`,j −1)+

for each server Cj . One can upper-bound the backlog created by using the
inequality Nk ≤ 3s − 3(q − k) and lower bounding the remaining flows by
3(q − k), and consider them as idle (they will start transmitting data at time
tk). Note that if k = q, this is not an approximation.

As a consequence, at time t ≥ tk, the quantity of data that arrived at
server V between tk(start of the backlogged period) and t is at most

Qk(t) = (3s− 3q + k)tk + 3s(min(t, 1)− tk) + 3(q − k)(max(t, 1)− 1).

the delay is then less than t− tk such that Qk(t) = R(t− tk).

If t ≤ 1, then t− tk = 3(s−q)+k
R−3s tk and t− tk in increasing with tk. If t ≥ 1,

then t − tk = 3(s−q−k)−2ktk
R−3(q−k) and t − tk is decreasing in tk. So to obtain a
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maximum delay, tk has to be chosen so that t = 1. Then tk = R−3s
R−3q+k and

dk = 3(s−q)+k
R−3q+k is an upper bound of the delay. As R > 3s, dk increases with

k. And dq can effectively be achieved for k = q as there is no approximation
in that specific case.

If there exists an X3C-cover, the maximum delay is 3s−2q
R−2q , and if there

is no X3C-cover, the maximum delay that can be achieved is 3s−2q−1
R−2q−1 . So the

question whether a delay greater or equal to 3s−2q
R−2q can be achieved is NP-hard.

4 The tandem scenario: a polynomial algorithm

We study here a special class of feed-forward networks: the tandem networks,
i.e. networks N such that the induced digraph G(N ) is a directed path with
no shortcut. It implies that any flow follows a sequence of consecutive servers
in the path. Such scenarios have been highlighted by [26,28,20].

For this class of networks, the worst-case computation boils down to solving
a single LP instance with a polynomial number of variables and constraints,
and thus with a polynomial complexity. Moreover, we show for each flow how
to reconstruct a minimum end-to-end service curve which is optimal in some
sense.

4.1 The algorithm for the tandem scenario

Theorem 4 Let N be a tandem network with n servers and p flows. Then,
given a flow i (resp. a server j), there exists one LP instance with O(pn)
variables and O(pn2) constraints such that the optimum is the worst end-to-
end delay for flow i (resp. the worst backlog at server j).

Proof Without loss of generality, we can assume that i = 1 and last(i) = n
(resp. j = n) since what happens after the last server of interest does not
impact on the dynamics of the first part of the network (servers after the last
server of interest do not appear in the LP formulations of the problem).

A direct application of Theorem 2 to tandem networks induces a single
order on the n+ 1 variables tπj , for the paths πj−1 = j · · ·n and πn = ∅. This
order is simply tπ0 ≤ tπ1 ≤ · · · ≤ tπn . So, computing the worst backlog at
server n boils down to a single LP instance, while computing the worst end-
to-end delay introduces the variable u and possibly n LP instances depending
on the location of u.

Set f1 = first(1)− 1 and e1 = last(1) = n. We now show that it is useless
to consider several LP instances to compute the worst delay. There is no need
to consider all the positions to insert u within the order tπf1 ≤ · · · ≤ tπe1 .
We only need one LP instance and the constraints where u must appear are:

tπf1 ≤ u ≤ tπe1 , F
(0)
1 (u) > F

(n)
1 (tπe1 ) and F

(0)
1 (u)−F (0)

1 (tπf1 ) ≤ α1(u− tπf1 ).
The objective and the other constraints remain unchanged. Remark that the
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maximization of the objective function will lead to the equality F
(0)
1 (u) −

F
(0)
1 (tπf1 ) = α1(u− tπf1 ).

To prove this, we proceed by contradiction. Consider a worst-case trajec-
tory for a tandem network. It is obtained as a solution of our n LP instances
of the general method. If that worst-case trajectory is not obtained by the

alternative single linear program, which means that F
(0)
1 (u) − F

(0)
1 (tπf1 ) <

α1(u − tπf1 ), one can replace F
(0)
1|[tπf1 ,u] by α1|[tπf1 ,u]. Doing this the trajec-

tory remains valid for the system: flow constraints, non-decrease, arrival and
strict service are still satisfied. As far as the starts of backlog period are con-
cerned, the additional data that arrived in a server are transmitted at the
beginning of the backlogged period of the next server (ensuring that the in-
put cumulative function in that next server is not less than the original input
cumulative function and then ensuring that the backlogged period will not
end before the backlogged period of the original cumulative functions. Since

F
(0)
1 (u) < α1(u − tπf1 ) and the cumulative function F

(e1)
1 is non-decreasing,

tπe1 must increase, hence one can obtain a longer delay than in the original
trajectory.

ut

4.2 From delays to end-to-end service curves

Let N be a network and flow 1 be the flow of interest, for now we have
investigated a way to compute the worst delay for fixed constraints (αi)i∈F
and (βj)j∈S. One may want to measure how the global network acts upon
flow 1, in particular whether some minimum end-to-end service curve can be
guaranteed. Given β ∈ F , we say that β is an end-to-end (simple) service curve
(or left-over service curve [26,28]) if F outi ≥ β ∗ F ini . It is called an universal
end-to-end service curve if β is independent of α1 (i.e. β remains an end-to-
end service curve for any choice of α1). Precomputing such an universal curve
can be useful to quickly compute a bound on end-to-end delays for flow 1 for
several different curves α1 (thanks to the horizontal distance of Theorem 1). In
the case of tandem networks, we now prove that one can compute an universal
end-to-end service curve which is optimal in some sense.

Theorem 5 Let N be a tandem network with n servers and p flows. Then
one can compute an universal end-to-end service curve for the flow 1, which
is the maximum of all universal end-to-end service curves.

Proof We prove that this service curve can effectively be computed, using the
dual problem of an LP instance.

To compute an end-to-end service curve for flow 1, the idea is to send a
burst of size σ (with α1(t) = σ) and compute the worst-case delay for that
flow thank to our linear program. Let d(σ) be that maximal delay. Doing this
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for every σ, we compute the function d : σ 7→ d(σ), which is trivially non-
decreasing. We will first show its pseudo-inverse β : t 7→ inf{σ ≥ 0 | d(σ) ≥ t}
is a service curve for flow 1 and then we will show how to compute d.

We make an induction on the number of servers and are interested in
flow 1 that crosses every server (this assumption is only for the ease of the
presentation, exactly the same can be done for any flow, the only change is
that the initialization step is H(first(1)) and server 1 has to be replaced by
server first(1)). Our induction hypothesis is:

H(n) Let {F (j)
i ∈ F | i ∈ F, j ∈ S, j ∈ i} be a trajectory for a system

with n servers in tandem. For every t ∈ R+, there exists t0 ≤ t such that there

exists a trajectory {F̃ (j)
i ∈ F | i ∈ F, j ∈ S, j ∈ i} for the system such that

1. F̃
(0)
1 (s) = F

(0)
1 (t) if s ≥ t0 and F̃

(0)
1 (s) = F

(0)
1 (s) otherwise (burst arrival

at t0);

2. ∀i, ∀j ∈ i, F̃ (j)
i (s) = F

(0)
i (s) if s ≤ t0 (infinite server before t0);

3. Let tn = startn(t), F̃
(n)
1 (s) = F

(n)
1 (s) if s ≥ tn and tn is still the beginning

of the backlogged period of t in server n in the trajectory {F̃ (j)
i }.

H(1) is true: let t ∈ R+. Let t1 = start1(t). Here, t0 = t1 and the trajectory

F̃
(j)
i with ∀i,

– F̃
(0)
i (s) = F

(0)
i (t) if s ≥ t1 and F̃

(0)
i (s) = F

(0)
i (s) otherwise;

– F̃
(1)
i (s) = F

(0)
i (s) if s ≤ t1 and F̃

(1)
i (s) = F

(1)
i (s) otherwise

is a trajectory for the system: before time t0, the system behaves as an infinite
server and then has the same behavior as in the original system. As the server
is strict, the behavior in a backlogged period only depends on the trajectory
during that period. Moreover, at time t0, a burst arrives, so that a backlogged

period begins, and as during that period and until time t, F̃
(0)
i (s) = F

(0)
i (t) >

F
(1)
i (t) ≥ F

(1)
i (s) = F̃

(1)
i (s), then that backlogged period cannot end before

time t, and as the server is strict, we have a trajectory for the system.

Suppose that H(n − 1) holds. Consider a tandem network with n servers

and a trajectory {F (j)
i ∈ F | i ∈ F, j ∈ {1, . . . , n− 1}, j ∈ i} of that system.

Let t ∈ R+ and tn = startn(t). Apply H(n−1) to the n−1 first servers and to

tn. Let a = F
(n)
1 (t)−F (n)

1 (tn). We modify the trajectories, up to time tn, F̃
(j)
1

in the following way: if F̃
(j)
1 (s) ≥ F

(n)
1 (tn), then F̃

(j)
1 (s) := F̃

(j)
1 (s) + a, and

remains unchanged otherwise. In other words, we add a burst of size a at time

t0, and serve it as a burst when the data arrived at time (F̃
(0)
1 )−1(F

(n)
1 (t0))

are served, in each server S1, . . . , Sn−1. It should be obvious that this is still
a trajectory for the system.

We now deduce {F̃ (n)
i } from the trajectory {F̃ (j)

i ∈ F | i ∈ F, j ∈
{1, . . . , n−1}, j ∈ i}} for the n−1 first servers satisfying the three conditions.

The first condition is already satisfied, as it only concerns F
(0)
1 . The second
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condition can also be satisfied, as from the induction hypothesis and flow con-

straints we have F̃
(n)
1 (s) ≤ F̃ (n−1)

1 (s) = F̃
(0)
1 (s), one can set F̃

(n)
1 (s) = F̃

(0)
1 (s)

if before time t0 each server serves data as an infinite capacity server.
Now, consider the n-th server from time tn. By construction, we have

F
(n−1)
1 (tn) = F

(n)
1 (tn) + a, and tn = startn(t). The third condition can then

be satisfied by setting F̃
(n)
1 (s) = F

(n)
1 (s), ∀s ≥ t. Then H(n) holds.

The construction of F̃
(j)
1 is depicted on Figure 7 for one flow (for sake of

simplicity).

t0 t2

σ
F (1)

t1

σ

t0 t1 t2

F (0) F̃ (0)

F̃ (1)

F̃ (2)F (2)

Fig. 7 Construction of F̃
(j)
1 .

Now look at the trajectory {F̃ (j)
i }. Until time t0, servers act as infinite

servers. Then, the departure function after time t0 does not depend on the tra-

jectory before time t0. At time t0 one has a burst of size b = F
(n)
1 (t)−F (0)

1 (t0).
So, the maximum delay for packets entering at time t0 can be computed by

our linear problem with α1 : s 7→ b. So, as F̃
(n)
1 (t) = F

(n)
1 (t) and F̃

(0)
1 (t0) =

F
(0)
1 (t0) + b, we have F

(n)
1 (t) ≥ F (0)

1 (t0) + β(d−1(b)).
Note that this service curve is optimal in the sense that it is the maximum

of all universal end-to-end service curves for flow 1. Indeed, if there existed
an universal end-to-end service curve β′ for that flow and σ ∈ R+ such that
β−1(σ) > β′−1(σ), this would invalidate the fact that the delay bound com-
puted with our linear program is tight when the arrival curve for flow 1 is
α1 : t 7→ σ.

Let us now go back to our linear problem when objective is to maximize the
delay in a system where the arrival curve of our flow 1 is α1 : t 7→ σ. It should be
clear that the only constraints where σ appears are the arrival curve constraints

for flow 1, that is ∀f1 ≤ j′ < j ≤ e1 = n, F
(0)
1 (tπj ) − F

(0)
1 (tπj′ ) ≤ σ and

F
(0)
1 (u)− F (f1)

1 ≤ σ. Moreover σ does not appear in the objective constraint.
So, one can express our optimization problem with matrices by

Maximizing AX
Subject to BX ≤ C(σ) and X ≥ 0,

where only C depends on σ. From the strong duality theorem (see for instance
[34]), the following problem has the same solution:
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Minimizing Ct(σ)Y
Subject to BtY ≤ At and Y ≥ 0.

Here, only the objective function depends on σ. The constraints BtY ≤ At
and Y ≥ 0 define a convex polyhedron. For any linear objective function, the
optimum value is obtained at an extremal vertex of the polyhedron. Thus, the
delay can be computed in function of σ by computing minY C

t(σ)Y , where Y
belongs to the extremal vertices of the polyhedron. Note that this number of
vertices is finite but can be exponential in the number of constraints.

ut

Beware that although this curve β is maximum among universal end-to-
end service curves for flow 1, nothing ensures that for any arrival curve α1

for flow 1, the horizontal distance between α1 and β will be the exact worst
end-to-end delay (except for α1(t) = σ where it is guaranteed by definition
of β). This distance is an upper bound, but it could be loose. As a matter of
fact, we conjecture that this distance is always tight, but we haven’t proved
this result yet.

The validity of this conjecture would be strongly related to blind multi-
plexing, since such universal and optimal end-to-end service curves do not
necessarily exist for other policies. For instance, in FIFO networks, even for
a single server with one cross-traffic flow, there is an infinity of incomparable
simple service curves and their maximum is not a service curve [19,20].

4.3 Related work

Initiated in [26], the study of tandem networks under blind multiplexing sig-
nificantly improved in a recent breakthrough paper [28]. In this article the
authors compute tight end-to-end delay bounds for some tandem networks,
with detailed computations for a network with three servers and three flows
and for sink-tree networks. For those particular cases, the authors manage to
provide closed-form formulas (with disjunctions of cases). A method for general
tandem networks is suggested in the corresponding technical report [27] but
some details are not fully settled. We now discuss similarities and differences
between our approaches.

Note that for the scenarios treated in [28], we have checked numerically on
several examples that our algorithm using LP solutions gave the same results
as their formulas (but we have not tried to solve by hand our LP instances to
check whether we could reach the same disjunction of cases and closed-form
formulas).

The main similarity concerns the choice of variables and set of constraints
describing the system. We both start by writing down the system constraints
over cumulative functions at starts of backlogged periods, leading to the same
set of equalities and inequalities for tandem networks, up to some renaming:

for instance if n = 2, t2, t∅ here is t1, t0 there, and {F (1)
2 (t2) − F

(0)
2 (t∅) ≤

α2(t2 − t∅)} here is {F (1)
2 (t1) − F

(0)
2 = α2(t1 − t0) − s

(1)
2 ; s

(1)
2 ≥ 0} there.
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It appears that those equalities and inequalities are linear (for leaky-bucket
and rate-latency curves as noticed in [28], for piecewise affine concave/convex
curves as noticed in the previous sections).

From that point, two major differences distinguish our approaches. First,
while we directly try to solve this set of constraints using linear programming
up to adding some constraints and considering several cases (due to the or-
dering of time events), the approach of [27,28] for leaky-bucket/rate-latency
arrival/service curves consists in:

– Performing algebraic manipulations (in particular using a lemma about the
convolution of rate-latency functions) to mix the set of initial equalities
and inequalities into an inequality looking like a simple end-to-end service
curve constraint, that is for flow 1 in the 3-servers 3-flows scenario of [28]:

F
(2)
1 (t3) ≥ F

(0)
1 (t0) + βR,T (t3 − t0) where the rate R is fixed, but the

latency T depends on free variables s
(1)
2 and s

(1)
3 . Those parameters R and

T do not depend on α1 the arrival curve of flow 1.
– This set of simple universal end-to-end service curves βR,T admits a max-

imum β (since R is fixed). It is achieved for a good choice of values s
(1)
2

and s
(1)
3 which optimize T , it can be computed by solving an LP instance.

– Then it is shown that for any arrival curve α1, the horizontal distance
h(α1, β) between α1 and β, which is an upper bound on the worst end-
to-end delay, is actually tight, i.e. there exists a trajectory achieving this
bound. Such a critical trajectory is fully described for sink-tree tandems,
and in one case for the 3-servers 3-flows scenario (the other cases are left
to the reader).

The second difference concerns the treatment of concave/convex arrival/service
curves, if one already knows how to deal with leaky-bucket/rate-latency curves.
Unlike the polynomial algorithm of Theorem 4, the scheme in [28] is to decom-
pose the curves into maximum (resp. minimum) of rate-latency (resp. leaky-
bucket) service (resp. arrival) curves, then compute the left-over service curves
obtained for each combination of rate-latency/affine service/arrival curves, and
finally compute the maximum of all those curves. One should notice that such
a process does not guarantee that this maximum of simple service curves is
still a simple service curve or that it will provide tight bounds. It only ensures
that the horizontal distance between the arrival curve of the flow of interest
and this maximum curve is an upper bound on delays.

As pointed out in the article, the decomposition/recomposition scheme has
a cost (

∏p
i=1 |αi|

∏n
j=1 |βj | combinations to consider).

Moreover there are some examples where this method does not give tight
bounds : Take a system composed of two servers in tandem with respective
service curve β1 and β2, crossed by two flows: the cross-traffic flow with arrival
curve α and the flow of interest where one only needs to consider an arbitrarily
small amount of data. We are interested in the delay needed for that data to
cross the system. This small data, that can be called infinitesimal data (or
infinitesimal bit), is sometimes used in the reasoning as an existing data (it
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moves and endures delays, it may have priority or not, its presence in a queue
is considered as a backlogged period, ...) but which has a null measure (it
adds 0 to cumulative functions for arrival or service constraints). This notion
is very convenient to describe critical trajectories and provides right behaviors
at the end. It is especially useful for concise explanations.

However to be very rigorous one must reason with small positive amounts
of data like bursts of ε > 0 data, then perform the analysis and finally let ε→ 0
(otherwise with ε = 0 data directly, an application of the Dmax definition for
delays will give 0 whatever is the network, whereas we usually give arguments
showing that the delays can be large).

For commodity we will describe the examples below with the convenient
infinitesimal data of null measure. To get the rigorous version, replace it by an
infinitesimal data ε > 0 which is a burst of ε data at time t = 0, perform the
computations and then let ε → 0. For the first numerical example, the good
news is that this limit is obtained by assuming that the flow of interest has
a null arrival curve. For the second example with parameters, with the same
critical trajectories, one should compute closed-form formulas including ε and
then let ε→ 0 to get the results that we give.

Now take for example β1(t) = 1.5(t − 6)+, β2(t) = 6(t − 8)+ and α(t) =
min(0.5t, 6 + 0.05t). Using the implementation of our solution, computations
give that the worst delay is d = 17.4. If α(t) = 0.5t, then the worst delay
is d1 = 17.7 and if α(t) = 6 + 0.05t, then the worst delay is d2 = 18.4 and
d < min(d1.d2). Three critical trajectories are shown on Fig 8 and illustrate
the loss when considering only α1 and α2.

α2

α1

d2

d

d1

β2

β1

Fig. 8 Decomposing arrival curves does not achieve tight bounds. Bold lines are the output
processes. Continuous line: the arrival curve is α = min(α1, α2); dotted line: the arrival
curve is α1; dashed line: the arrival curve is α2.

Note that the difference between d and min(d1, d2) can be arbitrary large.
Here is another example with α = min(α1, α2), and β1(t) = Rt, β2(t) =
2R(t− T )+ and α2 : t 7→ RT , we have:

– For α, d = 3/2T . Critical trajectory: all data α(t) is served instantaneously
at server 1 including our infinitesimal data which arrives at server 2 at
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time t = 0, then at server 2 priority is given to the cross-traffic flow and
our data is served at the end of the backlogged period which lasts 3/2T
(intersection of α and β2).

– For α1, d1 = 2T . Critical trajectory: same as the previous one but the
backlogged period at server 2 lasts 2T (intersection of α1 and β2).

– For α2, d2 = 2T . Critical trajectory: α2(t) bits arrive at server 1 including
our infinitesimal data (that is a RT burst at time t = 0), server 1 gives
priority to the cross-traffic and the output is served instantaneously by
server 2, then at time t = T our infinitesimal data is finally served and
enters server 2 where it starts a backlogged period which allows server 2
to add a delay T to our infinitesimal data. It endures an overall delay 2T .

The difference between min(d1, d2) and d is then T/2 that grows infinitely
large when T grows (see Fig. 9).

T

R

2R

RT
T

d1

d2d

Fig. 9 Arbitrarily large gaps between the decomposition/recomposition scheme and exact
worst cases.

5 Numerical results

We compare our results with the other existing methods. Up to now, two
kinds of methods have been used (see [28,27] for detailed explanations): the
total flow analysis (TFA), that consists in computing a delay upper bound for
each server crossed by the flow of interest and then take the sum, and the
separate flow analysis (SFA), that consists in computing a left-over service
curve for every server on the path of the flow of interest, then compute the
convolution of those service curves to get a left-over service curve for the whole
path and finally compute an end-to-end delay bound using Theorem 1. To our
knowledge, these are the only two systematic methods available for general
feed-forward networks.

The linear program files used for our experiments can be found following
this link: http://www.di.ens.fr/∼bouillar/NCbounds/.

Here are the formulas we use for TFA and SFA with leaky-bucket arrival
curves and rate-latency strict service curves. Consider a server (Fig. 10) offer-
ing a strict service curve β(t) = R(t− T )+ crossed by two flows 1 and 2 (it is
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often used with flow 1 being the flow of interest and flow 2 representing the
aggregation of all the other flows crossing that server).

F in1

F in2

F out1

F out2

Fig. 10 A server crossed by two flows.

If F in1 is upper-constrained by α1(t) = σ1+ρ1t and F in2 is upper-constrained
by α2(t) = σ2 + ρ2t, then a simple service curve for F1 is β1 = (β − α2)+.

An upper bound for the delay (used for TFA) for F1 is

d1 = T +
σ1 + σ2 + ρ2T

R− ρ2

The service curve (used for SFA) for F1 is:

β1(t) = (R− ρ2)

(
t− T − σ2 + ρ2T

R− ρ2

)
+

.

Now, the cumulative function F out1 is upper constrained by

α′1(t) = σ1 + ρ1

(
T +

σ2 + ρ2T

R− ρ2

)
+ ρ1t.

Of course, since we are under blind multiplexing and by symmetry, those
results apply to flow 2 up to inverting indices 1 and 2 in the formulas.

To get the bounds for the whole network, one can use those formulas for
every node of the network sorted by a topological order.

In [8], it is proved that the worst-case delay in tandem networks is obtained
for the SDF (shortest-to-destination-first) policy: flow have static priorities, the
flow of interest has the lowest priority and flow i1 has a higher priority that
flow i2 if last(i1) < last(u2). SFA can be adapted using these priorities: for a
given flow, no delay is induced by flows with lower priorities (computations
are made as if those low priority flows did not exist).

5.1 Tandem scenario

In order to generate the linear program files associated to a tandem network to
compute worst-case delay and backlog bounds, we wrote a program, that can
be downloaded from the web-page mentioned above. This program has been
written in Ocaml4. It generates a linear program from a small file describing

4 http://caml.inria.fr/ocaml
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the tandem network. The linear program can the be solved using solvers like
lp solve5 for example.

We first compare our results for a tandem scenario, where flows intersect
two servers (except at the extremities) and the flow of interest crosses every
server. An example is depicted in Fig. 11. Servers have the same characteris-
tics: they have a latency of 0.1s, and a service rate of 10Mbps. Flows have a
maximum burst of 1Mb and a arrival rate of 0.67Mbps.

Fig. 11 Tandem scenario with 4 servers.

Fig. 12 shows the delay bound obtained for each of the four methods (TFA,
SFA, SDF and the tight LP method). Unsurprisingly, the three methods give
the same result when there is only one server. For a network with 20 servers,
the LP method reduces the SFA bound by a factor 8/5 = 1.6, for an utilization
rate of 20%.

Fig. 13 depicts the variation between SFA, SDF and LP methods when
the utilization rate of the servers varies and when the number of servers is
20. Only the arrival rate varies, according to the utilization rate. When the
utilization factor grows, the gain becomes huge. Moreover, the execution time
of our program is less that 0.3 s. for a similar network with 50 servers.

5.2 Feed-forward scenario

We illustrate our result on a small example, depicted in Fig. 14. There are four
servers (with the same characteristics as in the previous example, and four

5 http://lpsolve.sourceforge.net/5.5/
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Fig. 12 Upper bounds for the delay of the scenario of Fig. 11.
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Fig. 13 Upper bounds for the delay of the scenario of Fig. 11 for 20 servers and when the
arrival rate varies.

flows, each having the same characteristics: a maximum burst of 1Mb, and we
make the arrival rate vary from 0.5Mbps to 4.5Mbps (so the utilization rate
in each server vary from 10% to 90%).

F2

F3

F1

F4

Fig. 14 The Square network.

We compute delay bounds for flow F1 with four methods: (TFA), then
(SFA), then (LP) by generating 11 linear programs, one for each possible or-
der for our dates (as explained in Section 3), then the fourth method (ULP)
is obtained by solving an unique linear program, where only the common con-
straints of the 11 programs are taken, i.e. constraints yielded by predicate (P1).
In particular date are not totally ordered and the optimal solution that is found
may not lead to non-decreasing cumulative functions. The ULP method does
not obtain the tight bounds, but the results are far better than TFA and SFA.
Thus it is an interesting candidate as an approximation algorithm. All the
results are depicted on Fig. 15.
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Fig. 15 Upper bound on delays for flow F1 in the Square network of Fig. 14.

6 Conclusion

We have shown that one can compute the exact worst local backlogs and
end-to-end delays in the NC framework for feed-forward networks under blind
multiplexing 6. The number and the size of linear programs one has to solve
can be small or extremely large depending on the network. Although we have
shown that the problem is intrinsically difficult, one direction is to reduce this
number of linear programs as well as their size. For example, our instances may
present some redundant inequalities (e.g. between non-decrease and minimum
service) or one could fix the value of t∅ (since the set of trajectories and
thus the set of LP solutions is invariant by time shifts). These are very small
improvements, but one may hope that there exist more significant reductions.

Another way to bypass NP-hardness is to look for fast approximation al-
gorithms or exact algorithms which are fast on average.

Here are also a few features that can be added to refine the model:

– Add some other network elements which can not be modeled by strict
service curves (like fixed delays).

– Take into account maximum (resp. minimum) strict service (resp. arrival)
curves as in RTC [32] (preventing instantaneous propagation (resp. star-
vation) of data).

– Take into account packet lengths.
– Use curves with different shapes like ultimately pseudo-periodic curves [7].

Anyway, even without those additional features, the challenge of computing
exact worst-case performances of general networks under blind multiplexing,
or even feed-forward networks under other policies like FIFO, remains open.

6 The full implementation of our method for any feed-forward network as input is under
development.
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