Structures et algorithmes aléatoires TD10

5 décembre 2014

Exercice 1 Chaîne produit

Soient (X_n) et (Y_n) deux chaînes de Markov indépendantes de la même matrice de transition P. On définit la chaîne produit $U_n = (X_n, Y_n)$.

- 1. Montrer que (U_n) est une chaîne de Markov.
- 2. Quelle est la matrice de transition de (U_n) ?
- 3. Montrer que (U_n) est irréductible si P est irreductible et apériodique. Est-ce nécessaire de supposer que P est apériodique?

Exercice 2 Convergence vers la distribution stationnaire

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov irréductible apériodique et récurrente positive avec distribution stationnaire π . Le but de l'exercice est de montrer que $\lim_{n\to\infty} \mathbb{P}(X_n=x)=\pi(x)$ pour tout état $x\in E$.

1. Soient (X_n) et (Y_n) deux chaînes de Markov indépendates irréductibles apériodiques et récurrentes positives de même matrice de transition P. On pose $\tau = \inf\{n > 0 \mid X_n = Y_n\}$. Montrer que τ est fini presque sûrement et que le processus

$$Z_n = \begin{cases} X_n & \text{si } n \le \tau \\ Y_n & \text{si } n > \tau \end{cases}$$

est une chaîne de Markov de matrice de transition P et de même distribution initiale que (X_n) .

2. Montrer que $|\mathbb{P}(Z_n = x) - \mathbb{P}(Y_n = x)| \le \mathbb{P}(\tau > n)$.

On choisit la distribution intiale $\mathbb{P}(Y_0 = x) = \pi(x)$ pour la chaîne (Y_n) .

3. Conclure.

Exercice 3 Apériodicité

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov irreductible à espace d'états fini.

- 1. Supposons qu'il existe un état x tel que $\mathbb{P}(X_{n+1} = x \mid X_n = x) > 0$. Montrer que (X_n) est apériodique.
- 2. Donner un exemple d'une chaîne apériodique qui ne possède pas cette propriété.
- 3. Supposons que $\mathbb{P}(X_{n+1} = y \mid X_n = x) > 0$ si et seulement si $\mathbb{P}(X_{n+1} = x \mid X_n = y) > 0$. Montrer que (X_n) est apériodique si et seulement s'il existe un entier positif impair k et un état x_0 tel que $\mathbb{P}(X_{n+k} = x_0 \mid X_n = x_0) > 0$.

Exercice 4 Marche aléatoire

On considère $(X_n)_{n\geq 0}$ la chaîne de Markov sur l'espace d'états $\mathbb Z$ de matrice de transition suivante : pour tout $x\in \mathbb Z$, $P_{x,x+1}=1/2$ et $P_{x,x-1}=1/2$.

1. Calculer la probabilité $u_n = \mathbb{P}(X_n = 0 \mid X_0 = 0)$.

Soit f_n la probabilté que le premier retour en 0 (sachant que X(0) = 0) se fasse au temps n.

2. Quelle est la relation entre les suites (u_n) et (f_n) ?

On note U et F les fonctions génératrices respectives de (u_{2n}) et (f_{2n}) : $F(s) = \sum_{n \in \mathbb{N}} f_{2n} s^n$ et $U(s) = \sum_{n \in \mathbb{N}} u_{2n} s^n$.

- 3. Montrer que $U(s) = \frac{1}{\sqrt{1-s}}$. En déduire que $F(s) = 1 (1-s)^{1/2}$.
- 4. En déduire la probabilité que le temps de retour ait lieu en temps fini presque sûrement. Quelle est l'espérance du temps de retour en 0?