Alarm prediction via space-time pattern matching

October 12, 2015

1 Contact

Please contact Anne Bouillard, Philippe Jacquet or Marc-Olivier Buob.

anne.bouillard@ens.fr
marc-olivier.buob@alcatel-lucent.com
philippe.jacquet@alcatel-lucent.com

The student will be hosted by Bell Labs in Nozay (Paris area) or in the joint center of Bell Labs and Inria Lincs lab in Paris.

2 Introduction

The existing networks are going to become more complex and more frequently updated. This will give the rise for more frequent alarms, some of them may lead to network disruption. Since the processes involved in the network functioning are heterogeneous, a faulty behavior of a given process may come from another process functioning on a neighbor node in the network. The real difficulty is to catch the causality when we jump over space and processes. Since frequently the processes are at different layers this is difficult for a single expert to retro-engineer the faulty behavior. The challenge here is to find the alarm correlations without apriori knowledge of the functioning of the processes seen as black boxes. For this the plan is to use the statistic of the alarm generation in the network in order to infer the correlations rules and finally to evaluate the probability of the imminence of a major disruption. Furthermore the retro-causal analysis of the correlations can also help of the identification of the root cause of the major dysfunction and cure them before they occur.

3 The algorithmic hard locks

If we omit the absolute and exact timing of events, the stream of alarms produced by a node can be considered as a discrete sequence of characters drawn from a finite alphabet (e.g. one symbol per alarm type). The problem of inferring the correlation rules in a linear stream of event is an old problem, this is equivalent to find the minimal set of rules which fit with a set words of an
unknown computer language. Nevertheless the exercise is heavy, *e.g.* the Coke-
Younger-Kasami algorithm [1] as it takes via dynamic programing more than
\(n^3 R \) steps where \(n \) is the length of the stream and \(R \) is the number of rules ob-
tained at the end. If \(n = 10^4 \) and \(R = 100 \) we get a far too expensive algorithm
(need a pair of weeks on a cluster). On the other hand, very simple heuristics
have been developed in [2], consisting in applying elementary transformation
rules on the stream of alarms. This results in a small graph describing sharply
the main alarms correlations leading to the failure of a node. Although this
method have been successfully applied to logs of alarms, no formal guarantee
was found ensuring the correct behavior of the algorithm. Furthermore these
algorithms do not answer the question because they do not address the spatial
possibility of the correlations. There is currently no language theoretic aspect
which solve the space aspects of the problem since the theory is mainly focused
on linear sequences. Each branching on the network is a potential choice in
the causality analysis and the accumulation of branching choices may lead to
a strongly exponential algorithm. The idea which consists into merging all the
streams in a single one and then use the classic inference will not work well
because it kills the spatial correlations as well by erasing the graph structure
of the system (regardless that it dramatically increases the complexity). Basic
machine learning is also difficult to implement due the exponential number of
possible states coming from the same reasons.

4 Space-time pattern matching

An efficient way of depicted correlations in a linear sequence via stream statistic
is the pattern matching via suffix trees. Suffix trees are data structures which
are intensively used in DNA sequence analysis [3], [7]. The construction of the
suffix tree is linear in \(n \), or in \(n \log n \) in incremental mode. Finding the most
likely correlations is equivalent the longest matching branch in the suffix tree,
which takes \(\log n \). The suffix tree is also the foundation of an universal predictor
algorithms over sequence [4].

The idea is to invent a new data structure which extends the suffix tree to
sequences which occur in a graph. A special case is when the graph is a linear
chain and in this case the data structure coincides with the suffix tree. The
structure could be called the suffix GPL tree, since it could be inspired from
the new structure called Graph Path Label (GPL) tree structure which has
been invented in 2014 [5], [6] and is used for fast retrieval of distinct sequences
which are drawn a fixed common graph. The aim is to extend the suffix tree on
this structure by conveniently redefining the concept of suffix tree in a graph
sequence.

5 Work program and skills

The internship should be articulated on three main direction:
1. the analysis of the complexity of GPL trie and suffix GPL tree under
stochastic sequence generation models, *e.g.* Markovian models. The anal-
ysis can be held in distribution or in average (and further moments);

2. the optimisation of the GPL structure in order to prevent long matching
sequence to lead to exponential explosion;

3. the design of universal predictors based on space-time pattern matching
and experimentation on stochastically generated sequence and real alarm
logs.

The candidate should show skills in mathematics, in particular in analytic
combinatorics, information theory, stochastic processes. (S)he should be able to
confront theory with full scale experiments via simulation and implementations.

References

an introduction.

[2] Anne Bouillard, Aurore Junier and Benoît Ronot. Impact of Rare Alarms
on Event Correlation. 9th international conference on Network and Service
Management (CNSM13).

and its applications: analysis of suffix trees by string-ruler approach. Jour-

iversal predictor based on pattern matching. Information Theory, IEEE

binatorial and Asymptotic Methods for the Analysis of Algorithms, 2014,
p. 181.

Tries.

From DNA to Twitter. Cambridge University Press, 2015.