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Abstract. In this paper we present an exact sampling method for mul-
ticlass closed queuing networks. We consider networks for which station-
ary distribution does not necessarily have a product form. The proposed
method uses a compact representation of sets of states, that is used to
derive a bounding chain with significantly lower complexity of one-step
transition in the coupling from the past scheme. The coupling time of
this bounding chain can be larger than the coupling time of the exact
chain, but it is finite in expectation. Numerical experiments show that
coupling time is close to that of the exact chain. Moreover, the running
time of the proposed algorithm outperforms the classical algorithm.
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1 Introduction

Closed queueing networks are largely used in various application domains due
to their modeling simplicity and product-form stationary distribution [9]. In the
multiclass case, the product-form structure remains valid only under restrictive
conditions on the service policy [3].

When the stationary distribution does not have a product-form, the exact
analysis may not be computationally tractable, and we may turn to approxima-
tions [2, 14, 4, 16] or simulation.

This paper concerns simulation, with a focus on stopping criteria. The asymp-
totic variance appearing in the Central Limit Theorem has been the most com-
mon metric to devise stopping rules, while mixing times have become a standard
alternative [1, 13]. Unfortunately, there are no generic and tractable techniques
to compute or bound either the asymptotic variance or the mixing time for
non-reversible Markov chains.

Propp and Wilson introduced a method for sampling a random variable ac-
cording to the stationary distribution of a finite ergodic Markov chain [15]: the
coupling from the past (CFTP) algorithm. The CFTP algorithm automatically
detects and stops when the sample has the correct distribution. In this way it is
possible to generate i.i.d. samples from the chain, and the asymptotic variance
of the resulting simulator is the standard variance of the random variable whose
mean we wish to estimate.
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The main drawback of the original CFTP is that it considers a coupling from
all initial conditions. In the case of closed queueing networks the cardinality of
the state space is exponential in the number of queues, which is intractable.

Different techniques can be used to efficiently compute one step of the CFTP
algorithm: the simplest solution, for monotone Markov chains, is to compute
the minimal and maximal trajectories only [15]. For Markov chains with no
monotone representations, new techniques have been developed to approximate
each step of the computation, at the cost of slightly increasing the number of
iterations of the algorithm. Bounding chains have been constructed to detect
coalescence for state spaces with lattice structure [11, 8], or for models with short
range local interactions, such as interacting particle systems [10]. For applications
of [11] to queueing networks, see for instance [17, 5].

The main difficulty with closed queueing networks is that the customer popu-
lation is constant. This imposes a global constraint on the model, so the approach
of [11] cannot be applied directly. Without monotonicity, the complexity of one
iteration of the original CFTP algorithm by Propp and Wilson [15] depends on
the cardinality of the state space, which is exponential in the number of queues.

For the single class closed queueing networks, Kijima and Matsui [12] pro-
posed a perfect sampling algorithm with overall complexity O(K3 ln(KM)),
where K is the number of queues and M the total number of customers. How-
ever, their method strongly relies on the product form representation of the
stationary distribution and it cannot be applied to the general case of multi-
class networks. In Bouillard and al. [7], a new representation of the sets of states
has been proposed. This representation is used to derive a bounding chain for
the CFTP algorithm for closed queueing networks, that enables exact sampling
from the stationary distribution without considering all initial conditions in the
CFTP. This method is far more general, as it does not rely on the product-form
property.

In this paper, we propose a generalization of the compact state space repre-
sentation in [7] for the multiclass closed queueing networks. Each state is rep-
resented by a path in a multidimensional diagram. This diagram is a directed
graph with nodes in {0, . . . ,K} ×

∏Z
z=1{0, . . . ,Mz}, where K denotes the num-

ber of queues, Z the number of classes, and Mz the total number of customers of
class z (the detailed description of diagrams is given in Section 3). The diagram
transition function used in our MDCFTP (multiclass diagram CFTP) algorithm
needs to read only once this multidimensional diagram, so the complexity of
one step of our algorithm is in O(K

∏Z
z=1Mz). On the other hand, multiclass

diagrams are an over-representation of the states (a set of paths that represents
a set of states may represent more states than just the desired subset). Thus
the coupling time of the MDCFTP algorithm is in general larger than the cou-
pling time of the classical CFTP. Numerical experiments (Section 4) suggest that
the coupling times of the two algorithms are very close. Overall, the proposed
MDCFTP algorithm significantly outperforms the classical one.

A major difficulty in the multiclass case is the fact that the class to be served
depends on the current state of the system, so the coupling construction needs
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a very careful design of the event representation of the dynamic of the system.
We provide such an event description under the assumption that the class to be
served in queue i depends only on the current state of queue i.

The paper is organized as follows. In Section 2 we present the model and an
event representation of the system that ensures the convergence of the CFTP
scheme in finite expected time. In Section 3, we describe the multiclass diagram
representation of the state space, propose the MDCFTP algorithm and discuss
its complexity. Numerical experiments are given in Section 4. Final remarks and
conclusions are contained in Section 5.

2 Model

2.1 Description

We consider a multiclass closed queueing network of K ./M/1 queues and Z
classes of customers. Each queue k ∈ {1, . . . ,K} has an infinite capacity, a
service rate µk and its service discipline (detailed in Section 2.3). The set of
classes that can be in queue k is denoted by Z(k) ⊆ {1, . . . , Z}.

Customers are not allowed to change class, thus the number of customers in
each class remains constant. For each class z ∈ {1, . . . , Z} of customer , the total
number of customers in this class is denoted by Mz, the set of queues visited
by customers of class z by K(z) ⊆ {1, . . . ,K} and P z ∈ RK,K is the routing
matrix for class z: P zi,j is the probability that a class z customer leaving queue
i is routed to queue j, with the convention that if i /∈ K(z), then P zi,i = 1 and
P zi,j = 0 if j 6= i. Matrix P z is stochastic, so for all i, j ∈ {1, . . . ,K}, P zi,j ≥ 0

and
∑K
j=1 P

z
ij = 1.

We assume that the directed graph Gz = (K(z), Rz) where Rz = {(i, j) ∈
K(z)

2
such that P zij > 0} is strongly connected. The total number of customers

in the system is denoted by M =
∑Z
z=1Mz.

2.2 State space

A state of the network is a matrix x = (xz,k) ∈ NZ×K where xz,k represents the
number of customers of class z in queue k. A state x must satisfy the following
constraints:

K∑
k=1

xz,k = Mz and ∀k /∈ K(z), xz,k = 0. (1)

Throughout the paper, we will use the following notations.
For k ∈ {1, . . . ,K} and z ∈ {1, . . . , Z}, we denote by:

– xz,∗ = (xz,k, . . . , xz,K) ∈ NK is the queue repartition (row)-vector of class z;
– x∗,k = (x1,k, . . . , xZ,k)t ∈ NZ is the class repartition (row)-vector in queue
k;

– |x∗,k| =
∑Z
z=1 xz,k the total number of customers in queue k.
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Set of all possible state matrices is denoted by S = {x ∈ NZ×K satisfying (1)}.
Its cardinality is

|S| =
Z∏
z=1

(
Mz

Mz + |K(z)| − 1

)
.

If for each class z, K(z) � Mz then |S| = O(
∏Z
z=1M

|K(z)|
z ) = O(MK

× ),

where M× =
∏Z
z=1Mz.

Example 1. Consider the multiclass queueing network of Figure 1 having K = 5
queues, Z = 2 classes, with M1 = 2 and M2 = 3 and routing matrices

P 1 =


0 0.5 0.5 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 and P 2 =


1 0 0 0 0
0 0 0.3 0 0.7
0 0 0 1 0
0 0.8 0.2 0 0
0 0 0.5 0.5 0


The total number of customers is M = 5 and the queues visited by each class

are K(1) = {1, 2, 3} and K(2) = {2, 3, 4, 5}. The cardinality of the state space
is |S| = 120 and an example of a such state is

x =

(
1 1 0 0 0
0 2 0 0 1

)
∈ S.
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Fig. 1. Multiclass network described in Example 1.

2.3 Service discipline and transitions

In order to perform the perfect sampling algorithm for multiclass queueing net-
work, we need to define transitions on sets of states. These transitions depend
on the service discipline of the queues.

The function t̃i,j,z : S → S describes the routing of a class z customer from
queue i to queue j:

t̃i,j,z(x) = x− 1{xz,i>0}ezi + 1{xz,i>0}ezj ,
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where ezk ∈ NZ×K is the matrix having all its coefficients equal to 0 except
(ezk)z,k = 1.

When there are several classes of customers in a queue, then the queue disci-
pline determines the class of customers to serve. For each queue i ∈ {1, . . . ,K},
fi : NZ× [0, 1]→ Z(i)∪{0} is the function that describes the discipline in queue
i. We assume that fi has the following properties:

Assumption 1 For a state x and a parameter θ ∈ [0, 1]:

1. The service discipline is Markovian and the result of fi depends only on θ
and x∗,i.

2. |x∗,i| = 0 if and only if fi(x∗,i, θ) = 0 (the service is greedy).
3. If |x∗,i| > 0 then fi(x∗,i, θ) ∈ {z such that xz,i > 0} (there is a customer of

the chosen class).

Here are two examples of disciplines that satisfy Assumption 1:

– PRIORITY gives the priority to the class with the smallest index. It can be
defined to any total order � on the classes.

fi(x∗,i, θ) = min{z | xz,i > 0}1{|x∗,i|>0}.

– LONGEST (serve-the-longest-queue)

fi(x∗,i, θ) ∈ arg max{xi,z | z ∈ Z(i)} ∪ {0}

PRIORITY does not depend on θ, but this parameter is used to break ties
in LONGEST between the classes where the number of customers is maximal.

For i ∈ {1, . . . ,K}, J = (j1, . . . , jZ) ∈ {1, . . . ,K}Z a vector of queues, x a
state, and θ ∈ [0, 1], we define a transition on state x by the function:

ti,J,θ(x) = t̃i,jz,z(x),

where z = fi(x∗,i, θ) is the class chosen by queue i. This transition describes the
routing of a customer from queue i and J gives the destination queue according
to the class that is served in queue i. If transition does not depend on θ (like in
PRIORITY), we will write ti,J,θ(x) = ti,J(x) to alleviate the notations.

Example 2. Consider state x =

(
1 1 0 0 0
0 2 0 0 1

)
in Example 1. Queue 2 contains 3

customers (x∗,2 = (1, 2)) and function t2,(1,5),θ describes a possible routing for a
customer in queue 2: if a customer of class 1 is served, then it is routed to queue
1; a customer of class 2 would be routed to queue 5. For θ = 0, the class of the
served customer is given by z = f2(x∗,2, 0).

– If queue 2 has the PRIORITY discipline then z = 1 and

t2,(1,5)(x) = t̃2,1,1(x) =

(
2 0 0 0 0
0 2 0 0 1

)
.
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– If queue 2 has the LONGEST discipline then z = 2 and

t2,(1,5),0(x) = t̃2,5,2(x) =

(
1 1 0 0 0
0 1 0 0 2

)
.

This definition of a transition enables to define it for sets of states: for all
S ⊆ S, θ ∈ [0, 1], i ∈ {1, . . . ,K} and J = (j1, . . . , jZ) ∈ {1, . . . ,K}Z , ti,J,θ(S) :=
∪

x∈S
ti,J,θ(x) and ti,J(S) := ∪

x∈S
ti,J(x) if the transition do not depend on θ.

2.4 Markov chain and Perfect sampling

Denote by (Wn)n∈N an i.i.d. sequence of random variables with distribution

P(Wn = (i, J)) =
µi∑K
k=1 µk

Z∏
z=1

P zi,jz ,

where i ∈ {1, . . . ,K} and J = (j1, . . . , jZ) ∈ {1, . . . ,K}Z . It can easily be
checked that the probability that the first component of Wn is i equals µi∑K

k=1 µk
,

the probability that the next service occurs at queue i. Moreover, denoting Wn =
(k, J), for each class z ∈ {1, . . . ,K}, P(jz = j | k = i) = P zi,j , which is the
probability of routing a customer of class z from queue i to queue j.

Let (Θn)n∈N be an i.i.d sequence of random variables, uniformly distributed
on [0, 1] and independent of (Wn)n∈N. We set (Un)n∈N = (Wn, Θn)n∈N.

Let (Xn)n a random sequence such that X0 ∈ S and

Xn+1 = tUn
(Xn).

This equation describes the Markov chain of our model of multiclass network.
This Markov chain is ergodic, due to the assumption that the routing graph of
each class is strongly connected and Assumption 1. Our objective is to sample
the stationary distribution of (Xn)n∈N with the perfect sampling technique [15].
Algorithm 1 is the adaptation of the perfect sampling adapted to our model and
produces a random variable according to the stationary distribution of (Xn).
Theorem 1 ensures that the algorithm terminates in expected finite time.

Theorem 1 If the service discipline of each queue satisfies Assumptions 1 then
there exists a finite sequence of transitions t = tUn

◦ · · · ◦ tU1
such that |t(S)| = 1.

The proof of Theorem 1 is postponed to Appendix A.1. Note that the complexity
of this algorithm is at least linear in |S|.

3 Diagram representation

The cardinality of the state space is exponential in K and Z, so it is not possible
to perform the perfect sampling algorithm directly, as one must first enumerate
all the state space in order to compute a transition. In this section, we present
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Algorithm 1: CFTP using sets of states

Data: (U−n = (i−n, J−n, Θ−n))n∈N an i.i.d sequence of r.v
Result: x ∈ S

begin1

n← 1;2

t← tU−1 ;3

while |t(S))| 6= 1 do4

n← 2n;5

t← tU−1 ◦ · · · ◦ tU−n ;6

return x, the unique element of t(S)7

end8

multiclass diagrams, a more compact way to describe sets of states. In most
of the cases, a diagram representing a given set of state will in fact represent
more states, but we show that this representation ensures the termination of the
perfect sampling algorithm in finite expected time, and the complexity of the
transition becomes linear in K (while still exponential in Z).

3.1 Definition

Let D = (N,A) be a directed graph where N ⊆ {0, . . . ,K} × NZ is the set of
nodes and A the set of arcs. Let g : S → P(N2) denote the function which
associates a set of arcs to a state x ∈ S:

g(x) =

K⋃
i=1

{(
[i− 1, (

i−1∑
k=1

x1,k, . . . ,

i−1∑
k=1

xZ,k)], [i, (

i∑
k=1

x1,k, . . . ,

i∑
k=1

xZ,k)]
)}
.

Graphically, g(x) can be seen in D as a path from node [0, (0, . . . , 0)] to node
[K, (M1, . . . ,MZ)] (Figure 2). Moreover, consider an arc a =

(
[k− 1, s], [k,d]

)
∈

g(x) where s = (s1, . . . , sZ) ∈ NZ and d = (d1, . . . , dZ) ∈ NZ are two row-
vectors. The slope of a on its second component, can be considered as a class-
repartition vector in queue k. Indeed,

d− s = (

k∑
i=1

x1,i −
k−1∑
i=1

x1,i, . . . ,

k∑
i=1

xZ,i −
k−1∑
i=1

xZ,i) = (x1,k, . . . , xZ,k) = x∗,k.

Definition 1. A directed graph D = (N,A) is called a diagram if there exists
S ⊆ S such that

A = g(S) :=
⋃
x∈S

g(x).

A diagram is said to be complete if A = g(S). It is denoted D = (N,A).

For an arc a =
(
[k − 1, s], [k,d]

)
∈ A, vector v(a) = d− s ∈ NZ is called the

value of a. It represents the class-repartition vector in queue k. Subset Ak =
{
(
[k − 1, s], [k,d]

)
∈ A} denotes the set of all arcs in column k.
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Example 3. Consider S the state space of Example 1 and state x =

(
1 1 0 0 0
0 2 0 0 1

)
.

DiagramD = (N, g({x})) is given in Figure 2 and has 5 arcs:
(
[0, (0, 0)], [1, (1, 0)]

)
,(

[1, (1, 0)], [2, (2, 2)]
)
,
(
[2, (2, 2)], [3, (2, 2)]

)
,
(
[3, (2, 2)], [4, (2, 2)]

)
, and

(
[4, (2, 2)], [5, (2, 3)]

)
.

The value of a2 is v(a2) = (1, 2) = x∗,2. The complete diagram D = (N, g(S)) is
depicted on Figure 3 and has |g(S)| = 71 arcs.

Fig. 2. Diagram D = (N, g({x})) Fig. 3. Complete diagram D = (N, g(S))

Lemma 1 Let D = (N,A) be a diagram. If K ≥ 2, then

|A| ≤ 2

Z∏
z=1

(Mz + 1) + (K − 2)

Z∏
z=1

(Mz + 1)(Mz + 2)

2
.

Proof (Sketch of proof). The first term bounds the number of arcs in the first
and last columns (≤Mz + 1 each), the second term bounds the number of arcs

in the other K − 2 columns (≤
∏Z
z=1

∑Mz

m=0m).
The equality in Lemma 1 holds for the complete diagram when each class

can visit every queue.

A consequence of Lemma 1 is that the space needed for the representation
of a diagram is |A| = O(KM2

×).

Diagram and set of states. In order to perform the transition on the diagrams,
we first need to define functions that transform a set of states into a diagram
and the reverse. For S ⊆ S, φ associates to a set of states S ∈ S the diagram
φ(S) = (N, g(S)). For D = (N,A), ψ transforms diagram D = (N,A) into the
largest set of states S ⊆ S such that g(S) = A:

ψ(D) =
⋃

S⊆S, A=g(S)

S.

The followings properties are straightforward from the definitions of φ and ψ.
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Lemma 2 For S ⊆ S a set of states and D = (N,A) a diagram:

1. D is complete if and only if ψ(D) = S.
2. If D contains only one path (i.e. |A| = K) then |ψ(D)| = 1.
3. If |S| = 1 then φ(S) contains only one path.
4. If S ⊆ S such that A = g(S) then S ⊆ ψ(D).

3.2 Transition algorithm

We now extend the transitions to diagrams. Let (i, J) ∈ {1, . . . ,K}Z+1 and
θ ∈ [0, 1]. Function Ti,J,θ is defined for all diagram D as

Ti,J,θ(D) = φ ◦ ti,J,θ ◦ ψ(D).

Lemma 3 Let S ⊆ S be a set of states and D be a diagram. For all (i, J) ∈
{1, . . . ,K}Z+1 and θ ∈ [0, 1],

1. if S ⊆ ψ(D) then ti,J,θ(S) ⊆ ψ(Ti,J,θ(D));
2. if |ψ(D)| = 1 then |ψ(Ti,J,θ(D))| = 1.

We now present the algorithm to compute Ti,J,θ(D) directly without having
to use ti,J,θ(φ(D)), which would be too costly. The intuition is that the transfor-
mation will be similar for sets of paths, and then it can be done simultaneously
for them all. The algorithm that computes Ti,j,θ(D) is given as Algorithm 2.

Before describing it, we adapt the definition of the class to be served to
diagrams. As the service disciplines we consider satisfy Assumption 1, the way a
path is transformed according to (i, J, θ) depends only on the value of the arc in
column i. We then can define ∀a ∈ Ai, Fi(a, θ) = fi(v(a), θ), which selects the
class to be served for an arc in column i. This class will be the same for every
path going through that arc.

Let us define for a diagram D = (N,A) and b ∈ A, we define Paths(b, A) ⊆ A
the subset of arcs on paths through arc b:

Paths(b, A) = {a ∈ A | ∃x ∈ S s.t. a ∈ g(x) AND b ∈ g(x)},

and for B ⊆ A, Paths(B,A) defines the subset of arcs on paths through an arc
b ∈ B:

Paths(B,A) =
⋃
b∈B

Paths(b, A).

Example 4. Consider D = (N, g(S)) the complete diagram of Example 3 and,
a =

(
[2, 2, 0], [3, 2, 0]

)
∈ A, b =

(
[2, 1, 0], [3, 2, 0]

)
∈ A two arcs in column 3. For

B = {a, b} ⊆ Ak. Subset Paths(b, A) is given in Figure 4 and subset Paths(B,A)
in Figure 5.

First for each arc a ∈ Ai, function Fi gives the class for which the transition
will be performed. As there are |Z(i)| + 1 different possible values for Fi(a, θ),
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Fig. 4. Subset Paths(b, A) Fig. 5. Subset Paths(B,A)

we will compute |Z(i)| + 1 different types of transition. For all z ∈ Z(i) ∪ {0},
set

P [z] = {a ∈ Ai | Fi(a, θ) = z} and Serve[z] = Paths(P [z], A).

Serve[0] corresponds to the sub-diagram of the states where queue i is empty.
It will remain a sub-diagram of Ti,J,θ(D). For all z ∈ Z(i), Serve[z] is the sub-
diagram corresponding to states where a customer of class z is served, from queue
i to queue j = J [z]. This sub-diagram is transformed into Serve′[z]. We focus on
the case i < j (the case i > j is similar). Each arc b =

(
[k−1, s], [k,d]

)
∈ Serve[z]

is transformed into c the following way:

– If k < i or k > j, b is not affected by the transformation, so c = b.
– If k = i then b corresponds to a class-repartition vector of queue i, where

one customer of class z is served. Then c =
(
[k − 1, s], [k,d− ez]

)
.

– If i < k < j then b corresponds a class-repartition vector that is not affected
by the service. However, the origin of the arcs it was connected to has changed
from s to s− ez, so its destination must change similarly. So c =

(
[k− 1, s−

ez], [k,d− ez]
)
.

– If k = j, b corresponds to a class-repartition vector of queue j, where one
customer of class z arrives. As the origin of the arc it was connected to has
changed to s− ez, we have c =

(
[k − 1, s− ez], [k,d]

)
.

Now, diagram Ti,J,θ(D) = D′ = (N,A′) with A′ =
⋃
z∈Z(i)∪{0} Serve′[z].

Indeed, this construction ensures that for all x ∈ ψ(D), tiJ,θ(x) ∈ ψ(Ti,J,θ(D)).
Suppose that the complexity of computing Fi(a, θ) = C. Then the com-

plexity of Algorithm 2 is C|Ai|+Z|A| = O((C+KZ)M2
×). For PRIORITY and

LONGEST service discipline, C = O(Z), so the overall complexity isO(KZM2Z).

Example 5. Consider the complete diagram of Example 3 and perform T2,(1,5) on
it. Suppose that queue 2 has a PRIORITY discipline (class 1 has the priority).
Figure 6 illustrates the partition of arcs in column 2 into P [0], P [1] and P [2].

– P [0] = {a ∈ A2 | v(a) = (0, 0)} and Serve[0] = Paths(P [0], A)
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Algorithm 2: Algorithm Ti,J,θ

Data: D = (N,A), i ∈ {1, . . . ,K}, J ∈ NZ , θ ∈ [0, 1]
Result: Ti,J,θ(D)
begin1

for z = 0 to Z do2

P [z]← {a ∈ Ai | Fi(a, θ) = z};3

Serve′[0]← Paths(P [0], A);4

for z = 1 to Z do5

Serve[z]← Paths(P [z], A);6

Serve′[z]← ∅;7

j ← J [z] ;8

if i < j then9

foreach b =
(
[k − 1, s], [k,d]

)
∈ Serve[z] do10

c =
(
[k − 1, s− 1{i<k≤j}ez], [k,d− 1{i≤k<j}ez]

)
;11

Serve′[z]← Serve′[z] ∪ {c};12

if i > j then13

foreach b =
(
[k − 1, s], [k,d]

)
∈ Serve[z] do14

c =
(
[k − 1, s + 1{j<k≤i}ez], [k,d + 1{j≤k<i}ez]

)
;15

Serve′[z]← Serve′[z] ∪ {c};16

A′ ←
⋃Z
z=0 Serve′[z] ;17

return (N,A′)18

end19

– P [1] = {a ∈ A2 | v(a) = (v1, v2), v1 > 0} and Serve[1] = Paths(P [1], A)

– P [2] = {a ∈ A2 | v(a) = (0, v2), v2 > 0} and Serve[2] = Paths(P [2], A)

Notice that set Serve[0], Serve[1] and Serve[2] are not necessary disjoints. For
example, arc b =

(
[4, 2, 3], [5, 2, 3]

)
∈ Serve[1] ∩ Serve[2] (see Figures 7 and 8).

Then for all z ∈ {1, . . . , Z} we will compute Serve′[z] from Serve[z] according
to Algorithm 2. For class 1, the transition is performed for arcs in Serve[1] from
queue 2 to queue 1. For class 2, the transition is performed for arcs in Serve[2]
from queue 2 to queue 5.

Finaly, Ti,J(D, θ) = (N,A′), with A′ = Serve[0] ∪ Serve′[1] ∪ Serve′[2].

Fig. 6. Arc repartition in column 2 - PRIORITY discipline
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Fig. 7. Serve[1] = Paths(P [1], A) Fig. 8. Serve[2] = Paths(P [2], A)

3.3 Perfect sampling with diagrams

In this section, we show that the diagram representation can be used in the
perfect sampling algorithm. But first as in Section 2.4, we need to ensure that
the complete diagram can be reduced to a diagram containing only one state by
a finite sequence of transitions.

Theorem 2 If each queue discipline satisfies Assumptions 1 then there exists a
finite sequence of transitions T such that |ψ(T (D)| = 1.

The proof is given in Appendix A.2.

Theorem 3 Algorithm 3 samples a state according to the stationary distribution
on the states and terminates in expected finite time.

Proof. Theorem 2 implies that Algorithm 3 ends in expected finite time. Let
N < ∞ be the coupling time, i.e. the n when Algorithm 3 ends. Consider
t = tU−1

◦· · ·◦tU−N
with the same random sequence (U−n)n∈N. Lemma 3 implies

that t(S) ⊆ ψ(T (D)) ⊆ S. But |ψ(T (D))| = 1, which means, by Lemma 2, that
|t(S)| = 1. Let x be the unique state of ψ(T (D)) = t(S), the state returned by
Algorithm 3. State x is also the result returned by Algorithm 1. So it samples
the stationary distribution.

4 Numerical experiments

In this section, we compare our MDCFTP (Algorithm 3) with the classical CFTP
algorithm (Algorithm 1).

We compare the size of the state representation, the coupling times and
the running times. The coupling time is the value n when the algorithm stops.
Throughout the experiments, we use the PRIORITY discipline where class 1 is
given the priority over class 2. The algorithms have been implemented in Python
and performed on a laptop.
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Algorithm 3: Multiclass Diagram CFTP

Data: (U−n = (i−n, J−n), Θ−n)n∈N an i.i.d sequence of r.v
Result: x ∈ S

begin1

n← 1;2

T ← TU−1 ;3

while |ψ(T (D)))| 6= 1 do4

n← 2n;5

T ← TU−1 ◦ · · · ◦ TU−n ;6

return x, the unique state of ψ(T (D))7

end8

4.1 Network of Example 1

We first consider the network of Example 1 with m customers in each class (M =
2m), with m ∈ [1, 20]. In Figure 9 we compare the performance of Algorithms 1
and 3 (using the same innovation sequences (U−n)). Each value is the mean of
100 random samples.

Fig. 9. Comparisons for the network of Example 1. left: cardinality of the state space
|S| vs. number of arcs in the diagram |g(S)|; center: comparison of the coupling times;
right: comparison of the running times.

As expected, the cardinality of the state space grows exponentially with
m, while |g(S)| only grows polynomially. The coupling times are very close,
which indicates that our representation is precise enough to ensure a reasonable
coupling time. Algorithm 3 significantly outperforms Algorithm 1 in terms of
the running time. For this latter one, the sampling could not be computed in
less than six hours for m > 15.
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4.2 Bidirectional ring network

We consider a bidirectional ring network with K queues and 2 classes, and
matrices transitions P 1

i,i mod (K)+1 = 0.9, P 1
i mod (K)+1,i = 0.1, P 2

i,i mod (K)+1 =

0.1 and P 2
i mod (K)+1,i = 0.9. The number of customers in each class is 5.

We perform exactly the same experiments as in the previous example, but
make the number of queues vary between 2 and 20 (Figure 10).

Fig. 10. Bidirectional network: left: cardinality of the state space |S| vs. number of
arcs in the diagram |g(S)|; center: comparison of the coupling times; right: comparison
of the running times.

Not surprisingly, the cardinality of the state space grows exponentially with
K. We were able to perform Algorithm 1 only for very small values (K ≤ 7).
Indeed, the number of states is in O(m2K) whereas the state representation
with diagrams is in O(Km4). In those cases, the coupling times of the two
algorithms are very close and the running time correlated with the cardinality
of the representation.

4.3 Comparisons of the number of states |S| and the size of the
diagram representation |g(S)|

As our representation is still exponential in Z, we have restricted ourselves to
experiments with two classes of customers. To deal with larger number of classes,
we would first need to improve the implementation of the algorithm, specially for
the computation of Ti,J , which can be greatly improved for some service policies
like PRIORITY or LONGEST.

In this paragraph, we compare the size of the representation of the state
space for Algorithms 1 and 3. The size of the representation only depend on
the sets of queues visited by each class, and not on the exact topology of the
network. For the sake of simplicity, we assume that each class has m customers
and visits every queue. We make m vary for several values of Z and K. The
results are depicted in Figure 11.

The ratios grow exponentially, which indicates that the complexity gain with
Algorithm 3 should also be exponential.
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Fig. 11. Ratio |S|
|g(S)| . Left: K = 5, Z ∈ {2, 3, 5}; right: Z = 3, K ∈ {3, 5, 10}.

5 Conclusion

The main contribution of the paper is the derivation of the CFTP algorithm
for multiclass closed queueing networks under various service policies. The only
assumption made is that each station i choses the class to serve using only local
information - the current state of queue i.

Our CFTP algorithm uses multiclass diagrams, a more compact representa-
tion of the state space. As in the monoclass case, using diagrams allows reduction
of the complexity of the one-step transition function in the CFTP scheme from
exponential to linear, in terms of the number of queues in the system. Unfortu-
nately, diagram CFTP is still exponential in terms of the number of classes, so
it is efficient only when the number of classes stays relatively small (less than
5). The main open question is the existence of a compact representation that is
also polynomial in the number of classes, while keeping the coupling time of the
bounding chain close to that of the original one.

We plan to investigate more closely the implementation of the transition func-
tion for the multiclass diagrams and the possible generalizations of the gap free
diagrams in [6] that allowed a complexity reduction from O(KM2) to O(KM)
in the monoclass case.

For simplicity of exposition, we focused here on infinite capacity case. Exten-
sion to buffers with finite capacity does not represent any major difficulty, but
it is not straightforward.

The major theoretical challenge is the analytical analysis of the coupling
times.
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A Additional proofs

A.1 Proof of Theorem 1

If each queue discipline satisfies Assumptions 1 then there exists a finite sequence
of transitions t on the network such that |t(S)| = 1.

We first remove the dependence on the parameters θ by performing the same
transition M times. The following lemma is the key of the proof.

Lemma 1. Let (i, J) ∈ {1, . . . ,K}Z+1 and (θ1, . . . , θ|M |) ∈ [0, 1]M , set y =
ti,J,θM ◦ . . . ◦ ti,J,θ1(x). Then y satisfies the following properties:

1. |y∗,i| = 0 (the departure queue is empty);
2. For all z ∈ {1, . . . , Z}, yz,J[z] = xz,J[z] + xz,i (customers have moved desti-

nation queues);
3. yz,k = xz,k otherwise.

Proof. Each time a transition ti,J,θ is performed, the number of customers in
queue k decreases by one if it is non null. As |x∗,i| ≤M , |y∗,i| = 0. Every class
z customer in queue i moves to queue J [z], hence the result. ut

Remark that this composition of transitions ti,J,θM ◦ · · · ◦ ti,J.θ1 does not depend
on (θ1, . . . θM ), so, to simplify, we write tMi,J .

We now focus on class z and show that there exists a sequence of transitions
that couples for this class. As the network Gz is strongly connected, there exists
a path w = (w1, w2, . . . , wNz

) ∈ K(z)Nz of length Nz that crosses every queue
in K(z).

Proposition 1 For x ∈ S and J1, . . . , JNz
∈ {1, . . . ,K}Z such that ∀n ≤ Nz−1,

Jn[z] = wn+1. Then y = tMwNz−1JNz−1
◦ · · · ◦ tMw1J1

(x) satisfies yz,wNz
= Mz and

yz,k = 0 for all k 6= wNz
.

Proof. We prove this result by induction. Set y(n) = t
|M |
wnJn

◦ . . . ◦ t|M |w1J1
(x). We

will prove that for all n ≤ Nz,

y
(n)
z,k =


0 if k ∈ {w1, w2, . . . , wn} \ {wn+1}∑
k∈{w1,...,wn+1}

xz,k if k = wn+1

xz,k otherwise.

The case n = 0 is straightforward as y(0) = x. Suppose that y(n−1) satisfy
the properties above. We apply Lemma 1 to y(n−1) and (wn, Jn). We then obtain

that y
(n)
z,wn+1 = y

(n−1)
z,wn + y

(n−1)
z,wn+1 =

∑n
i=1 xz,wi

+ xz,wn+1
=
∑n+1
i=1 xz,wi

, and that

y
(n)
z,wn = y

(n−1)
z,wn = 0. The other queues are not modified regarding class z, so y(n)

satisfy the properties above.
To conclude, is is sufficient to notice that y = y(Nz−1) with {wi, i ∈

{1, . . . , Nz}} = K(z). ut
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We now have all the ingredients to conclude the proof of Theorem 1. Denote
by tz the sequence tMwNz−1JNz−1

◦ · · · ◦ tMw1J1
constructed for each z ∈ {1, . . . , Z}.

Then t = tZ ◦ . . . ◦ t1 is a coupling sequence. Indeed, Proposition 1 ensures that
for each class there is some step, where all the customers of this class are in
the same queue. But Lemma 1 also ensures that all the customers once in the
same queue, will remain in a same queue after performing M times the same
transition (and our sequence is constructed this way).

A.2 Proof of Theorem 2

If each queue discipline satisfies Assumptions 1 then there exists a finite sequence
of transitions T such that |ψ(T (D)| = 1.

The proof is similar to that of Theorem 1. In fact, replacing ti,J by Ti,J in t
leads to the sequence T , and we will show that T is a coupling sequence.

The key element is a sort of equivalent of Lemma 1, but we cannot be so
precise. We focus on the diagram that represent states where class z always
has no costumers in queue k or always has all its customers in queue k. More
precisely, we say that a diagram D = (N,A) satisfy Ez,k if ∀a ∈ Ak, v(a)z = 0
(all the states represented by D have no customer of class z in queue k); and we
say that D satisfy Fz,k if ∀a ∈ Ak, v(a)z = Mz (all customers of class z are in
queue k)

Lemma 2. Let (i, J) ∈ {1, . . . ,K}Z+1 and (θ1, . . . , θM ) ∈ [0, 1]M , set D′ =
Ti,J,θM ◦ · · · ◦ Ti,J,θ1(D). Then

1. D′ satisfies Ez,i for all z ∈ {1, . . . , Z} (queue i is empty);
2. If D satisfies Ez,j and j 6= J [z], then D′ also satisfies Ez,j;
3. If D satisfies Fz,i, then D′ satisfies Fz,J[z];
4. If D satisfies Fz,j, j 6= i then D′ also satisfies Fz,j.

Proof. First consider column i, each time a transition Ti,J(., θ`) is applied, ∀a ∈
Ai, the quantity |v(a)| =

∑Z
z=1 v(a) decreases by 1 if it is positive. Then after

performing M times this transition, v(a) = (0, . . . , 0) for all a ∈ Ai.
Second, consider a class z and a queue j 6= J [z] such that D satisfy Ez,j . By

construction, for all a ∈ Aj , v(a)z is not modified by Ti,J . So Ez,j still hold in
D′.

If D satisfy Fz,j , then it satisfy Ez,k for every k 6= j (there are exactly Mz

customers of class z on every path. ut

Now consider the sequence Tz for a class of customers. Set D(n) = TMwnJn
◦

. . .◦TMw1J1
(x). From Lemma 2, one can deduce that D(n) satisfy Ez,wn , and Ez,k

for all k ∈ {w1, . . . , wn−1} \ {wn+1}. Then D(Nz−1) satisfy Ez,k for all k except
wNz

. As a consequence, one must have for all a ∈ ANz
, v(a)z = Mz and D(Nz−1)

satisfies Fz,wNz
.

Applying Lemma 2 leads to the desired result: T (D) satisfy either Ez,k or
Fz,k for all (z, k) ∈ {1, . . . , Z} × {1, . . .K}, which means that there is only one
path in the diagram.


