
Critical paths in the Partial Order Unfolding

of a Stochastic Petri Net

Anne Bouillard
Irisa/ENS Cachan,

Campus de Beaulieu,
Rennes, France

Stefan Haar
INRIA Saclay/ENS Cachan

61, avenue du Président Wilson
94235 CACHAN Cedex - France

France

Sidney Rosario
Irisa/Inria Rennes,

Campus de Beaulieu,
Rennes, France

June 24, 2009

Abstract

In concurrent real-time processes, the speed of individual components has a double im-
pact: on the one hand, the overall latency of a compound process is affected by the latency
of its components. But, if the composition has race conditions, the very outcome of the pro-
cess will also depend on the latency of component processes. Using stochastic Petri nets, we
investigate the probability of a transition occurrence being critical for the entire process, i.e.
such that a small increase or decrease of the duration of the occurrence entails an increase
or decrease of the total duration of the process. The first stage of the analysis focuses on
occurrence nets, as obtained by partial order unfoldings, to determine criticality of events;
we then lift to workflow nets to investigate criticality of transitions inside a workflow.

1 Introduction

This paper studies the impact of component performances - measured by transition delays -
on the global performance of a composite workflow. This impact analysis is complicated by
the presence of concurrency and of conflict, both of which may either hide individual delays or
accentuate their impact. To capture these effects, we consider continuous time processes within
the framework of partial order unfolding semantics [8, 9, 13] of Petri nets.

To motivate the ideas, consider a machine servicing workflow, represented as a Petri net
in Figure 1. A token in the initial place represents a client requesting that his machine be
serviced. A client can revoke his request (by firing transition N), but this has to be done before
the servicing process has been started (by the firing of S). The machine has two components
CX and CY , the operations servicing them are denoted by the transitions X and Y respectively.
The component CY degrades when it is idle and has to be shipped to the client (denoted by
transition D) as soon as possible after its servicing. If the machine can not be delivered (either
because component CX ’s servicing has not yet finished or because the shipping process has not
yet begun), after a certain time the component CY has to be sent for servicing again (denoted
by the firing of C).

Now, the latency of individual events has a double impact on the configurations. Firstly, the
overall latency of a configuration is affected by the latency of its individual events: the latency
of a configuration is a max-plus combination of the latencies of its individual events. A second
impact of the latencies of the individual events is the choice of configuration itself, since an event
with a shorter latency can pre-empt the occurrence of a conflicting event whose delay is larger.
The authors of [15] have analyzed first-passage time in event structures for a fixed configuration;

1

S
D

i

t

C

Y

X o

N

Figure 1: A workflow net.

here, we also take into account the second impact of real-time durations, namely, on choice.
A concurrent system generally has several qualitatively possible evolutions (or configurations)
that could occur. By ’qualitatively’ we mean the difference between runs that have different
sets of events (rather than just different durations for the same set of events, which would be a
merely quantitative distinction). Which one among the possible configurations actually occurs,
depends in general on non-predetermined choices. In [3, 4, 6, 19], this is treated as a logical
choice, or conflict; no timing issues are considered. Our approach combines the two orthogonal
viewpoints, and considers timing and choice jointly rather than separately: the very shape and
outcome of the process will depend on the latency of component processes.

We capture the random and asynchronous character of such behaviours, and the depen-
dencies encountered, e.g., in orchestrated processes, in Petri nets with stochastic delays on
transitions. Although the work in this paper was initially motivated by Web-Services orches-
trations, the scope of application encompasses all concurrent real-time processes.

This paper is organized as follows. In Section 2, we recall the definitions for Petri Nets
and their unfoldings. In Section 3, we introduce stochastic delays in those structures, which
are then used to compute the occurrence probability of an event; this is lifted in Section 4 to
computing the probability for an event to be critical in an unfolding. Section 5 then lifts the
analysis to the level of workflows and finishes the discussion of the running example; finally,
Section 6 concludes.

2 Petri Nets

Let denote by N = {0, 1, . . .} the set of natural numbers. We now formally define the models
we use in the rest of this paper.

Definition 1. A net is a tuple N = (P ,T ,F) where

• P 6= ∅ is a set of places,

• T 6= ∅ is a set of transitions such that P ∩ T = ∅,

• F ⊆ (P × T) ∪ (T × P) is a set of flow arcs.

A marking is a multiset m of places, i.e. a map from P to N . A Petri net is a tuple
N = (P ,T ,F ,m), where

2

• (P ,T ,F) is a finite net, and

• m : P → N is an initial marking.

Elements of P∪T are called the nodes of N . For a transition t ∈ T , we call •t = {p | (p, t) ∈
F} the preset of t, t• = {p | (t, p) ∈ F} the postset of t . A transition t is enabled in marking m if
∀p ∈ •t , m(p) > 0. This enabled transition can fire, resulting in a new marking m′ = m−•t+t•;
this firing relation is denoted by m[t〉m′. A marking m is reachable if there exists a sequence of
transitions t0, t1 . . . tn such that m0[t0〉m1[t1〉 . . . [tn〉m. A net is safe if for all reachable markings
m, m(p) ⊆ {0, 1} for all p ∈ P . From now on, we will consider only safe nets, and consider
markings simply as place sets, i.e. we use the symbol m for the set {p ∈ P | m(p) = 1}.

Let ≺ the transitive closure of F and � the reflexive closure of ≺. The set of causes or
prime configuration of x ∈ P ∪ T is [x] , {y | y � x}. Further, write t1#imt2 for transitions t1
and t2 if and only if t1 6= t2 and •t1 ∩

•t2 6= ∅; the conflict relation # ⊆ (T ∪ P)2 is given by

a # b ⇔ ∃ta, tb ∈ T : ta#imtb ∧ ta � a ∧ tb � b. (1)

Definition 2. A net ON = (B ,E ,G) is an occurrence net if and only if it satisfies

1. � is a partial order;

2. for all b ∈ B, |•b| ∈ {0, 1};

3. for all x ∈ B ∪ E, [x] is finite;

4. no self-conflict, i.e. there is no x ∈ B ∪ E such that x#x;

5. the set of ≺-minimal nodes C0 is contained in B and finite.

The nodes of E are called events, those of B conditions. In the model below, durations are
associated only to events, not to conditions; the starting instant of an event is thus determined
by its predecessor events alone. We therefore define for convenience, for every e in E, ◦e by
◦e = ••e and e◦ by e◦ = e••. As for each place b, |•b| ≤ 1, the firing of event e requires that all
events in ◦e have fired previously. We also suppose that E contains an an initial event ⊥ such
that ◦e = {⊥} iff e is ≺-minimal in E \ ({⊥} ∪ •⊥).

A prefix of ON is any subnet spanned by a downward closed subset π ⊆ B∪E , i.e. such that
for every x ∈ π, [x] ⊆ π. Prefix κ is a configuration if and only if it is conflict-free, i.e. x ∈ κ
and x#y imply y 6∈ κ. Denote as C(ON) the set of ON ’s configurations. Call any ⊆-maximal
element of C(ON) a run of ON . Denote the set of ON ’s runs as Θ(ON), or Θ if no confusion
can arise. A pair (x, y) ∈ (B ∪E)2 of nodes is concurrent, written x co y, if and only if neither
x � y nor y � x nor x#y hold. Further, any set of conditions W ⊆ B such that all conditions
in W are pairwise concurrent, is called a co-set. A ⊆ −maximal co-set is a cut.

Occurrence nets are the mathematical form of the partial order unfolding semantics for Petri
nets [9]; although more general applications are possible, we will focus here on unfoldings of
safe Petri nets only.

If N1 = (P1,T1,F1) and N2 = (P2,T2,F2) are nets, a homomorphism is a mapping h :
P1 ∪ T1 → P2 ∪ T2 such that

• h(P1) ⊆ P2 and

• for every t1 ∈ T1, the restriction to •t1 is a bijection between the set •t1 in N1 and the
•h(t1) in N2, and similarly for t1

• and (h(t1))
•.

3

i

C Y

Y

C

t

t

D

D

i

i

i

t
X

S

N

Y

Figure 2: The (partial) unfolding of the workflow net of Figure 1.

A branching process of safe Petri net N = (N ,m0) is a pair β = (ON , π), where ON = (B ,E ,G)
is an occurrence net, and π is a homomorphism from ON to N such that:

1. The restriction of π to C0 is a bijection from C0 to m0, and

2. for every e1, e2 ∈ E , if •e1 = •e2 and h(e1) = h(e2) then e1 = e2.

Branching processes β1 = (ON 1, π1) and β2 = (ON 2, π2) for N are isomorphic iff there exists a
bijective homomorphism h : ON 1 → ON 2 such that π1 = π2◦h. The unique (up to isomorphism)
maximal branching process β = (UN , π) of N is called the unfolding of N .

Following [9], the unfolding of N can be computed using the canonical algorithm given
below (we omit any cut-off criteria here since they are not essential for our purposes). Let
β = (ON β , πβ) be a branching process of N = (P ,T ,F), where ON β = (Bβ ,Eβ ,Gβ). Denote
as PE(β) ⊆ T × P(B) the set of possible extensions of β, i.e. of the pairs (t ,W) such that

• W is a co-set of ON β ,

• •t = πβ(W),

• Eβ contains no event e such that πβ(e) = t and •e = W .

The unfolding procedure adapted from [9] for safe Petri net N = (N ,m0) is then:

• Let C0 , m0×{∅} and initialize β = (C0, ∅, ∅, πβ) with πβ sending all conditions in C0 to
the corresponding place in m0.

• For given β = (ON β , πβ) with ON β = (Bβ ,Eβ ,Gβ), compute PE(β) and replace

– Eβ by Eβ ∪PE(β),

– Bβ by Bβ ∪ V , where V , {(p, e) | e ∈ PE(β), p ∈ πβ(e)•}, and

– Gβ by Gβ ∪ U , where

U , {(b, (t ,W)) | (t ,W) ∈ PE(β), b ∈W }

∪ {(e, (p, e)) | e ∈ PE(β), p ∈ πβ(e)•} ;

finally, extend πβ to the new nodes in the natural way, i.e. (t ,W) 7→ t and (p, e) 7→ p.

4

Figure 2 shows a prefix of the unfolding for the net of Figure 1. Note the multiple occurrences
of the looping transition t (shaded in the figure). In this figure, every occurrence of t corresponds
to a distinct way in which the net of Figure 1 reaches the output transition o. Every occurrence
of t is followed by the place i, which denotes that the net of Figure 1 has come back to its initial
marking.

3 Adding Time and Probability

Until now, we have defined structures that model the concurrency between events. The appli-
cations and properties we are interested in (mainly Web-services) are strongly related to the
timed behavior of those structures (cf. [10]).

3.1 Definitions and Assumptions

We will consider safe Petri nets N = (P ,T ,F ,m0) such that each transition t equipped with
probability laws Pt whose support is contained in [0,∞). Pt gives the law of the delay δt for
firing t after t is enabled. If t becomes enabled at time τ , a new realization δt(ω) of δt is drawn
from Pt , independently of other transitions and of previous realizations of δt . If t is continuously
enabled during the interval [τ, τ + δt(ω)], then t fires at time τ + δt(ω), otherwise it has been
preempted. Upon unfolding N , the events of UN inherit the delay law from the corresponding
transitions of N : we obtain a family (δe)e∈E such that δe ∼ δπ(e).

Note that our approach is not to be confounded with Timed Event Structures, see [11],where
delays merely indicate when an event may occur (but is not forced to). Let ON = (B, E, G) be
the unfolding of N . Each value ω = (δ(e))e∈E in the space ΩE , [0,∞)E will be seen to yield
a unique configuration θ of ON .

We make the following assumptions:

1. The measures (Pe)e∈E are pairwise independent.

2. No Pe has atoms: ∀ e ∈ E : ∀x ∈ [0,∞) : Pe({x}) = 0.

Heights. The height of an event e is defined (see, e.g., [12]) recursively by

H(e, ω) , max
e′∈◦e

{

H(e′, ω)
}

+ δ(e) and H(⊥, ω) = 0; (2)

a configuration κ has height

H(κ, ω) , max
e∈κ
{H(e, ω)} . (3)

Note that only the causality relation and the delays are relevant in the computation of
H(e, ω), conflicting events have no influence. In other words, for every event e of E, H(e, ω)
is defined, regardless of whether or not e actually occurs. We may thus apply different firing
policies without modifying H(•, •); on the other hand, the occurrence of e will depend on ω
through the firing policy. Here, all decisions will be made according to race policy : the first
event whose delay expires first preempts its competitors. We use Ω instead of ΩE .

For τ ∈ [0,∞), denote as

Eτ (ω) , {e | H(e, ω) 6 τ} (4)

the random set of those events whose height is bounded by τ .

5

Theorem 1. Under assumptions 1 and 2, the following properties hold.

1. H(e, ω) <∞ for all e ∈ E and almost all ω ∈ Ω.

2. H(e, ω) 6= H(e ′, ω) almost surely for any e, e ′ ∈ E such that e 6= e ′.

3. For all τ ∈ [0,∞), the set Eτ (ω) is finite for almost all ω.

Proof:

1. Obvious.

2. The claim is obvious for e ≺ e ′ or e ′ ≺ e, so assume neither holds. Let H(e) be the ran-
dom variable given by (H(e, ω))ω∈Ω, and define analogously H(κ) for any configuration
κ. Let x̌ be the configuration

x̌ , [x]\{x}.

Then A , H(e)−H(ě) and A′ , H(e′)−H(ě′) are independent of one another and of
H(ě) and H(ě′). In particular, A and A′ are independent of B , H(ě′)−H(ě), and thus
A is independent of A′ + B. Now, for any ω,

H(e, ω) = H(e ′, ω) ⇔ A(ω) = A′(ω) + B(ω).

Now, if X and Y are two atomless independent real random variables, then X − Y is
also atomless (see [18, Chapter 5] for example). Then P(X = Y) = P(X − Y = 0) = 0.
Setting X , A and Y , A′ + B, one can conclude.

3. Assume there exist ε > 0 and τ ∈ [0,∞) such that

P {ω : |Eτ (ω)| =∞} > ε, (5)

and let τε , inf{τ ∈ [0,∞) | (5) holds}. If

P {ω : |Eτε(ω)| =∞} > ε, (6)

then, by construction of τε, there is a positive probability that an infinite number of firings
must occur simultaneously at time τε. However, N is safe and finite, therefore only a
finite number of transition firings can be simultaneously enabled; from this contradiction,
we conclude that

u , P {ω : |Eτε(ω)| =∞} < ε.

Thus, for every ǫ > 0,

P{|Eτε+ǫ(ω)| =∞ | |Eτε(ω)| <∞} >
ε− u

1− u
> 0.

Since N is finite, this implies that there exists some transition t such that

P{t fires ∞ly often in [τε, τε + ǫ] | |Eτε(ω)| <∞} > 0.

But sinceN is safe, no two occurrences of the same transition are enabled simultaneously.
Hence, since the δt(nk, ω) are i.i.d., this implies the existence of a series n1 < n2 < . . .
of indexes such that

P

{

∞
∑

k=1

δt(nk, ω) < αt(2
−k)

}

> 0, (7)

6

where αt(x) is the x-quantile of the distribution of δt . Note that by assumption 2, one
has that P(δt(nk, ω) = 0) = 0, and therefore αt(x) > 0 for all x > 0. By construction,

∞
∑

k=1

P{δt(nk, ω) < αt(2
−k)} 6

∞
∑

k=1

2−k = 1; (8)

but then the Borel-Cantelli lemma1 contradicts (7), and we are done.

2

3.2 Occurrence of an event

Let us define with the above notation the occurrence predicate occ(e, ω); it is true if and only
if e effectively occurs under ω; that is, all of e’s preconditions are satisfied under ω, and none
of e’s fast adversaries, occurs. Formally we have the following definition:

Definition 3. Set occ(⊥, ω) to true for all ω ∈ Ω, and for any ω ∈ Ω, let recursively
occ(e, ω) be true iff

∀ e ′ ∈ ◦e : occ(e ′, ω)

∧ ∀ e ′ ∈ check(e, ω) : ¬occ(e ′, ω), (9)

where

check(e, ω) ,
{

e ′ | e#e ′ ∧ H(e ′, ω) 6 H(e, ω)
}

. (10)

Further, for all e ∈ E , define Occ(e) , {ω | occ(e, ω)}. In other words, occ(e) holds iff
event e eventually occurs, under ω and the race policy. Letting R(ω) , {e ∈ E | occ(e, ω)} the
set of events that occur under ω, we have:

Lemma 1. For almost all ω ∈ Ω, R(ω) ∈ Θ(ON).

Proof. R(ω) is a configuration by construction. For maximality, suppose there exists e 6∈ R(ω)
such that R(ω)∪ {e} ∈ C(ON). By Theorem 1, e has finite height, and check(e, ω) is almost
surely finite. By choice of e,

1. ◦e ⊆ R(ω), and

2. there is no e ∈ R(ω) such that e#e.

But this implies that check(e, ω) contains no e ′ with occ(e ′, ω), which implies occ(e, ω), con-
tradicting our assumption.

3.3 Probability of occurrence

The occurrence of an event e under any ω is determined by [e] and the set of events {e′ | e#e′}
(see definition of occ(e, ω)). In fact, the latter set can be further restricted to events e′ that are
in minimal conflict with e.

Minimal Conflict: If e#e′, but there exist events e1 � e, e′1 ≺ e′ such that e1#e′1, then e#e′

can be seen as a conflict derived from e1 and e′1. The height of e′ in any run ω, H(e′, ω), can not
affect the occurrence of e which is decided by the race between the mutually conflicting events
e1 and e′1. This inspires the following definition for minimal conflict [3, 4]:

1see e.g. Lemma 8.1 in P. Brémaud. Markov Chains. Gibbs Fields, Monte Carlo Simulation, and Queues.

Texts in Applied Mathematics 31, Springer 1999.

7

Definition 4 (Minimal Conflict). Two events e, e′ ∈ E are in minimal conflict, e#µe′ iff:
([e]× [e′]) ∩# = {(e, e′)}.

Thus the set of events which completely determine the occurrence of an event e is a prefix
containing e which is closed under minimal conflict. This set B(e) is formally defined as:

1. e ∈ B(e);

2. if e1 ∈ B(e) and e2 ≺ e1, then e2 ∈ B(e);

3. if e1 ∈ B(e) and e1#µe2, then e2 ∈ B(e).

Calculating P(Occ(e)):

Occ(e) = {ω | occ(e, ω)} = {ω | e ∈ R(ω)}.

Occ(e) can be partitioned into equivalence classes of runs in the following way: in any equiv-
alence class C, any two runs ω1, ω2 are such that R(ω1) ∩ B(e) = R(ω2) ∩ B(e). For any run
ω ∈ C, the set of events {e′|occ(e′, ω), e′ ∈ B(e)} is the same, denoted by κC . Denote the set of
equivalence classes of Occ(e) by Occ(e)/B(e).

Occ(e) =
⋃

C∈Occ(e)/B(e)

C

and so P(Occ(e)) =
∑

C∈Occ(e)/B(e)
P(C). Let p(κC) denote each term of this summation.

B(e) is an occurrence net in itself. For every equivalence class C in Occ(e)/B(e), the set κC

is a maximal configuration of B(e) which contains e, and vice-versa. Hence

P(Occ(e)) =
∑

e∈κC∈ΘB(e)

p(κC). (11)

We thus need to compute all possible ways in which a maximal configuration κC could occur in
B(e). This can be done for any occurrence net ON using a Markov chain, which is a graph of
configurations κ of ON with probabilistic transitions. This graph is constructed as below:

1. The states of the graph are the configurations κ of ON .

2. Define the set of events enabled in a configuration κ1 as

enab(κ1) , {e ∈ E \ κ1 | κ1 ∪ {e} ∈ C(ON)} (12)

The probability to go from state κ1 to state κ2 = κ1 ∪ {e} is

Pκ1,κ2 =
λe

∑

e′∈enab(κ1) λe′
. (13)

3. Transitions between any other states have zero probability.

The initial state of the Markov chain is the minimal configuration {⊥} and the maximal
states are the maximal configurations of ON . Let prec(κ) denote the set of immediate prede-
cessor states of κ in the graph. We obtain p(κ) recursively as:

p(κ) =
∑

κ′∈prec(κ)

p(κ′).Pκ′,κ. (14)

In general, Equation (11) can be computed only when B(e) is finite.

8

b

a

c

Figure 3: An occurrence net.

4 Critical Chains in Occurrence Nets

4.1 When is a critical for b?

We now turn to the central problem of criticality. As a simple example consider the occurrence
net in Figure 3 and the only maximal configuration u = {a, b, c}. Any change in the delay δc of
event c will affect the delay δu of configuration u. Event c is thus critical for the configuration
u for all possible delay values of a, b and c. The same cannot be said for events a and b: if
δa > δb, a increase or decrease in δb by an amount ǫ such that δa > δb + ǫ does not affect δu.
Similarly, a is non-critical when δb > δa. Events a and b are thus critical for configuration u
only in certain situations, depending on the delays of both a and b.

We will study first criticality of events for a configuration, and then move on to asking
whether a transition is critical. The latter will become meaningful in the context of workflow
nets and their unfolding below

To formalize our question, let ue be the tuple from [0,∞)E whose e-component is 1 and
all of whose other components are 0. We are interested in situations in which the delay of e is
critical for the delay of configuration κ, in the following sense:

crit(e, κ, ω) ⇐⇒ ∀ ε > 0 : H(κ, ω) < H(κ, ω + ε · ue).

In the example of Figures 1 and 2, let us ask whether the first occurrence of X (called
X0) is critical for the first occurrence D0 of D, assuming both occur. This is the case iff the
delay required by X0 is longer than that of Y0. Here and in the remainder of the paper, let
all exponential transition delay parameters be denoted by λ with the name of the transition as
subscript, i.e., λX for the delay parameter at transition X, etc. We obtain, by independence of
the delays,

P(crit(X0, [D0], ω)) =
λY

λX + λY
.

An event e is in Crit(e, ω) if it is critical for the configuration that occurs with respect to
ω. That is, for all positive but “small enough” increases of e ′s delay, that increase is also “felt”
by R:

Crit(e, ω) := {e | ∃η s. th. ∀ ε ∈]0, η[: H(R(ω), ω) < H(R(ω + ε · ue), ω + ε · ue)} . (15)

Indeed, due to Assumption 1), no pair of events can have the same height. Then, for
sufficiently small increases of latencies the events that occur do not change and R(ω) = R(ω +
ε · ue). If ε is to large, there could be a change in the run that occurs and the total height of
the occurring run could become smaller.

The definitions given for defining critical events are valid only for finite configurations,
i.e. we consider all heights to be finite. The notion of critical event cannot be well-defined
for an infinite configuration. For example, take a configuration κ = e0, f1, e1, f1, . . ., where

9

∀i, j ∈ N, ei < ei+1 and fj < fj+1 and ¬(ei#fj). If event ei occurs at time t, then, at that
time, events e0, . . . , ei are critical, and not event fj . Conversely, if event fj occurs at time t,
events f0, . . . , fj are critical and not events ei. Making t grow to infinity, should we consider
that the critical events are all the events, or none? Whatever our choice, it will not articulate
any meaningful information about our system.

Problem CRIT Given a finite configuration κ What is the probability P({ω | crit(e, κ, ω)})
for the delay of e ∈ κ to be critical?

For notational convenience, write x ≪ω y to say that the delay of x is critical for the height
of [y] in ω. More formally, we have the following definition.

Definition 5. For all ω, let ≪ω be the smallest reflexive relation on E that satisfies:

1. For any u ∈ E and x ∈ ◦u, x ≪ω u if and only if ∀ e ∈ ◦u\{x} : H(e, ω) < H(x, ω).

2. For all ω, relation ≪ω is transitive: x ≪ω y ≪ω z ⇒ x ≪ω z.

A critical chain of ON for ω is a maximal set cc ⊆ {e | Crit(e, ω)} such that for all x, y ∈ cc,
either x ≪ω y or y ≪ω x.

Note that if there exists ω such that x ≪ω y, then x < y. In principle, there can be
more than one critical chain for a given ω; however, under Assumption 1, the set of those ω has
measure 0 under P, i.e. ≪ω is uniquely defined for almost all ω.

The following lemma ensures that every critical chain contains a minimal event and is the
finite sequence of events x0, . . . , xn where x0 ∈ min(E) and ∀i ∈ {1, . . . , n}, xi−1 ∈ ◦xi. The
following lemma is a direct consequence of Definition 5.

Lemma 2. For every event y such that Crit(y, ω) and y 6= ⊥, ∃x ∈ E such that x ≪ω y and
x ∈ ◦y.

In the remainder of this section, we first give an algorithm to compute the critical events
for a given configuration and given timings on the events, then we describe a method to solve
Problem CRIT.

4.2 Critical events for a given configuration and given timings

For a given finite configuration κ and a given ω, one can find a critical chain of critical events
using Algorithm 1. Indeed, from the definition, an event of κ that has the maximum height is
critical. Then, one can find a critical chain that ends with that event. Then, from Lemma 2
and Definition 5, it is easy to see that at each step of the loop, one computes a critical event
that is a predecessor of the last computed critical event. This gives a maximal critical chain
(the condition [e′] \ {e′} = ∅ is equivalent to e′ ∈ min(E)).

4.3 Computation of the Criticality Probability

We now give a method to compute the probability of an event to be critical. Note that as the
critical character of an event depends on the future of that event, we need the configurations
to be finite and in finite number.

As stated in the previous section, the behavior of the net can be modeled by a Markov
chain whose states are the configurations and we will use the notations already defined. Since a
Markov chain can be seen as a directed graph labeled by the transition probabilities or by the
events on the arcs, we will use graph theoretic terminology. Each maximal path of the chain

10

Algorithm 1 Critical chain

Take e ∈ κ such that H(e, ω) = H(κ, ω);
cc← [e];
κ← [e] \ {e};
while κ 6= ∅ do

Take e ′ ∈ κ such that H(e ′, ω) = H(κ, ω);
cc← e ′ :: cc;
κ← [e′] \ {e′};

end while
return cc.

(from the empty configuration to a run κ) defines an order of occurrence of the event in the
configuration κ. From this order, one can define the critical chain on the path; if the events
that occur of that path are in their occurrence order e1, . . . , en, we have:

1. en is critical;

2. if ek is critical and if {i | i < k, ei < ek} is non-empty, define i0 , max{i | i < k, ei < ek}.
Event i0 is then the last event to occur before ek. This event does not exist (the considered
set is empty) if ek is a minimal event. Then

• ei0 ≪ω ek and

• ∄j ∈ {i0 + 1, . . . , k − 1} such that ei0 ≪ω ej ≪ω ek: ei0 is critical and there is no
critical event between ei0 and ek.

Under Assumption 1, the critical chain constructed in this way is unique with probability
1. The occurrence of an event e depends only on the “past” of event e, whereas the critical
character of an event depends only on the “future” of e (that is, the events that occur after it),
thanks to the memoryless properties of the exponential distribution. Thanks to that property,
the past and the future of e can be separated in the computations. We now develop an algorithm
to compute that probability.

We will use the following notations:

• For two states κ1, κ2 of the chain P(κ1, κ2) is the probability to reach κ2 from κ1.

• We denote by Pcrit(κ, e) the probability of e to be critical if starting from configuration
κ, e is a minimal event (that is, if κ ∪ {e} is a configuration). Pcrit(κ, e) = 0 otherwise.
For a maximal event e of a longest run κ, one has Pcrit(κ− {e}, e) = Pκ−{e},κ.

Let e be a maximal event – recall that the maximal events are those that may occur at the
latest time in κ – of a run κ. From the above, configuration κ occurs and e is critical if and
only if configuration κ occurs and e is the last event to occur. The probability for that event is
P(∅, κ− {e}) · Pκ−{e},κ.

Now, let us compute Pcrit for the other arcs. Let (κ1, κ2) be an arc such that every arc
successor of it has its Pcrit computed. It is always possible to find such an arc because the
graph is acyclic. Using a topological sort, one can find an order on the configurations such that
this condition is always satisfied. Denote by e the unique event in κ2 − κ1.

From the choice of configuration κ1, for a run κ that contains κ1 ∪{e}, if e is the first event
to occur, e is critical iff

11

∃f ∈ e◦ ∩ κ such that ◦f ∩ (κ− κ1) = {e} and f is critical . (16)

Indeed, from Definition 5.1, e can be critical only if there is a critical event f in e◦. Moreover,
if there is a event u ∈ ◦f ∩ (κ− κ1), then H(u) > H(e) and u is critical, not e.

Equation (16) leads to a method to recursively compute Pcrit. Let F be the set of events
f satisfying Equation (16) for a run κ and AF = {(κi, κ′i), i ∈ {1, . . . , m}} be the set of arcs
labeled by an event in F reachable from κ2 (we denote the label of (κi, κ′i) by fi). We have

Pcrit(κ1, e) =
n

∑

i=1

P(κ1, κ2)P(κ2, κ
i)P(κi, κ′i)Pcrit(κ

i, fi).

This formula can be explained in the following way: event e can be critical from κ1 if e is the
first event to occur in the remaining of a run (by definition of Pcrit). Then, consider the next
event f to occur in e◦. From Equation (16), e can be critical only if f can be critical. Then,
f is a label of an arc in AF . Let (κi, κ′i) be this arc. The probability to effectively reach that
arc is P(κ2, κ

i) and the path that has been followed between configurations κ2 and κi does not
matter: the events occurring are concurrent to f (f ∈ e◦ and ∀e′ ∈ κi − κ2, e′ /∈ ◦f) and they
are the same for every path, so their order does not matter. For the rest of the formula, one has
to remark that f being critical from κi is independent of what happens before conditionally to
the occurrence of the state κi.

Then, the probability for an event e to be critical is

Pcrit(e) =
∑

κ⊆κ∪{e}∈C(ON)

P(κ)Pcrit(κ, e).

5 Criticality of a component in a Workflow

The above discussion covers the criticality of events in an occurrence net. However, it is of
much greater relevance in practice to ask whether a given system component is critical for
the performance of a compound system, in particular for systems and services that are to
be frequently used. The knowledge of criticality in a complex system allows e.g. to allocate
resources - maintenance, renewal, replacement by newer but costly equipment, etc - where they
yield best global results: if only a limited budget for such interventions is available, one should
strive to use it as much as possible on improvement of the performance in bottlenecks of the
system.

Clearly, the above discussions on criticality in occurrence nets can serve as preparations for
the system analysis here, in the sense that one wishes to lift statements on an occurrence of t
being critical for an occurrence of t′ in the unfolding UN , to the net N itself and to saying that
t is critical for t′. However, this is not very meaningful for general nets since the occurrences
of t and t′ may be only loosely coupled. We can, however, give a precise meaning to transition
criticality in a particular class of Petri nets, called workflow nets.

The following definitions are based on [1].

Definition 6 (WF-Net). A net W∗ = (P∗,T∗,F∗) is a WF-net2 if and only if:

1. W has two special places, source place i and sink place o, such that •i = o• = ∅.

2. If we add a transition t to T∗ that connects place o with i, i.e. •t = {o} and t• = {i},
then the resulting net W = (P ,T ,F) - the looped version of W∗ - is strongly connected.

2WorkFlow net

12

W is then called a looped WF-net, and t is called the loop transition of W . WF-net W is
sound iff

1. m0 = {i};

2. m0 is a home marking, i.e. from every reachable marking of N , m0 is reachable;

3. N has no dead transitions, i.e. for every t ∈ T there is a reachable marking m such that
m[t〉.

It is known that WF-net W is sound iff N is live and bounded [2]. Let us call any Petri net
N = (W ,m0) for which W is a looped and sound WF-net a WF Petri net, or WFPN.

Consider the net in Figure 1. We see intuitively that, between two consecutive occurrences
of the loop transition, transition N will be critical for the entire workflow every time it actually
occurs, and transition X, Y and C can each be critical if N does not occur. More precisely, in
that case both X and Y will occur, X exactly once, Y possibly several times; in fact, Y occurs
exactly one more time than C does, before leaving the loop.

We will make this more precise now. To start, note that the successive occurrences of the
loop transition provide a natural regeneration point for the stochastic behaviour of the net. The
loop transition also marks the end of one execution of the workflow and the passage to the next
execution. We will thus consider the criticality problem with a focus on the loop transition: at
each new occurrence of it, look back to the period since the last occurrence, and ask which of
the other transitions have, this time around, been critical for the total time spent.

The dynamics of WFPNs features a sequence of rounds separated by the successive occur-
rences e1, e2, . . . of t. Formally, for any event e in the unfolding (ON , π) of N , define the round
number of e by round(e) , |π−1({t}) ∩ [e]|. Call tn(ω) the nth occurrence of t under ω; that
is, one has round(e) < n for all e ≺ t and round(e ′) ≥ n for all t � e ′. We will consider the
following problem:

(P) Given a sound WFPN N and a transition x 6= t of N , what is the probability Pcrit(x, n)
that the occurrence (if any) in round n of x is critical for tn?

Observe that the loop transition t synchronises the flow at the end of each round, hence it is
critical in every round. Due to this synchronisation, if xn, the nth occurrence of a transition x
is critical for a round, then xn remains critical for all successive rounds of the looped WF-Net.

As mentioned above, the synchronization at the end of a workflow round and in the firing of
t induces a renewal of the underlying Markov processes. In particular, Pcrit(x, n) = Pcrit(x, 1)
for any round n. We will therefore discard the round index n and represent the previous terms
by Pcrit(x), which denotes the probability that a transition x of N is critical for a round. The
problem (P) can thus be restated as:

Given a sound WFPN N and a transition x 6= t of N , what is the probability Pcrit(x)
that the occurrence (if any) of x is critical in an execution round of N ?

Solving this problem for the example of Figure 1 and its unfolding in Figure 2, we obtain the
following results:

• Transition N is critical in a round iff δN < δS , hence Pcrit(N) = λN
λN+λS

.

• If δN > δS , both S and D are critical in that round, hence Pcrit(S) = Pcrit(D) = λS
λN+λS

.

• For criticality of X, Y and C, the number of firings of C in a round is central. Denote by
NumC , this number of firings of C in a given round. We note that (i) Y fires NumC + 1

13

times in this round, and (ii) X is critical in this round iff it fires after the last firing of
Y , otherwise Y is critical in this round. For convenience, for transitions P and Q, let
PP/Q = λP

λP +λQ
, the probability of the delay of P being lesser than that of Q. We then

have for the probability of X being critical in a round:

Pcrit(X) = Pcrit(S) ·
∞

∑

i=0

[

PY/X · PC/X

]i
· PY/X · PX/C · PD/C

= Pcrit(S) · PY/X · PX/C · PD/C ·
1

1− PY/X · PC/X

Since Y is critical in a round whenever X is not critical, we have

Pcrit(Y) = Pcrit(S)− Pcrit(X).

Finally, C is critical in a round whenever Y is critical, except for the case when NumC = 0,
when C does not occur. We thus have,

Pcrit(C) = Pcrit(Y)− Pcrit(S) · PX/Y · PD/C .

In practice, it will be acceptable for X to be critical but not for transitions that may have
to be iterated a large number of times, such as Y and C. Therefore, one will strive to increase
PY/X to keep Pcrit(X) large.

6 Conclusion and Outlook

We have established several properties of distributed Markovian systems allowing to exhibit
which are the critical events of a non-deterministic process, and studied how to lift this anal-
ysis to workflow nets. Note that we have used a timed Markovian model in computations,
whose execution traces are linearly ordered sequences. One might therefore think that we could
have dropped the use of partial orders entirely and have simply used interleaved semantics
throughout. However, only the causal semantics provided by unfoldings allows to retrieve the
dependencies which are crucial in finding critical events : the fact that event e occurs before
event e ′ in itself does not imply that e is critical for e ′, since the ordering of the two events may
result merely from the contingent delay values. In that case, both events evolve independently
of one another, and modifications in the component corresponding to e would have no impact
on e ′. Criticality implies causal ordering, hence in order to analyze criticality, the investigation
of partial order unfoldings cannot be avoided. Identification and prediction of likely bottlenecks
in composite processes allows to anticipate possible performance deterioration. Conversely, once
the bottlenecks of an intended composite application are known, resource allocation can be op-
timized so that attention is focused on latency-critical components by reducing the critical local
latencies. More delicate analyses, such as concerning monotonicity (see [7]) and robustness of
global performance with respect to local performances, are under way or part of future work.

References

[1] W.M.P. van der Aalst. The application of Petri Nets to Workflow Management. Journal of
Circuits, Systems and Computers 8(1):21–66, 1998.

[2] W.M.P. van der Aalst. Verification of Workflow nets. Proc. ICATPN 1997, LNCS 1248:407–
426, Springer Verlag.

14

[3] S. Abbes and A. Benveniste. True-concurrency probabilistic models: Markov nets
and a law of large numbers. Theor. Comput. Sci. 390(2-3), pp. 129–170, 2008.
http://dx.doi.org/10.1016/j.tcs.2007.09.018.

[4] S. Abbes and A. Benveniste. Probabilistic models for true-concurrency: branching cells
and distributed probabilities for event structures. Information and Computation 204 (2),
p. 231-274. February 2006.

[5] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modeling with
Generalized Stochastic Petri Nets. Parallel Computing Series, Wiley, 1995.

[6] A. Benveniste, E. Fabre, and S. Haar. Markov Nets: Probabilistic Models for distributed
and concurrent systems. IEEE Trans. Aut. Control 48(11):1936–1950, November 2003.

[7] A. Bouillar, S. Rosario, A. Benveniste, S. Haar. Monotonicity in Service Orchestrations.
Petri Nets 2009, http://petrinets2009.lip6.fr/.

[8] J. Engelfriet. Branching Processes of Petri Nets. Acta Informatica 28:575–591, 1991.

[9] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding algorithm.
Formal Methods in System Design 20(3):285-310, 2002.

[10] P. Haas. Stochastic Petri Nets. Modelling, Stability, Simulation. Springer Series in Opera-
tions Research, Berlin 2002.

[11] J.-P. Katoen, C. Baier and D. Latella. Metric semantics for true concurrent real time.
Theoretical Computer Science 254, pp. 501-542, 2001.

[12] J. Mairesse and S. Gaubert. Modeling and Analysis of Timed Petri Nets using Heaps of
Pieces. IEEE Trans. Autom. Control 44(4):683–697, 1999.

[13] K. McMillan. Using Unfoldings to avoid the state explosion problem in the verification of
asynchronous circuits. 4th Workshop on Computer Aided Verification 164–174, 1992.

[14] M. Nielsen, G. Plotkin G. Winskel. Petri nets, event structures, and domains, Part I. TCS
13:85–108, 1981.

[15] T.C. Ruys, R. Langerak, J.-P. Katoen, D. Latella, M. Massink. First Passage Time Analysis
of Stochastic Process Algebra Using Partial Orders. TACAS 2001, LNCS 2031:220-235,
Springer-Verlag, 2001.

[16] S. Rosario, A. Benveniste, S. Haar, C. Jard. Probabilistic QoS and soft contracts for trans-
action based Web services. Proceedings ICWS 2007: 126–133, 2007.

[17] S. Rosario, D. Kitchin, A. Benveniste, W. Cook, S. Haar and C. Jard. Event Structure
Semantics of Orc. In: WS-FM, 2007; long version as INRIA Research Report Nr 6221.

[18] H.G. Tucker. An Introduction to probability and mathematical statistics. Academix Press,
1962.

[19] D. Varacca, H. Völzer and G. Winskel. Probabilistic event structures and domains. Theor.
Comput. Sci. 358(2-3): 173–199, 2006.

15

