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Chapter 1

The basic theory

1.1 Conditional expectation

We start with the conditional expectation given an event. Let Z be a discrete ran-
dom variable with values in E, and let f : E → R be a non-negative function. Let
A be some event of positive probability. The conditional expectation of f(Z) given
A, denoted by E [f(Z) |A], is by definition the expectation when the distribution
of Z is replaced by its conditional distribution given A:

P (Z = z |A).
Therefore

E [f(Z) |A] =
∑

z

f(z)P (Z = z |A).

Let {Ai}i∈N be a partition of the sample space. The following formula is then a
direct consequence of Bayes’s formula of total causes:

E [f(Z)] =
∑

i∈N

E [f(Z) |Ai]P (Ai)

The following elementary result will be often used, and therefore, we shall promote
it to the rank of theorem:

Theorem 1.1.1 Let Z be a discrete random variable with values in E, and let
f : E 7→ R be a non-negative function. Let A be some event of positive probability.
Then

E [f(Z)1A] = E [f(Z) |A]P (A) .

5



6 CHAPTER 1. THE BASIC THEORY

Proof.

E [f(Z) |A]P (A) =
∑

z∈E

f(z)P (Z = z |A)P (A) =
∑

z∈E

f(z)P (Z = z , A) .

Now, the random variable f(Z)1A takes a non-null value if and only if this value
is of the form f(z) > 0, and this with probability P (Z = z , A). Therefore

E [f(Z)1A] =
∑

z ;f(z)>0

f(z)P (Z = z , A) =
∑

z∈E

f(z)P (Z = z , A) .

�

Next, we now introduce the notion of conditional expectation of some discrete
random variable Z given some other discrete random variable Y .

Definition 1.1.1 Let X and Y be two discrete random variables taking their val-
ues in the denumerable sets F and G, respectively, and let the function g : F×G→
R be either non-negative, or such that E[|g(X, Y )|] <∞,. Define for each y ∈ G

ψ(y) =
∑

x∈F

g(x, y)P (X = x | Y = y) (1.1)

if P (Y = y) > 0, = 0 otherwise. This quantity is called the conditional expectation
of g(X, Y ) given Y = y, and is denoted by EY=y[g(X, Y )], or E[g(X, Y ) | Y = y].
The random variable ψ(Y ) is called the conditional expectation of g(X, Y ) given
Y , and is denoted by EY [g(X, Y )] or E[g(X, Y ) | Y ].

The sum in (1.1) is well-defined (possibly infinite however) when g is non-negative.
Note that in the non-negative case, we have that

∑

y∈G

ψ(y)P (Y = y) =
∑

y∈G

∑

x∈F

g(x, y)P (X = x | Y = y)P (Y = y)

=
∑

x

∑

y

g(x, y)P (X = x, Y = y)

= E[g(X, Y )].

In particular, if E[g(X, Y )] <∞, then

∑

y∈G

ψ(y)P (Y = y) <∞,

which implies that (Theorem ??) P (ψ(Y ) <∞) = 1.
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Let now g : F × G → R be a function of arbitrary sign such that E[|g(X, Y )|] <
∞, and in particular E[g±(X, Y )] < ∞. Denote by ψ± the functions associated
to g± as in (1.1). As we just saw, for all y ∈ G, ψ±(y) < ∞, and therefore
ψ(y) = ψ+(y)− ψ−(y) is well-defined (not an indeterminate ∞−∞ form). Thus,
the conditional expectation is well-defined also in the integrable case. From the
observation made a few lines above, in this case,

|EY [g(X, Y )]| <∞, P − a.s.

Example 1.1.1: Let X1 and X2 be independent binomial random variables of
same size N and same parameter p. We are going to show that

EX1+X2 [X1] = ψ(X1 +X2) =
X1 +X2

2
.

We have

P (X1 = k|X1 +X2 = n) =
P (X1 = k,X1 +X2 = n)

P (X1 +X2 = n)

P (X1 = k,X2 = n− k)

P (X1 +X2 = n)

P (X1 = k)P (X2 = n− k)

P (X1 +X2 = n)

Expliciting the probabilities thereof, and using the fact that the sum of two in-
dependent binomial random variables with size N and parameter p is a binomial
random variable with size 2N and parameter p, we find after a straightforward
computation

P (X1 = k|X1 +X2 = n) =

(
N

k

)(
N

n−k

)
(
2N
n

) .

This is the hypergeometric distribution. The right-hand side of the last display is
the probability of obtaining k black balls when a sample of n balls is randomly
selected from an urn containing N black balls and N red balls. The mean of such
a distribution is (by symmetry) n

2
, therefore

EX1+X2=n[X1] =
n

2
= ψ(n)

and this gives the announced result.
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Example 1.1.2: Let X1 and X2 be two independent Poisson random variables
with respective means θ1 > 0 and θ2 > 0. We seek to compute EX1+X2 [X1], that
is EY [X], where X = X1, Y = X1 +X2. For y ≥ x, the same computations as in
Example 1.1.1 give

P (X = x | Y = y) =
P (X1 = x)P (X2 = y − x)

P (X1 +X2 = y)
.

Expliciting the probabilities thereof, and using the fact that the sum of two inde-
pendent Poisson random variables with parameter θ1 and θ2 is a Poisson random
variable with parameter θ1 + θ2, we find after a straightforward computation

P (X = x | Y = y) =

(
y

x

)(
θ1

θ1 + θ2

)x(
θ2

θ1 + θ2

)y−x

.

Therefore, with α = θ1
θ1+θ2

,

ψ(y) = EY=y[X] =

y∑

x=0

x

(
y

x

)
αx(1− α)y−x = αy.

Finally, EY [X] = ψ(Y ) = αY , that is,

EX1+X2 [X1] =
θ1

θ1 + θ2
(X1 +X2).

Properties of conditional expectation

The first property of conditional expectation, linearity, is obvious from the defini-
tions: For all λ1, λ2 ∈ R,

EY [λ1g1(X, Y ) + λ2g2(X, Y )] = λ1E
Y [g1(X, Y )] + λ2E

Y [g2(X, Y )]

whenever the conditional expectations thereof are well-defined and do not produce
∞−∞ forms. Monotonicity is equally obvious: if g1(x, y) ≤ g2(x, y), then

EY [g1(X, Y )] ≤ EY [g2(X, Y )].

Theorem 1.1.2 If g is non-negative or such that E[|g(X, Y )|] <∞, we have

E[EY [g(X, Y )]] = E[g(X, Y )].
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Proof.

E[EY [g(X, Y )]] = E[ψ(Y )]] =
∑

y∈G

ψ(y)P (Y = y)

=
∑

y∈G

∑

x∈F

g(x, y)P (X = x | Y = y)P (Y = y)

=
∑

x

∑

y

g(x, y)P (X = x, Y = y) = E[g(X, Y )].

�

Theorem 1.1.3 If w is non-negative or such that E[|w(Y )|] <∞,

EY [w(Y )] = w(Y ),

and more generally,

EY [w(Y )h(X, Y )] = w(Y )EY [h(X, Y )].

assuming that the left-hand side is well-defined.

Proof. We prove the more general identity. We do the case where w and h are
non-negative, since the general case follows easily from this special case. We have,

EY=y[w(Y )h(X, Y )] =
∑

x∈F

w(y)h(x, y)P (X = x | Y = y)

= w(y)
∑

x∈F

h(x, y)P (X = x | Y = y)

= w(y)EY=y[h(X, Y )].

�

Theorem 1.1.4 If X and Y are independent and if v is non-negative or such that
E[|v(X)|] <∞, then

EY [v(X)] = E[v(X)].

Proof. We have

EY=y[v(X)] =
∑

x∈F

v(x)P (X = x | Y = y)

=
∑

x∈F

v(x)P (X = x) = E[v(X)].
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�

We now give the successive conditioning rule. Suppose that Y = (Y1, Y2), where Y1
and Y2 are discrete random variables. In this situation, we use the more developed
notation

EY [g(X, Y )] = EY1,Y2 [g(X, Y1, Y2].

Theorem 1.1.5 Let Y = (Y1, Y2) be as above, and let g be either non-negative or
such that E[|g(X, Y )|] <∞. Then

EY2 [EY1,Y2 [g(X, Y1, Y2)]] = EY2 [g(X, Y1, Y2)].

Proof. Let
ψ(Y1, Y2) = EY1,Y2 [g(X, Y1, Y2)].

We must show that

EY2 [ψ(Y1, Y2)] = EY2 [g(X, Y1, Y2)].

But
ψ(y1, y2) =

∑

x

g(x, y1, y2)P (X = x | Y1 = y1, Y2 = y2)

and
EY2=y2 [ψ(Y1, Y2)] =

∑

y1

ψ(y1, y2)P (Y1 = y1 | Y2 = y2),

that is,

EY2=y2 [ψ(Y1, Y2)] =
∑

y1

∑

x

g(x, y1, y2)P (X = x | Y1 = y1, Y2 = y2)P (Y1 = y1 | Y2 = y2).

But

P (X = x | Y1 = y1, Y2 = y2)P (Y1 = y1 | Y2 = y2)

=
P (X = x, Y1 = y1, Y2 = y2)

P (Y1 = y1, Y2 = y2)

P (Y1 = y1, Y2 = y2)

P (Y2 = y2)

= P (X = x, Y1 = y1 | Y2 = y2) .

Therefore

EY2=y2 [ψ(Y1, Y2)] =
∑

y1

∑

x

g(x, y1, y2)P (X = x, Y1 = y1 | Y2 = y2)

= EY2=y2 [g(X, Y1, Y2)].

�
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1.2 The transition matrix

There is a particle moving on a denumerable set E. If at time n, the particle is
in position i, it will be at time n + 1 in a position j choosen independently of
the past trajectory Xn−1, Xn−2 with probability pij. This can be represented by
a labeled oriented graph, whose set of vertices is E, and for which there is an
oriented edge from i ∈ E to j ∈ E with label pij if and only the latter quantity is
positive. Note that there may be “self-loops”, correspondings to positions i such
that pii > 0. This graphical interpretation of a homogeneous Markov chain (to be
defined soon) in terms of a “random walk” on a set E will be emphasized later on
when we shall study symmetric random walks on graphs. Since the interpretation
of a Markov chain in such terms is not always the natural one, we proceed to give
a more formal definition.

A sequence {Xn}n≥0 of random variables with values in a set E is called a discrete-
time stochastic process with state space E. In this chapter, the state space is
countable, and its elements will be denoted by i, j, k,. . . If Xn = i, the process is
said to be in state i at time n, or to visit state i at time n.

Definition 1.2.1 If for all integers n ≥ 0 and all states i0, i1, . . . , in−1, i, j,

P (Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j | Xn = i) ,

theis stochastic process is called a Markov chain, and a homogeneous Markov chain
(hmc) if, in addition, the right-hand side is independent of n.

The matrix P = {pij}i,j∈E, where

pij = P (Xn+1 = j | Xn = i),

is the transition matrix of the hmc. Since the entries are probabilities, and since
a transition from any state i must be to some state, it follows that

pij ≥ 0, and
∑

k∈E

pik = 1

for all states i, j. A matrix P indexed by E and satisfying the above properties is
called a stochastic matrix1.

1The state space may be infinite, and therefore such a matrix is in general not of the kind
studied in linear algebra. However, the basic operations of addition and multiplication will be
defined by the same formal rules. The notation x = {x(i)}i∈E formally represents a column
vector, and xT is the corresponding row vector.
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The Markov property extends easily (exercise) to

P (A | Xn = i, B) = P (A | Xn = i) ,

where

A = {Xn+1 = j1, . . . , Xn+k = jk}, B = {X0 = i0, . . . , Xn−1 = in−1}.
This is in turn equivalent to

P (A ∩B | Xn = i) = P (A | Xn = i)P (B | Xn = i).

In other words, A and B are conditionaly independent given Xn = i. In words,
the future at time n and the past at time n are conditionally independent given
the present state Xn = i. In particular that the Markov property is independent
of the direction of time.

Notation. We shall from now on abbreviate P (A | X0 = i) as Pi(A). Also, if µ is
a probability distribution on E, then Pµ(A) is the probability of A given that the
initial state X0 is distributed according to µ.

The distribution at time n of the chain is the vector νn, where

νn(i) = P (Xn = i).

From the Bayes rule of exclusive and exhaustive causes, νn+1(j) =
∑

i∈E νn(i)pij,
that is, in matrix form, νTn+1 = νTnP. Iteration of this equality yields

νTn = νT0 P
n. (1.2)

The matrix Pm is called the m-step transition matrix because its general term is

pij(m) = P (Xn+m = j | Xn = i).

Indeed, the Bayes sequential rule and the Markov property give for the right-hand
side of the latter equality

∑

i1,...,im−1∈E

pii1pi1i2 · · · pim−1j,

which is the general term of the m-th power of P.

The probability distribution ν0 of the initial state is called the initial distribution.
From the Bayes sequential rule and in view of the homogeneous Markov property
and the definition of the transition matrix,

P (X0 = i0, X1 = i1, . . . , Xk = ik) = ν0(i0)pi0i1 · · · pik−1ik .

Therefore, t distribution of a discrete-time hmc is uniquely determined by its
initial distribution and its transition matrix.
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Sample path realization of the transition matrix

Many hmc’s receive a natural description in terms of a recurrence equation.

Theorem 1.2.1 Let {Zn}n≥1 be an iid sequence of random variables with values
in an arbitrary measurable space F . Let E be a countable space, and f : E×F → E
be some measurable function. Let X0 be a random variable with values in E,
independent of {Zn}n≥1. The recurrence equation

Xn+1 = f(Xn, Zn+1) (1.3)

then defines a hmc.

Proof. Iteration of recurrence (1.3) shows that for all n ≥ 1, there is a measurable
function gn such that Xn = gn(X0, Z1, . . . , Zn), and therefore P (Xn+1 = j | Xn =
i,Xn−1 = in−1, . . . , X0 = i0) = P (f(i, Zn+1) = j | Xn = i,Xn−1 = in−1, . . . , X0 =
i0) = P (f(i, Zn+1) = j), since the event {X0 = i0, . . . , Xn−1 = in−1, Xn = i}
is expressible in terms of X0, Z1, . . . , Zn and is therefore independent of Zn+1.
Similarly, P (Xn+1 = j | Xn = i) = P (f(i, Zn+1) = j). We therefore have a
Markov chain, and it is homogeneous since the right-hand side of the last equality
does not depend on n. Explicitly:

pij = P (f(i, Z1) = j). (1.4)

�

Not all homogeneous Markov chains receive a “natural” description of the type
featured in Theorem 1.2.1. However, it is always possible to find a “theoretical”
description of the kind. More exactly,

Theorem 1.2.2 For any transition matrix P on E, there exists a homogeneous
Markov chain with this transition matrix and with a representation such as in
Theorem 1.2.1.

Proof. Let

Xn+1 = j if

j−1∑

k=0

pXnk ≤ Zn+1 <

j∑

k=0

pXnk,

where {Zn}n≥1 is iid, uniform on [0, 1]. By application of Theorem 1.2.1 and of
formula (1.4), we check that this hmc has the announced transition matrix. �

Example 1.2.1: 1-D random walk, take 1. Let X0 be a random variable
with values in Z. Let {Zn}n≥1 be a sequence of iid random variables, independent
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of X0, taking the values +1 or −1, and with the probability distribution

P (Zn = +1) = p,

where p ∈ (0, 1). The process {Xn}n≥1 defined by

Xn+1 = Xn + Zn+1

is, in view of Theorem 1.2.1, an hmc, called a random walk on Z. It is called a
“symmetric” random walk if p = 1

2
.

Example 1.2.2: Repair shop, take 2. During day n, Zn+1 machines break
down, and they enter the repair shop on day n+1. Every day one machine among
those waiting for service is repaired. Therefore, denoting by Xn the number of
machines in the shop on day n,

Xn+1 = (Xn − 1)+ + Zn+1, (1.5)

where a+ = max(a, 0). In particular, if {Zn}n≥1 is an iid sequence independent of
the initial state X0, then {Xn}n≥0 is a homogeneous Markov chain. In terms of
the probability distribution

P (Z1 = k) = ak, k ≥ 0,

its transition probabilities are, by formula (1.4),

pij = P ((i− 1)+ + Z1 = j) = P (Z1 = j − (i− 1)+) = aj−(i−1)+ .

As we already mentioned, not all homogeneous Markov chains are naturally de-
scribed by the model of Theorem 1.2.1. A slight modification of this result con-
siderably enlarges its scope.

Theorem 1.2.3 Let things be as in Theorem 1.2.1 except for the joint distribu-
tion of X0, Z1, Z2, . . .. Suppose instead that for all n ≥ 0, Zn+1 is condition-
ally independent of Zn, . . . , Z1, Xn−1, . . . , X0 given Xn, and that for all i, j ∈ E,
P (Zn+1 = k | Xn = i) is independent of n. Then {Xn}n≥0 is a hmc, with transi-
tion probabilities

pij = P (f(i, Z1) = j | X0 = i).

Proof. The proof is quite similar to that of Theorem 1.2.1 (exercise). �
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Example 1.2.3: The Ehrenfest urn, take 1. This simplified model of diffu-
sion through a porous membrane was proposed in 1907 by the Austrian physicists
Tatiana and Paul Ehrenfest to describe in terms of statistical mechanics the ex-
change of heat between two systems at different temperatures. (This model consid-
erably helped understanding the phenomenon of thermodynamic irreversibility.)

There are N particles that can be either in compartment A or in compartment
B. Suppose that at time n ≥ 0, Xn = i particles are in A. One then chooses a
particle at random, and this particle is moved at time n + 1 from where it is to
the other compartment. Thus, the next state Xn+1 is either i − 1 (the displaced
particle was found in compartment A) with probability i

N
, or i + 1 (it was found

in B) with probability N−i
N

. This model pertains to Theorem 1.2.3. For all n ≥ 0,

Xn+1 = Xn + Zn+1,

where Zn ∈ {−1,+1} and P (Zn+1 = −1 | Xn = i) = i
N
. The nonzero entries of

the transition matrix are therefore

pi,i+1 =
N − i

N
, pi,i−1 =

i

N
.

0 1 i−1 i i+1 N−1 N

1 1−
i−1

N
1−

i

N

1

N

1

N

i

N

i+1

N
1

First-step analysis

Some functionals of homogeneous Markov chains such as probabilities of absorption
by a closed set (A is called closed if

∑
j∈A pij = 1 for all i ∈ A) and average times

before absorption can be evaluated by a technique called first-step analysis.

Example 1.2.4: The gambler’s ruin, take 1. Two players A and B play
“heads or tails”, where heads occur with probability p ∈ (0, 1), and the successive
outcomes form an iid sequence. Calling Xn the fortune in dollars of player A at
time n, then Xn+1 = Xn + Zn+1, where Zn+1 = +1 (resp., −1) with probability
p (resp., q = 1 − p), and {Zn}n≥1 is iid. In other words, A bets $1 on heads at
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each toss, and B bets $1 on tails. The respective initial fortunes of A and B are
a and b (positive integers). The game ends when a player is ruined, and therefore
the process {Xn}n≥1 is a random walk as described in Example 1.2.1, except that
it is restricted to E = {0, . . . , a, a+1, . . . , a+ b = c}. The duration of the game is
T , the first time n at which Xn = 0 or c, and the probability of winning for A is
u(a) = P (XT = c | X0 = a).

1 2 3 4 5 6 7 8 9 10 T = 11

c = a+ b

0

a

A wins

The gambler’s ruin

Instead of computing u(a) alone, first-step analysis computes

u(i) = P (XT = c | X0 = i)

for all states i, 0 ≤ i ≤ c, and for this, it first generates a recurrence equation
for u(i) by breaking down event “A wins” according to what can happen after the
first step (the first toss) and using the rule of exclusive and exhaustive causes. If
X0 = i, 1 ≤ i ≤ c−1, then X1 = i+1 (resp., X1 = i−1) with probability p (resp.,
q), and the probability of winning for A with updated initial fortune i+ 1 (resp.,
i− 1) is u(i+ 1) (resp., u(i− 1)). Therefore, for i, 1 ≤ i ≤ c− 1 (see, however, a
rigorous proof at the close of the example),

u(i) = pu(i+ 1) + qu(i− 1),

with the boundary conditions u(0) = 0, u(c) = 1.

The characteristic equation associated with this linear recurrence equation is pr2−
r+ q = 0. It has two distinct roots, r1 = 1 and r2 =

q

p
, if p 6= q, and a double root,

r1 = 1, if p = q = 1
2
. Therefore, the general solution is u(i) = λri1+µr

i
2 = λ+µ

(
q

p

)i

when p 6= q, and u(i) = λri1 + µiri1 = λ+ µi when p = q = 1
2
. Taking into account
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the boundary conditions, one can determine the values of λ and µ. The result is,
for p 6= q,

u(i) =
1− ( q

p
)i

1− ( q
p
)c
,

and for p = q = 1
2
,

u(i) =
i

c
.

In the case p = q = 1
2
, the probability v(i) that B wins when the initial fortune of

B is c−i is obtained by replacing i by c−i in expression for u(i): v(i) = c−i
c

= 1− i
c
.

One checks that u(i) + v(i) = 1, which means in particular that the probability
that the game lasts forever is null. The reader is invited to check that the same is
true in the case p 6= q.

Communication

All the properties defined in the present subsection are topological in the sense that
they concern only the naked transition graph (without the labels).

Definition 1.2.2 State j is said to be accessible from state i if there exists M ≥ 0
such that pij(M) > 0. States i and j are said to communicate if i is accessible
from j and j is accessible from i, and this is denoted by i↔ j.

In particular, a state i is always accessible from itself, since pii(0) = 1 (P0 = I,
the identity).

For M ≥ 1, pij(M) =
∑

i1,...,iM−1
pii1 · · · piM−1j, and therefore pij(M) > 0 if and

only if there exists at least one path i, i1, . . . , iM−1, j from i to j such that

pii1pi1i2 · · · piM−1j > 0,

or, equivalently, if there is an oriented path from i to j in the transition graph G.
Clearly,

i↔ i (reflexivity),

i↔ j ⇒ j ↔ i (symmetry),

i↔ j, j ↔ k ⇒ i↔ k (transivity).

Therefore, the communication relation (↔) is an equivalence relation, and it gen-
erates a partition of the state space E into disjoint equivalence classes called com-
munication classes.
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Definition 1.2.3 A state i such that pii = 1 is called closed. More generally, a
set C of states such that for all i ∈ C,

∑
j∈C pij = 1 is called closed.

Definition 1.2.4 If there exists only one communication class, then the chain, its
transition matrix, and its transition graph are said to be irreducible.

Consider the random walk on Z (Example 1.2.1). Since p ∈ (0, 1), it is irreducible.
Observe that E = C0 + C1, where C0 and C1, the set of even and odd relative
integers respectively, have the following property. If you start from i ∈ C0 (resp.,
C1), then in one step you can go only to a state j ∈ C1 (resp., C0). The chain
{Xn} passes alternately from cyclic class to the other. In this sense, the chain
has a periodic behavior, corresponding to the period 2. More generally, for any
irreducible Markov chain, one can find a unique partition of E into d classes C0,
C1, . . ., Cd−1 such that for all k, i ∈ Ck,

∑

j∈Ck+1

pij = 1,

where by convention Cd = C0, and where d is maximal (that is, there is no other
such partition C ′

0, C
′
1, . . . , C

′
d′−1 with d′ > d). The proof follows directly from

Theorem 1.2.5 below.

The number d ≥ 1 is called the period of the chain (resp., of the transition ma-
trix, of the transition graph). The classes C0, C1, . . . , Cd−1 are called the cyclic
classes.The chain therefore moves from one class to the other at each transition,
and this cyclically.

Period

We now give the formal definition of period. It is based on the notion of greatest
common divisor of a set of positive integers.

Definition 1.2.5 The period di of state i ∈ E is, by definition,

di = gcd{n ≥ 1 ; pii(n) > 0},

with the convention di = +∞ if there is no n ≥ 1 with pii(n) > 0. If di = 1, the
state i is called aperiodic .

Theorem 1.2.4 If states i and j communicate they have the same period.
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Proof. As i and j communicate, there exist integers N andM such that pij(M) >
0 and pji(N) > 0. For any k ≥ 1,

pii(M + nk +N) ≥ pij(M)(pjj(k))
npji(N)

(indeed, the path X0 = i,XM = j,XM+k = j, . . . , XM+nk = j,XM+nk+N = i is
just one way of going from i to i in M + nk +N steps). Therefore, for any k ≥ 1
such that pjj(k) > 0, we have pii(M + nk + N) > 0 for all n ≥ 1. Therefore, di
dividesM+nk+N for all n ≥ 1, and in particular, di divides k. We have therefore
shown that di divides all k such that pjj(k) > 0, and in particular, di divides dj.
By symmetry, dj divides di, and therefore, finally, di = dj. �

We can therefore speak of the period of a communication class or of an irreducible
chain.

The important result concerning periodicity is the following.

Theorem 1.2.5 Let P be an irreducible stochastic matrix with period d. Then for
all states i, j there exist m ≥ 0 and n0 ≥ 0 (m and n0 possibly depending on i, j)
such that

pij(m+ nd) > 0, for all n ≥ n0.

Proof. It suffices to prove the theorem for i = j. Indeed, there exists m such
that pij(m) > 0, because j is accessible from i, the chain being irreducible, and
therefore, if for some n0 ≥ 0 we have pjj(nd) > 0 for all n ≥ n0, then pij(m+nd) ≥
pij(m)pjj(nd) > 0 for all n ≥ n0.

The rest of the proof is an immediate consequence of a classical result of number
theory. Indeed, the gcd of the set A = {k ≥ 1; pjj(k) > 0} is d, and A is closed
under addition. The set A therefore contains all but a finite number of the positive
multiples of d. In other words, there exists n0 such that n > n0 implies pjj(nd) > 0.
�

C0 C1 C2 = Cd−1

Behaviour of a Markov chain with period 3
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Stationarity

The central notion of the stability theory of discrete-time hmc’s is that of station-
ary distribution.

Definition 1.2.6 A probability distribution π satisfying

πT = πTP (1.6)

is called a stationary distribution of the transition matrix P, or of the corresponding
hmc.

The global balance equation (1.6) says that for all states i,

π(i) =
∑

j∈E

π(j)pji.

Iteration of (1.6) gives πT = πTPn for all n ≥ 0, and therefore, in view of (1.2), if
the initial distribution ν = π, then νn = π for all n ≥ 0. Thus, if a chain is started
with a stationary distribution, it keeps the same distribution forever. But there is
more, because then,

P (Xn = i0, Xn+1 = i1, . . . , Xn+k = ik) = P (Xn = i0)pi0i1 . . . pik−1ik

= π(i0)pi0i1 . . . pik−1ik

does not depend on n. In this sense the chain is stationary. One also says that the
chain is in a stationary regime, or in equilibrium, or in steady state. In summary:

Theorem 1.2.6 A hmc whose initial distribution is a stationary distribution is
stationary.

The balance equation πTP = πT , together with the requirement that π be a
probability vector, i.e., πT1 = 1 (where 1 is a column vector with all its entries
equal to 1), constitute when E is finite, |E|+1 equations for |E| unknown variables.
One of the |E| equations in πTP = πT is superfluous given the constraint πT1 = 1.
Indeed, summing up all equalities of πTP = πT yields the equality πTP1 = πT1,
that is, πT1 = 1.

Example 1.2.5: Two-State Markov Chain. Take E = {1, 2} and define the
transition matrix

P =

( 1 2

1 1− α α
2 β 1− β

)
,
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where α, β ∈ (0, 1). The global balance equations are

π(1) = π(1)(1− α) + π(2)β,

π(2) = π(1)α + π(2)(1− β).

This is a dependent system which reduces to the single equation π(1)α = π(2)β,
to which must be added π(1) + π(2) = 1 expressing that π is a probability vector.
We obtain

π(1) =
β

α + β
, π(2) =

α

α + β
.

Example 1.2.6: The Ehrenfest urn, take 2. The global balance equations
are, for i ∈ [1, N − 1],

π(i) = π(i− 1)

(
1− i− 1

N

)
+ π(i+ 1)

i+ 1

N

and, for the boundary states,

π(0) = π(1)
1

N
, π(N) = π(N − 1)

1

N
.

Leaving π(0) undetermined, one can solve the balance equations for i = 0, 1, . . . , N
successively, to obtain

π(i) = π(0)

(
N

i

)
.

The value of π(0) is then determined by writing that π is a probability vector:

1 =
N∑

i=0

π(i) = π(0)
N∑

i=0

(
N

i

)
= π(0)2N .

This gives for π the binomial distribution of size N and parameter 1
2
:

π(i) =
1

2N

(
N

i

)
.

This is the distribution one would obtain by placing independently each particle
in the compartments, with probability 1

2
for each compartment.

Stationary distributions may be many. Take the identity as transition matrix.
Then any probability distribution on the state space is a stationary distribution.
Also ther may well not exist any stationary distribution.
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Recurrence equations can be used to obtain the stationary distribution when the
latter exists and is unique. Generating functions sometimes usefully exploit the
dynamics.

Example 1.2.7: Repair shop, take 3. For any complex number z with mod-
ulus not larger than 1, it follows from the recurrence equation (1.5) that

zXn+1+1 =
(
z(Xn−1)++1

)
zZn+1

=
(
zXn1{Xn>0} + z1{Xn=0}

)
zZn+1

=
(
zXn − 1{Xn=0} + z1{Xn=0}

)
zZn+1 ,

and therefore
zzXn+1 − zXnzZn+1 = (z − 1)1{Xn=0}z

Zn+1 .

From the independence of Xn and Zn+1, E[z
XnzZn+1 ] = E[zXn ]gZ(z), where gZ(z)

is the generating function of Zn+1, and E[1{Xn=0}z
Zn+1 ] = π(0)gZ(z), where π(0) =

P (Xn = 0). Therefore,

zE[zXn+1 ]− gZ(z)E[z
Xn ] = (z − 1)π(0)gZ(z).

But in steady state, E[zXn+1 ] = E[zXn ] = gX(z), and therefore

gX(z) (z − gZ(z)) = π(0)(z − 1)gZ(z) . (⋆)

This gives the generating function gX(z) =
∑∞

i=0 π(i)z
i, as long as π(0) is available.

To obtain π(0), differentiate (⋆):

g′X(z) (z − gZ(z)) + gX(z) (1− g′Z(z)) = π(0) (gZ(z) + (z − 1)g′Z(z)) ,

and let z = 1, to obtain, taking into account the equalities gX(1) = gZ(1) = 1 and
g′Z(1) = E[Z],

π(0) = 1− E[Z]. (1.7)

Since π(0) must be non-negative, this immediately gives the necessary condition
E[Z] ≤ 1. Actually, one must have, if the trivial case Zn+1 ≡ 1 is excluded,

E[Z] < 1. (1.8)

Indeed, if E[Z] = 1, implying π(0) = 0, it follows from (??) that

gX(x)(x− gZ(x)) = 0

for all x ∈ [0, 1]. But excluding the case Zn+1 ≡ 1 (that is, gZ(x) ≡ x), the
equation x − gZ(x) = 0 has only x = 1 for a solution when g′Z(1) = E[Z] ≤ 1.
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Therefore, gX(x) ≡ 0 for x ∈ [0, 1), and consequently gX(z) ≡ 0 on {|z| < 1}
(where gZ is analytic). This leads to a contradiction, since the generating function
of an integer-valued random variable cannot be identically null.

We shall prove later that E[Z] < 1 is also a sufficient condition for the existence
of a steady state. For the time being, we learn from (??) and (1.7) that, if the
stationary distribution exists, then its generating function is given by the formula

∞∑

i=0

π(i)zi = (1− E[Z])
(z − 1)gZ(z)

z − gZ(z)
. (1.9)

Reversible chains

The notions of time-reversal and time-reversibility are very productive, as we shall
see in several occasions in the sequel.

Let {Xn}n≥0 be an hmc with transition matrix P and admitting a stationary
distribution π such that

π > 0

(that is, π(i) > 0 for all states i). Define the matrix Q, indexed by E, by

π(i)qij = π(j)pji. (1.10)

This matrix is stochastic, since

∑

j∈E

qij =
∑

j∈E

π(j)

π(i)
pji =

1

π(i)

∑

j∈E

π(j)pji =
π(i)

π(i)
= 1,

where the third equality uses the global balance equations. Its interpretation is the
following: Suppose that the initial distribution of the chain is π, in which case for
all n ≥ 0, all i ∈ E, P (Xn = i) = π(i). Then, from Bayes’s retrodiction formula,

P (Xn = j | Xn+1 = i) =
P (Xn+1 = i | Xn = j)P (Xn = j)

P (Xn+1 = i)
,

that is, in view of (1.10),

P (Xn = j | Xn+1 = i) = qji .

We see that Q is the transition matrix of the initial chain when time is reversed.
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The following is a very simple observation that will be promoted to the rank of a
theorem in view of its usefulness and also for the sake of easy reference.

Theorem 1.2.7 Let P be a stochastic matrix indexed by a countable set E, and
let π be a probability distribution on E. Define the matrix Q indexed by E by
(1.10). If Q is a stochastic matrix, then π is a stationary distribution of P.

Proof. For fixed i ∈ E, sum equalities (1.10) with respect to j ∈ E to obtain

∑

j∈E

π(i)qij =
∑

j∈E

π(j)pji.

But the left-hand side is equal to π(i)
∑

j∈E qij = π(i), and therefore, for all i ∈ E,

π(i) =
∑

j∈E

π(j)pji.

�

A stationary hmc with time index N can be extended to Z while preserving sta-
tionarity.

Theorem 1.2.8 Let {Xn}n≥0 be a hmc with state space E, transition matrix P,
and suppose that there exists a stationary distribution π > 0. Suppose moreover
that the initial distribution is π. Define the matrix Q = {qij}i,j∈E by (1.10).
Construct {X−n}n≥1, independent of {Xn}n≥1 given X0, as follows:

P (X−1 = i1, X−2 = i2, . . . , X−k = ik | X0 = i,X1 = j1, . . . , Xn = jn)

= P (X−1 = i1, X−2 = i2, . . . , X−k = ik | X0 = i) = qii1qi1i2 · · · qik−1ik

for all k ≥ 1, n ≥ 1, i, i1, . . . , ik, j1, . . . , jn ∈ E. Then {Xn}n∈Z is a hmc with
transition matrix P and P (Xn = i) = π(i), for all i ∈ E, all n ∈ Z.

Proof. Exercise. �

Definition 1.2.7 One calls reversible a stationary Markov chain with initial dis-
tribution π (a stationary distribution) if for all i, j ∈ E, we have the so-called
detailed balance equations

π(i)pij = π(j)pji. (1.11)

We then say: the pair (P, π) is reversible.
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In this case, qij = pij, and therefore the chain and the time-reversed chain are
statistically the same, since the distribution of a homogeneous Markov chain is
entirely determined by its initial distribution and its transition matrix.

The following is an immediate corollary of Theorem 1.2.7.

Theorem 1.2.9 Let P be a transition matrix on the countable state space E, and
let π be some probability distribution on E. If for all i, j ∈ E, the detailed balance
equations (1.11) are satisfied, then π is a stationary distribution of P.

Example 1.2.8: The Ehrenfest urn, take 3. Recall that we obtained the
expression

π(i) =
1

2N

(
N

i

)

for the stationary distribution. Checking the detailed balance equations

π(i)pi,i+1 = π(i+ 1)pi+1,i

is immediate.

Example 1.2.9: Random walk on a group. Let G be a finite associative
group with respect to the operation ∗ (here called the “product”)and let the in-
verse of a ∈ G be denoted by a−1 and the identity by e. Let µ be a probability
distribution on G. Let X0 be an arbitrary random element of G, and let {Zn}n≥1

be a sequence of iid random elements of G, independent of X0, with common
distribution µ. The recurrence equation

Xn+1 = Zn+1 ∗Xn (1.12)

defines according to Theorem 1.2.1 a hmc whose transition probabilities are

Pg,h∗g = µ(h)

for all g, h ∈ G.

For H ⊂ G, denote by 〈H〉 the smallest subgroup of G containing H. Recall that
〈H〉 consists of all elements of the type br ∗br−1 ∗· · ·∗b1 where the bi’s are elements
of H or inverses of elements of H. Let S = {g ∈ G; µ(g) > 0}. The random walk
is irreducible if and only if S generates G, that is, 〈S〉 = G.

Proof. Assume irreducibility. Let a ∈ G. There exists r > 0 such that pe,a(r) > 0,
that is, there exists a sequence s1, . . . , sr of S such that a = sr ∗ · · · ∗s1. Therefore
a ∈ 〈S〉. Conversely, suppose that S generates G. Let a, b ∈ G. The element
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b ∗ a−1 is therefore of the type ur ∗ ur−1 ∗ · · · ∗ u1 where the ui’s are elements of
S or inverses of elements of S. Now, every element of G is of finite order, that is,
can be written as a power of some element of G. Therefore b ∗ a−1 can be written
as b ∗ a−1 = sr ∗ · · · ∗ s1 where the si’s are in S. In particular, pa,b(r) > 0. �

The uniform distribution U on G is a stationary distribution of the chain.

Proof. In fact

∑

g∈G

U(g)pg,f =
1

|G|
∑

h∈G

ph−1f,f

=
1

|G|
∑

h∈G

µ(h) =
1

|G| .

�

The probability distribution µ on G is called symmetric iff µ(g) = µ(g−1) for all
g ∈ G. If this is the case, then the chain is reversible. We just have to check the
detailed balance equations

U(g)pg,h = U(h)ph,g

that is
1

|G|µ(hg
−1) =

1

|G|µ(gh
−1) ,

which is true because of the assumed symmetry of µ.

1.3 Recurrence

Strong Markov property and recurrence

The Markov property, that is, the independence of past and future given the
present state, extends to the situation where the present time is a stopping time.
More precisely, let τ be a random time taking its values in N ∪ {+∞}, and let
{Xn}n≥0 be a stochastic process with values in the countable set E. In order to
define Xτ when τ = ∞, one must decide how to define X∞. This is done by taking
some arbitrary element ∆ not in E, and setting

X∞ = ∆.
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By definition, the “process after τ” is the stochastic process

{SτXn}n≥0 := {Xn+τ}n≥0.

The “process before τ ,” or the “process stopped at τ ,” is the process

{Xτ
n}n≥0 := {Xn∧τ}n≥0,

which freezes at time τ at the value Xτ .

We introduce the notion of stopping time. Let {Xn}n≥0 be a stochastic process
with values in the denumerable set E. For an event A, the notation A ∈ X n

0 means
that there exists a function ϕ : En+1 7→ {0, 1} such that

1A(ω) = ϕ(X0(ω), . . . , Xn(ω)) .

In other terms, this event is expressible in terms of X0(ω), . . . , Xn(ω). Let now τ
be a random variable with values in N̄. It is called a Xn

0 -stopping time if for all
m ∈ N, {τ = m} ∈ Xm

0 . In other words, it is a non-anticipative random time
(with respect to {Xn}n≥0, since in order to check if τ = m, one needs only observe
the process up to time m and not beyond. It is immediate to check that if τ is a
Xn

0 -stopping time, then so is τ + n for all n ≥ 1.

Example 1.3.1: Return time. Let {Xn}n≥0 be an hmc with state space E.
Define for i ∈ E the return time to i by

Ti := inf{n ≥ 1 ; Xn = i}

using the convention inf ∅ = ∞ for the empty set of N. This is a Xn
0 -stopping

time since for all m ∈ N,

{Ti = m} = {X1 6= i,X2 6= i, . . . , Xm−1 6= i,Xm = i} .

Note that Ti ≥ 1. It is a “return” time, not to be confused with the closely
related “hitting” time of i, defined as Si := inf{n ≥ 0 ; Xn = i}, which is also a
Xn

0 -stopping time, equal to Ti if and only if X0 = i.

Example 1.3.2: Successive return times. This continues the previous ex-
ample. Let us fix a state, conventionally named 0, and let T0 be the return time to
0. We define the successive return times to 0, τk, k ≥ 1 by τ1 = T0 and for k ≥ 1,

τk+1 := inf{n ≥ τk + 1 ; Xn = 0}
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with the above convention that inf ∅ = ∞. In particular, if τk = ∞ for some k,
then τk+ℓ = ∞ for all ℓ ≥ 1. The identity

{τk = m} ≡
{

m−1∑

n=1

1{Xn=0} = k − 1 , Xm = 0

}

for m ≥ 1 shows that τk is a Xn
0 -stopping time.

Theorem 1.3.1 Let {Xn}n≥0 be an hmc with state space E and transition matrix
P. Let τ be a Xn

0 -stopping time. Then for any state i ∈ E,

(α) Given that Xτ = i, the process after τ and the process before τ are independent.

(β) Given that Xτ = i, the process after τ is an hmc with transition matrix P.

Proof. (α) We have to show that for all times k ≥ 1, n ≥ 0, and all states
i0, . . . , in, i, j1, . . . , jk,

P (Xτ+1 = j1, . . . , Xτ+k = jk | Xτ = i,Xτ∧0 = i0, . . . , Xτ∧n = in)

= P (Xτ+1 = j1, . . . , Xτ+k = jk | Xτ = i).

We shall prove a simplified version of the above equality, namely

P (Xτ+k = j | Xτ = i,Xτ∧n = in) = P (Xτ+k = j | Xτ = i) . (⋆)

The general case is obtained by the same arguments. The left-hand side of (⋆)
equals

P (Xτ+k = j,Xτ = i,Xτ∧n = in)

P (Xτ = i,Xτ∧n = in)
.

The numerator of the above expression can be developed as

∑

r∈N

P (τ = r,Xr+k = j,Xr = i,Xr∧n = in) . (⋆⋆)

(The sum is over N because Xτ = i 6= ∆ implies that τ < ∞.) But P (τ =
r,Xr+k = j,Xr = i,Xr∧n = in) = P (Xr+k = j | Xr = i, Xr∧n = in, τ = r)
P (τ = r,Xr∧n = in, Xr = i), and since r ∧ n ≤ r and {τ = r} ∈ Xr

0 , the
event B := {Xr∧n = in, τ = r} is in Xr

0 . Therefore, by the Markov property,
P (Xr+k = j | Xr = i,Xr∧n = in, τ = r} = P (Xr+k = j | Xr = i) = pij(k). Finally,
expression (⋆⋆) reduces to

∑

r∈N

pij(k)P (τ = r,Xr∧n = in, Xr = i) = pij(k)P (Xτ=i, Xτ∧n = in).
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Therefore, the left-hand side of (⋆) is just pij(k). Similar computations show that
the right-hand side of (⋆) is also pij(k), so that (α) is proven.

(β) We must show that for all states i, j, k, in−1, . . . , i1,

P (Xτ+n+1 = k | Xτ+n = j,Xτ+n−1 = in−1, . . . , Xτ = i)

= P (Xτ+n+1 = k | Xτ+n = j) = pjk.

But the first equality follows from the fact proven in (α) that for the stopping time
τ ′ = τ + n, the processes before and after τ ′ are independent given Xτ ′ = j. The
second equality is obtained by the same calculations as in the proof of (α). �

Regenerative cycles

Consider a Markov chain with a state conventionally denoted by 0 such that
P0(T0 < ∞) = 1. In view of the strong Markov property, the chain starting
from state 0 will return infinitely often to this state. Let τ1 = T0, τ2, . . . be the
successive return times to 0, and set τ0 ≡ 0.

By the strong Markov property, for any k ≥ 1, the process after τk is independent
of the process before τk (observe that condition Xτk = 0 is always satisfied), and
the process after τk is a Markov chain with the same transition matrix as the
original chain, and with initial state 0, by construction. Therefore, the successive
times of visit to 0, the pieces of trajectory

{Xτk , Xτk+1, . . . , Xτk+1−1}, k ≥ 0,

are independent and identically distributed. Such pieces are called the regenerative
cycles of the chain between visits to state 0. Each random time τk is a regeneration
time, in the sense that {Xτk+n}n≥0 is independent of the past X0, . . . , Xτk−1 and
has the same distribution as {Xn}n≥0. In particular, the sequence {τk − τk−1}k≥1

is iid.

Example 1.3.3: 1-D random walk, take 2. Let {Xn}n≥0 be a symmetric
random walk on Z. We show that for all positive integers j, k and n,

Pk(T0 < n, Xn = j) = Pk(Xn = −j) ,

and therefore, summing over j > 0,

Pk(T0 < n, Xn > 0) = Pk(Xn < 0) .
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Proof. By the strong Markov property, for m < n,

Pk(T0 = m, Xn = j) = Pk(T0 = m)P0(Xn−m = j) .

Since the distribution of Xn is symmetric when the initial position is 0, the right-
hand side is

Pk(T0 = m)P0(Xn−m = −j) = Pk(T0 = m, Xn = −j) ,

and therefore

Pk(T0 = m, Xn = +j) = Pk(T0 = m, Xn = −j) .

Summing over m < n, this gives

Pk(T0 < n, Xn = j) = Pk(T0 < n, Xn = −j) = Pk(Xn = −j),

where we have observed for the last equality that starting from a positive position
and reaching a negative position at time n implies that position 0 has been reached
for the first time strictly before time n. �

Example 1.3.4: The gambler’s ruin, take 2. A gambler with initial fortune
1 plays a heads and tails fair coin game with a one dollar stake at each toss.
What is the distribution of the duration of the game until he is broke? In other
terms, what is the distribution of the return time to 0 of a symmetric random walk
starting from position 1? Note that in this case T0 is necessarily odd. We have by
the strong Markov property and the reflection principle (Example 1.3.3)

P1(T0 = 2m+ 1) = P1(T0 > 2m,X2m = 1, X2m+1 = 0)

= P1(T0 > 2m,X2m = 1)P1(X2m+1 = 0 |X2m = 1)

= P1(T0 > 2m,X2m = 1)
1

2

=
1

2
{P1(X2m = 1)− P1(T0 ≤ 2m,X2m = 1)}

=
1

2
{P1(X2m = 1)− P1(X2m = −1)}

=
1

2

{(
2m

m

)
2−2m −

(
2m

m− 1

)
2−2m

}
=

(
2m
m

)

m+ 1
2−2m−1 .
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Visits to a given state

Let the number of visits to state i strictly after time 0 be denoted by

Ni =
∑

n≥1

1{Xn=i}.

The distribution of Ni given X0 = j is

Pj(Ni = r) = fjif
r−1
ii (1− fii) (r ≥ 1)

Pj(Ni = 0) = 1− fji,

where fji = Pj(Ti <∞) and Ti is the return time to i.

Proof. An informal proof goes like this: We first go from j to i (probability fji)
and then, r−1 times in succession, from i to i (each time with probability fii), and
the last time, that is the r+1-st time, we leave i never to return to it (probability
1 − fii). By the independent cycle property, all these “jumps” are independent,
so that the successive probabilities multiplicate. Here is a formal proof if someone
needs it.

For r = 0, this is just the definition of fji. Now let r ≥ 1, and suppose that
Pj(Ni = k) = fjif

k−1
ii (1− fii) is true for all k, 1 ≤ k ≤ r. In particular,

Pj(Ni > r) = fjif
r
ii.

Denoting by τr the rth return time to state i,

Pj(Ni = r + 1) = Pj(Ni = r + 1, Xτr+1 = i)

= Pj(τr+2 − τr+1 = ∞, Xτr+1 = i)

= Pj(τr+2 − τr+1 = ∞ | Xτr+1 = i)Pj(Xτr+1 = i).

But
Pj(τr+2 − τr+1 = ∞ | Xτr+1 = i) = 1− fii

by the strong Markov property (τr+2 − τr+1 is the return time to i of the process
after τr+1). Also,

Pj(Xτr+1 = i) = Pj(Ni > r)

Therefore,

Pj(Ni = r + 1) = Pi(Ti = ∞)Pj(Ni > r) = (1− fii)fjif
r
ii.

The result then follows by induction. �
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The distribution of Ni given X0 = j and given Ni ≥ 1 is geometric. This has two
main consequences. Firstly,

Pi(Ti <∞) = 1 ⇐⇒ Pi(Ni = ∞) = 1.

In words: if starting from i you almost surely return to i, then you will visit i
infinitely often. Secondly, we have

Ei[Ni] =
∞∑

r=1

rPi(Ni = r) =
∞∑

r−1

rf r
ii(1− fii) =

fii
1− fii

.

In particular,
Pi(Ti <∞) < 1 ⇐⇒ Ei[Ni] <∞.

We collect these results for future reference. For any state i ∈ E,

Pi(Ti <∞) = 1 ⇐⇒ Pi(Ni = ∞) = 1

and
Pi(Ti <∞) < 1 ⇐⇒ Pi(Ni = ∞) = 0 ⇐⇒ Ei[Ni] <∞. (1.13)

In particular, the event {Ni = ∞} has Pi-probability 0 or 1.

The potential matrix G associated with the transition matrix P is defined by

G =
∑

n≥0

Pn.

Its general term

gij =
∞∑

n=0

pij(n) =
∞∑

n=0

Pi(Xn = j) =
∞∑

n=0

Ei[1{Xn=j}] = Ei

[
∞∑

n=0

1{Xn=j}

]

is the average number of visits to state j, given that the chain starts from state i.

Recurrence and the potential matrix

For the time being, we introduce the relevant definitions. First recall that Ti
denotes the return time to state i.

Definition 1.3.1 State i ∈ E is called recurrent if

Pi(Ti <∞) = 1,

and otherwise it is called transient. A recurrent state i ∈ E such that

Ei[Ti] <∞,

is called positive recurrent , and otherwise it is called null recurrent.
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Although the next criterion of recurrence is of theoretical rather than practical
interest, it can be helpful in a few situations, for instance in the study of recurrence
of random walks (see the examples below).

Theorem 1.3.2 State i ∈ E is recurrent if and only if

∞∑

n=0

pii(n) = ∞.

Proof. This merely rephrases Eqn. (1.13). �

Example 1.3.5: 1-D random walk, take 3. The corresponding Markov chain
was described in Example 1.2.1. The non-null terms of its transition matrix are

pi,i+1 = p , pi,i−1 = 1− p,

where p ∈ (0, 1). We shall study the nature (recurrent or transient) of any one of
its states, say, 0. We have p00(2n+ 1) = 0 and

p00(2n) =
(2n)!

n!n!
pn(1− p)n.

By Stirling’s equivalence formula n! ∼ (n/e)n
√
2πn, the above quantity is equiva-

lent to
[4p(1− p)]n√

πn
(⋆)

and the nature of the series
∑∞

n=0 p00(n) (convergent or divergent) is that of the
series with general term (⋆). If p 6= 1

2
, in which case 4p(1−p) < 1, the latter series

converges, and if p = 1
2
, in which case 4p(1− p) = 1, it diverges. In summary, the

states of the 1-D random walk are transient if p 6= 1
2
, recurrent if p = 1

2
.

Example 1.3.6: 1-D random walk, take 4. We show that for the symmetric
(p = 1

2
) 1-D random walk, the states are in fact null recurrent, as we proceed to

prove. Let τ1 = T0, τ2, . . . be the successive return times to state 0. Observe that
for n ≥ 1,

P0(X2n = 0) =
∑

k≥1

P0(τk = 2n),

and therefore, for all z ∈ C such that |z| < 1,
∑

n≥1

P0(X2n = 0)z2n =
∑

k≥1

∑

n≥1

P0(τk = 2n)z2n =
∑

k≥1

E0[z
τk ].
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But τk = τ1 + (τ2 − τ1) + · · ·+ (τk − τk−1) and therefore, in view of Theorem 7.4,
and since τ1 = T0,

E0[z
τk ] = (E0[z

T0 ])k.

In particular, ∑

n≥0

P0(X2n = 0)z2n =
1

1− E0[zT0 ]

(note that the latter sum includes the term for n = 0, that is, 1). Direct evaluation
of the left-hand side yields

∑

n≥0

1

22n
(2n)!

n!n!
z2n =

1√
1− z2

.

Therefore, the generating function of the return time to 0 given X0 = 0 is

E0[z
T0 ] = 1−

√
1− z2.

Its first derivative
z√

1− z2

tends to ∞ as z → 1 from below via real values. Therefore, by Abel’s theorem,

E0[T0] = ∞.

We see that although the return time to 0 is almost surely finite, it has an infinite
expectation.

A theoretical application of the potential matrix criterion is to the proof that
recurrence is a (communication) class property.

Theorem 1.3.3 If i and j communicate, they are either both recurrent or both
transient.

Proof. By definition, i and j communicate if and only if there exist integersM and
N such that pij(M) > 0 and pji(N) > 0. Going from i to j in M steps, then from
j to j in n steps, then from j to i in N steps, is just one way of going from i back
to i in M + n+N steps. Therefore, pii(M + n+N) ≥ pij(M)× pjj(n)× pji(N).
Similarly, pjj(N + n + M) ≥ pji(N) × pii(n) × pij(M). Therefore, with α :=
pij(M) pji(N) (a strictly positive quantity), we have pii(M + N + n) ≥ α pjj(n)
and pjj(M + N + n) ≥ α pii(n). This implies that the series

∑∞
n=0 pii(n) and∑∞

n=0 pjj(n) either both converge or both diverge. The conclusion follows from
the potential matrix criterion. �
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Invariant measure

The notion of invariant measure plays an important technical role in the recurrence
theory of Markov chains. It extends the notion of stationary distribution.

Definition 1.3.2 A non-trivial (that is, non-null) vector x (indexed by E) of non-
negative real numbers (notation: 0 ≤ x <∞) is called an invariant measure of the
stochastic matrix P (indexed by E) if

xT = xTP (1.14)

Theorem 1.3.4 Let P be the transition matrix of an irreducible recurrent hmc
{Xn}n≥0. Let 0 be an arbitrary state and let T0 be the return time to 0. Define for
all i ∈ E

xi = E0

[
T0∑

n=1

1{Xn=i}

]
(1.15)

(For i 6= 0, xi is the expected number of visits to state i before returning to 0).
Then, 0 < x <∞ and x is an invariant measure of P.

Proof. We make three preliminary observations. First, it will be convenient to
rewrite (1.15) as

xi = E0

[
∑

n≥1

1{Xn=i}1{n≤T0}

]
.

Next, when 1 ≤ n ≤ T0, Xn = 0 if and only if n = T0. Therefore,

x0 = 1.

Also,
∑

i∈E

∑
n≥1 1{Xn=i}1{n≤T0} =

∑
n≥1

{∑
i∈E 1{Xn=i}

}
1{n≤T0} =

∑
n≥1 1{n≤T0} =

T0, and therefore ∑

i∈E

xi = E0[T0]. (1.16)

We introduce the quantity

0p0i(n) := E0[1{Xn=i}1{n≤T0}] = P0(X1 6= 0, · · · , Xn−1 6= 0, Xn = i).

This is the probability, starting from state 0, of visiting i at time n before returning
to 0. From the definition of x,

xi =
∑

n≥1

0p0i(n) . (†)
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We first prove (1.14). Observe that

0p0i(1) = p0i

and, using first-step analysis, for all n ≥ 2,

0p0i(n) =
∑

j 6=0

0p0j(n− 1)pji .

Summing up all the above equalities, and taking (†) into account, we obtain

xi = p0i +
∑

j 6=0

xjpji,

that is, (1.14), since x0 = 1.

Next we show that xi > 0 for all i ∈ E. Indeed, iterating (1.14), we find xT =
xTPn, that is, since x0 = 1,

xi =
∑

j∈E

xjpji(n) = p0i(n) +
∑

j 6=0

xjpji(n).

If xi were null for some i ∈ E, i 6= 0, the latter equality would imply that p0i(n) =
0 for all n ≥ 0, which means that 0 and i do not communicate, in contradiction to
the irreducibility assumption.

It remains to show that xi <∞ for all i ∈ E. As before, we find that

1 = x0 =
∑

j∈E

xjpj0(n)

for all n ≥ 1, and therefore if xi = ∞ for some i, necessarily pi0(n) = 0 for all
n ≥ 1, and this also contradicts irreducibility. �

Theorem 1.3.5 The invariant measure of an irreducible recurrent hmc is unique
up to a multiplicative factor.

Proof. In the proof of Theorem 1.3.4, we showed that for an invariant measure y
of an irreducible chain, yi > 0 for all i ∈ E, and therefore, one can define, for all
i, j ∈ E, the matrix Q by

qji =
yi
yj
pij . (⋆)

It is a transition matrix, since
∑

i∈E qji = 1
yj

∑
i∈E yipij =

yj
yj

= 1. The general

term of Qn is

qji(n) =
yi
yj
pij(n) . (⋆⋆)
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Indeed, supposing (⋆⋆) true for n,

qji(n+ 1) =
∑

k∈E

qjkqki(n) =
∑

k∈E

yk
yj
pkj

yi
yk
pik(n)

=
yi
yj

∑

k∈E

pik(n)pkj =
yi
yj
pij(n+ 1),

and (⋆⋆) follows by induction.

Clearly, Q is irreducible, since P is irreducible (just observe that qji(n) > 0 if
and only if pij(n) > 0 in view of (⋆⋆)). Also, pii(n) = qii(n), and therefore∑

n≥0 qii(n) =
∑

n≥0 pii(n), and therefore Q is recurrent by the potential matrix
criterion. Call gji(n) the probability, relative to the chain governed by the tran-
sition matrix Q, of returning to state i for the first time at step n when starting
from j. First-step analysis gives

gi0(n+ 1) =
∑

j 6=0

qijgj0(n) ,

that is, using (⋆),

yigi0(n+ 1) =
∑

j 6=0

(yjgj0(n))pji.

Recall that 0p0i(n+ 1) =
∑

j 6=0 0p0j(n)pji, or, equivalently,

y0 0p0i(n+ 1) =
∑

j 6=0

(y0 0p0j(n))pji.

We therefore see that the sequences {y0 0p0i(n)} and {yigi0(n)} satisfy the same
recurrence equation. Their first terms (n = 1), respectively y0 0p0i(1) = y0p0i and
yigi0(1) = yiqi0, are equal in view of (⋆). Therefore, for all n ≥ 1,

0p0i(n) =
yi
y0
gi0(n).

Summing up with respect to n ≥ 1 and using
∑

n≥1 gi0(n) = 1 (Q is recurrent),
we obtain that xi =

yi
y0
. �

Equality (1.16) and the definition of positive recurrence give the following.

Theorem 1.3.6 An irreducible recurrent hmc is positive recurrent if and only if
its invariant measures x satisfy

∑

i∈E

xi <∞ .
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The stationary distribution criterion

An hmc may well be irreducible and possess an invariant measure, and yet not be
recurrent. The simplest example is the 1-D non-symmetric random walk, which
was shown to be transient and yet admits xi ≡ 1 for invariant measure. It turns
out, however, that the existence of a stationary probability distribution is neces-
sary and sufficient for an irreducible chain (not a priori assumed recurrent) to be
recurrent positive.

Theorem 1.3.7 An irreducible hmc is positive recurrent if and only if there exists
a stationary distribution. Moreover, the stationary distribution π is, when it exists,
unique, and π > 0.

Proof. The direct part follows from Theorems 1.3.4 and 1.3.6. For the converse
part, assume the existence of a stationary distribution π. Iterating πT = πTP, we
obtain πT = πTPn, that is, for all i ∈ E,

π(i) =
∑

j∈E

π(j)pji(n).

If the chain were transient, then, for all states i, j,

lim
n↑∞

pji(n) = 0 .

(In fact, Pj(Xn = i) ≤ Pj(τ ≥ n) where τ is the time of the last visit to i. But
this time is finite, and therefore limn↑∞ Pj(τ ≥ n) = 0).) Since pji(n) is bounded
uniformly in j and n by 1 , by dominated convergence (Theorem ??):

π(i) = lim
n↑∞

∑

j∈E

π(j)pji(n) =
∑

j∈E

π(j)

(
lim
n↑∞

pji(n)

)
= 0.

This contradicts the assumption that π is a stationary distribution (
∑

i∈E π(i) =
1). The chain must therefore be recurrent, and by Theorem 1.3.6, it is positive
recurrent.

The stationary distribution π of an irreducible positive recurrent chain is unique
(use Theorem 1.3.5 and the fact that there is no choice for a multiplicative factor
but 1). Also recall that π(i) > 0 for all i ∈ E (see Theorem 1.3.4). �

Theorem 1.3.8 Let π be the unique stationary distribution of an irreducible pos-
itive recurrent hmc, and let Ti be the return time to state i . Then

π(i)Ei[Ti] = 1. (1.17)
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Proof. This equality is a direct consequence of expression (1.15) for the invariant
measure. Indeed, π is obtained by normalization of x: for all i ∈ E,

π(i) =
xi∑
j∈E xj

,

and in particular, for i = 0, recalling that x0 = 1 and using (1.16),

π(0) =
x0∑
j∈E xj

=
1

E0[T0]
.

Since state 0 does not play a special role in the analysis, (1.17) is true for all i ∈ E.
�

The situation is extremely simple when the state space is finite.

Theorem 1.3.9 An irreducible hmc with finite state space is positive recurrent.

Proof. We first show recurrence. We have

∑

j∈E

pij(n) = 1,

and in particular, the limit of the left hand side is 1. If the chain were transient,
then, as we saw in the proof of Theorem 1.3.7, for all i, j ∈ E,

lim
n↑∞

pij(n) = 0,

and therefore, since the state space is finite

lim
n↑∞

∑

j∈E

pij(n) = 0 ,

a contradiction. Therefore, the chain is recurrent. By Theorem 1.3.4 it has an
invariant measure x. Since E is finite,

∑
i∈E xi < ∞, and therefore the chain is

positive recurrent, by Theorem 1.3.6. �

Example 1.3.7: Birth-and-death, take 1. The state space of such a chain
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is E = {0, 1, . . . , N} and its transition matrix is

P =




r0 p0
q1 r1 p1

q2 r2 p2
. . .

qi ri pi
. . . . . . . . .

qN−1 rN−1 pN−1

pN rN




,

where pi > 0 for all i ∈ E\{N}, qi > 0 for all i ∈ E\{0}, ri ≥ 0 for all i ∈ E, and
pi + qi + ri = 1 for all i ∈ E. The positivity conditions placed on the pi’s and qi’s
guarantee that the chain is irreducible. Since the state space is finite, it is positive
recurrent (Theorem 1.3.9), and it has a unique stationary distribution. Motivated
by the Ehrenfest hmc which is reversible in the stationary state, we make the
educated that the birth and death process considered has the same property. This
will be the case if and only if there exists a probability distribution π on E satisfying
the detailed balance equations, that is, such that for all 1 ≤ i ≤ N ,

π(i− 1)pi−1 = π(i)qi .

Letting w0 = 1 and for all 1 ≤ i ≤ N ,

wi =
i∏

k=1

pk−1

qk

we find that
π(i) =

wi∑N

j=0wj

indeed satisfies the detailed balance equations and is therefore the unique station-
ary distribution of the chain.

Example 1.3.8: Birth-and-death, take 2. This chain has the state space
E = N and its transition matrix is as in the previous example (only, it is unbounded
on the right) but this time with ri = 0 for all i ≥ 0. The same conditions that
guarantee irreducibility are otherwise assumed. The invariant measure equation
xT = xTP takes in this case the form

x0 = x1q1,

xi = xi−1pi−1 + xi+1qi+1, i ≥ 1 .
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The general solution is, for i ≥ 1, xi = x0wi, where wi is as in Example 1.3.7. The
positive recurrence condition

∑
i∈E xi <∞ is

∑

i≥0

wi <∞,

and if it is satisfied, the stationary distribution π is obtained by normalization of
the general solution. This gives for all i ≥ 1,

π(i) =
wi∑N

j=0wj

.

In the special case where pi = p, qi = q = 1− p, the positive recurrence condition

becomes
∑

j≥0

(
p

q

)j
<∞, that is to say p < q, or equivalently, p < 1

2
.

1.4 Foster’s theorem

The stationary distribution criterion of positive recurrence of an irreducible chain
requires solving the balance equation, and this is not always feasible. The need
arises for more efficient conditions guaranteeing positive recurrence since. The
following result (Foster’s theorem) gives a more tractable, and quite powerful suf-
ficient condition.

Theorem 1.4.1 Let the transition matrix P on the countable state space E be
irreducible and suppose that there exists a function h : E → R such that infi h(i) >
−∞ and ∑

k∈E

pikh(k) <∞ for all i ∈ F, (1.18)

∑

k∈E

pikh(k) ≤ h(i)− ǫ for all i 6∈ F, (1.19)

for some finite set F and some ǫ > 0. Then the corresponding hmc is positive
recurrent.

Proof. Since infi h(i) > −∞, one may assume without loss of generality that h ≥ 0, by
adding a constant if necessary. Call τ the return time to F , and define Yn = h(Xn)1{n<τ}.
Equality (1.19) is just E[h(Xn+1) | Xn = i] ≤ h(i)− ǫ for all i 6∈ F . For i 6∈ F ,

Ei[Yn+1 | Xn
0 ] = Ei[Yn+11{n<τ} | Xn

0 ] + Ei(Yn+11{n≥τ} | Xn
0 ]

= Ei[Yn+11{n<τ} | Xn
0 ] ≤ Ei[h(Xn+1)1{n<τ} | Xn

0 ]

= 1{n<τ}Ei[h(Xn+1) | Xn
0 ] = 1{n<τ}Ei[h(Xn+1) | Xn]

≤ 1{n<τ}h(Xn)− ǫ1{n<τ},
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where the third equality comes from the fact that 1{n<τ} is a function of Xn
0 , the fourth

equality is the Markov property, and the last inequality is true because Pi-a.s., Xn 6∈ F
on n < τ . Therefore, Pi-a.s.,

Ei[Yn+1 | Xn
0 ] ≤ Yn − ǫ1{n<τ},

and taking expectations,

Ei[Yn+1] ≤ Ei[Yn]− ǫPi(τ > n).

Iterating the above equality, and observing that Yn is non-negative, we obtain

0 ≤ Ei[Yn+1] ≤ Ei[Y0]− ǫ
n∑

k=0

Pi(τ > k).

But Y0 = h(i), Pi-a.s., and
∑∞

k=0 Pi(τ > k) = Ei[τ ]. Therefore, for all i 6∈ F ,

Ei[τ ] ≤ ǫ−1h(i).

For j ∈ F , first-step analysis yields

Ej [τ ] = 1 +
∑

i 6∈F

pjiEi[τ ].

Thus Ej [τ ] ≤ 1 + ǫ−1
∑

i 6∈F pjih(i), and this quantity is finite in view of assumption
(1.18). Therefore, the return time to F starting anywhere in F has finite expectation.
Since F is a finite set, this implies positive recurrence in view of the following lemma. �

Lemma 1.4.1 Let {Xn}n≥0 be an irreducible hmc, let F be a finite subset of the
state space E, and let τ(F ) be the return time to F . If Ej[τ(F )] <∞ for all j ∈ F ,
the chain is positive recurrent.

Proof. Select i ∈ F , and let Ti be the return time of {Xn} to i. Let τ1 =
τ(F ), τ2, τ3, . . . be the successive return times to F . It follows from the strong
Markov property that {Yn}n≥0 defined by Y0 = X0 = i and Yn = Xτn for n ≥ 1
is an hmc with state space F . Since {Xn} is irreducible, so is {Yn}. Since F is
finite, {Yn} is positive recurrent, and in particular, Ei[T̃i] < ∞, where T̃i is the
return time to i of {Yn}. Defining S0 = τ1 and Sk = τk+1 − τk for k ≥ 1, we have

Ti =
∞∑

k=0

Sk1{k<T̃i}
,

and therefore

Ei[Ti] =
∞∑

k=0

Ei[Sk1{k<T̃i}
].
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Now,

Ei[Sk1{k<T̃i}
] =

∑

ℓ∈F

Ei[Sk1{k<T̃i}
1{Xτk

=ℓ}] ,

and by the strong Markov property applied to {Xn} and the stopping time τk, and
the fact that the event {k < T̃i} belongs to the past of {Xn} at time τk,

Ei[Sk1{k<T̃i}
1{Xτk

=ℓ}] = Ei[Sk | k < T̃i, Xτk = ℓ]Pi(k < T̃i, Xτk = ℓ)

= Ei[Sk | Xτk = ℓ]Pi(k < T̃i, Xτk = ℓ) .

Observing that Ei[Sk | Xτk = ℓ] = Eℓ[τ(F )], we see that the latter expression is
bounded by (maxℓ∈F Eℓ[τ(F )])Pi(k < T̃i, Xτk = ℓ), and therefore

Ei[Ti] ≤
(
max
ℓ∈F

Eℓ(τ(F ))

) ∞∑

k=0

Pi(T̃i > k) =

(
max
ℓ∈F

Eℓ(τ(F ))

)
Ei[T̃i] <∞.

�

The function h in Foster’s theorem is called a Lyapunov function because it plays a
role similar to the Lyapunov functions in the stability theory of ordinary differential
equations. The corollary below is called Pakes’s lemma.

Corollary 1.4.1 Let {Xn}n≥0 be an irreducible hmc on E = N such that for all
n ≥ 0 and all i ∈ E,

E[Xn+1 | Xn = i] <∞ (1.20)

and

lim sup
i↑∞

E[Xn+1 −Xn | Xn = i] < 0. (1.21)

Such an hmc is positive recurrent.

Proof. Let −2ǫ be the left-hand side of (1.21). In particular, ǫ > 0. By (1.21),
for i sufficiently large, say i > i0, E[Xn+1 −Xn | Xn = i] < −ǫ. We are therefore
in the conditions of Foster’s theorem with h(i) = i and F = {i; i ≤ i0}. �

The following is a Foster-type theorem, only with a negative conclusion.
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Theorem 1.4.2 Let the transition matrix P on the countable state space E be
irreducible and suppose that there exists a finite set F and a function h : E → R+

such that
there exists j /∈ F such that h(j) > max

i∈F
h(i) (1.22)

sup
i∈E

∑

k∈E

pik|h(k)− h(i)| <∞, (1.23)

∑

k∈E

pikh(k) ≤ h(i) for all i 6∈ F. (1.24)

Then the chain cannot be positive recurrent.

Proof. Let τ be the return time to F . Observe that

h(Xτ )1{τ<∞} = h(X0) +
∞∑

n=0

(h(Xn+1)− h(Xn)) 1{τ>n}.

Now
∞∑

n=0

Ej

[
|h(Xn+1)− h(Xn)| 1{τ>n}

]

=
∞∑

n=0

Ej

[
Ej [|h(Xn+1)− h(Xn)| |Xn

0 ] 1{τ>n}

]

=
∞∑

n=0

Ej

[
Ej [|h(Xn+1)− h(Xn)| |Xn] 1{τ>n}

]

≤ K
∞∑

n=0

Pi(τ > n)

for some finite positive constant K by (1.22. Therefore, if the chain is positive
recurrent, the latter bouund is KEj [τ ] < ∞. We can therefore apply Fubini’s
theorem to obtain

Ej [h(Xτ )] = Ej

[
h(Xτ )1{τ<∞}

]

= h(j) +
∞∑

n=0

Ej

[
(h(Xn+1)− h(Xn)) 1{τ>n}

]
> h(j),

by (1.24). Choosing j that satisfies (1.22), we have h(j) > maxi∈F h(i) ≥ Ej [h(Xτ )],
hence a contradiction. The chain therefore cannot be positive recurrent �

Example 1.4.1: Instability of the aloha protocol. A typical situation
in a multiple-access satellite communications system is the following. Users—each
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one identified with a message—contend for access to a single-channel satellite com-
munications link for the purpose of transmitting messages. Two or more messages
in the air at the same time jam each other, and are not successfully transmit-
ted. The users are somehow able to detect a collision of this sort and will try to
retransmit later the message involved in a collision. The difficulty in such commu-
nications systems resides mainly in the absence of cooperation among users, who
are all unaware of the intention to transmit of competing users.

The slotted aloha protocol imposes on the users the following rules (see the Figure
below):

(i) Transmissions and retransmissions of messages can start only at equally
spaced moments; the interval between two consecutive (re-)transmission times is
called a slot; the duration of a slot is always larger than that of any message.

(ii) All backloggedmessages, i.e., those messages having already tried unsuccess-
fully (maybe more than once) to get through the link, require retransmission in-
dependently of one another with probability ν ∈ (0, 1) at each slot. This is the
so-called Bernoulli retransmission policy.

(iii) The fresh messages—those presenting themselves for the first time—immediately
attempt to get through.

successful transmission (or retransmission)

fresh message

backlogged message, not authorized to attempt retransmission

backlogged message, authorized to attempt retransmission

The aloha protocol

Let Xn be the number of backlogged messages at the beginning of slot n.
The backlogged messages behave independently, and each one has probability ν of
attempting retransmission in slot n. In particular, if there are Xn = k backlogged
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messages, the probability that i among them attempt to retransmit in slot n is

bi(k) =

(
k

i

)
νi(1− ν)k−i.

Let An be the number of fresh requests for transmission in slot n. The sequence
{An}n≥0 is assumed i.i.d with the distribution

P (An = j) = aj.

The quantity

λ = E[An] =
∞∑

i=1

iai

is the traffic intensity. We suppose that a0 + a1 ∈ (0, 1), so that {Xn}n≥0 is an
irreducible hmc. Its transition matrix is

pij =





b1(i)a0 if j = i− 1,

[1− b1(i)]a0 + b0(i)a1 if j = i,

[1− b0(i)]a1 if j = i+ 1,

aj−i if j ≥ i+ 2.

The proof is by accounting. For instance, the first line corresponds to one among the

i backlogged messages having succeeded to retransmit, and for this there should be

no fresh arrival (probability a0) and only one of the i backlogged messages allowed to

retransmit (probability b1(i)). The second line corresponds to one of the two events

“no fresh arrival and zero or strictly more than two retransmission requests from the

backlog” and “zero retransmission request from the backlog and one fresh arrival.”

We show that the system using the Bernoulli retransmission policy is not stable,
in the sense that the chain {Xn}n≥0 is not positive recurrent. Later on, in the next
subsection, a (theoretical) remedy to this situation will be proposed. To prove
unstability, we must, in view of the stationary distribution criterion, contradict
the existence of a stationary distribution π. An elementary computation yields,
for the aloha model,

E[Xn+1 −Xn | Xn = i] = λ− b1(i)a0 − b0(i)a1. (1.25)

Note that b1(i)a0 + b0(i)a1 is the probability of one successful (re-)transmission in
a slot given that the backlog at the beginning of the slot is i. Equivalently, since
there is at most one successful (re-)transmission in any slot, this is the average



1.4. FOSTER’S THEOREM 47

number of successful (re-)transmissions in a slot given the backlog i at the start
of the slot. An elementary computation shows that limi↑∞(b1(i)a0 + b0(i)a1) = 0.
Therefore, outside a finite set F , the conditions of Theorem 1.4.2 are satisfied when
we take h to be the identity, and remember the hypothesis that e [A1] <∞.

Example 1.4.2: Stabilization of aloha. Since the original aloha protocol
with a fixed retransmission probability ν is unstable, it seems natural to try a
retransmission probability ν = ν(k) depending on the number k of backlogged
messages. We show that there is a choice of the function ν(k) that achieves stability
of the protocol. The probability that i among the k backlogged messages at the
beginning of slot n retransmit in slot n is now ν(k). The same is true for the
transition probabilities.

According to Pakes’s lemma and using (1.25), it suffices to find a function ν(k) guaran-
teeing that

λ ≤ lim
i↑∞

(b1(i)a0 + b0(i)a1)− ǫ, (1.26)

for some ǫ > 0. We shall therefore study the function

gk(ν) = (1− ν)ka1 + kν(1− ν)k−1a0,

since conditition (1.26) is just λ ≤ gi(ν(i))− ǫ. The derivative of gk(ν) is, for k ≥ 2,

g′k(ν) = k(1− ν)k−2[(a0 − a1)− ν(ka0 − a1)].

We first assume that a0 > a1. In this case, for k ≥ 2, the derivative is zero for

ν = ν(k) =
a0 − a1
ka0 − a1

,

and the corresponding value of gk(ν) is a maximum equal to

gk(ν(k)) = a0

(
k − 1

k − a1/a0

)k−1

.

Therefore, limk↑∞ gk(ν(k)) = a0 exp
{

a1
a0

− 1
}
, and we see that

λ < a0 exp

{
a1
a0

− 1

}
(1.27)

is a sufficient condition for stability of the protocol.

For instance, with a Poisson distribution of arrivals

ai = e−λλ
i

i!
,
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condition (1.27) reads
λ < e−1

(in particular, the condition a0 > a1 is satisfied a posteriori).

If a0 ≤ a1, the protocol can be shown to be unstable, whatever retransmission policy

ν(k) is adopted (the reader is invited to check this).

1.5 The Markov chain ergodic theorem

This section gives conditions which guarantee that empirical averages of the type

1

N

N∑

k=1

g(Xk, . . . , Xk+L)

converge to probabilistic averages. As a matter of fact, if the chain is irreducible
positive recurrent with the stationary distribtion π, the above empirical aver-
age converges Pµ-almost-surely to Eπ[g(X0, . . . , XL)] for any initial distribution µ
(Corollary 1.5.1), at least if Eπ[|g(X0, . . . , XL)|] <∞.

We shall obtain this result as a corollary of the following proposition concerning
irreducible recurrent (not necessarily positive recurrent) hmc’s.

Proposition 1.5.1 Let {Xn}n≥0 be an irreducible recurrent hmc, and let x denote
the canonical invariant measure associated with state 0 ∈ E,

xi = E0

[
∑

n≥1

1{Xn=i}1{n≤T0}

]
, (1.28)

where T0 is the return time to 0. Define for n ≥ 1

ν(n) =
n∑

k=1

1{Xk=0}. (1.29)

Let f : E → R be such that ∑

i∈E

|f(i)|xi <∞. (1.30)

Then, for any initial distribution µ, Pµ-a.s.,

lim
N↑∞

1

ν(N)

N∑

k=1

f(Xk) =
∑

i∈E

f(i)xi. (1.31)
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Proof. Let T0 = τ1, τ2, τ3, . . . be the successive return times to state 0, and define

Up =

τp+1∑

n=τp+1

f(Xn).

In view of the regenerative cycle theorem (Theorem ??), {Up}p≥1 is an iid sequence.
Moreover, assuming f ≥ 0 and using the strong Markov property,

E[U1] = E0

[
T0∑

n=1

f(Xn)

]

= E0

[
T0∑

n=1

∑

i∈E

f(i)1{Xn=i}

]
=
∑

i∈E

f(i)E0

[
T0∑

n=1

1{Xn=i}

]

=
∑

i∈E

f(i)xi.

By hypothesis, this quantity is finite, and threfore the strong law of large numbers
applies, to give

lim
n↑∞

1

n

n∑

p=1

Up =
∑

i∈E

f(i)xi,

that is,

lim
n↑∞

1

n

τn+1∑

k=T0+1

f(Xk) =
∑

i∈E

f(i)xi. (1.32)

Observing that

τν(n) ≤ n < τν(n)+1,

we have ∑τν(n)

k=1 f(Xk)

ν(n)
≤
∑n

k=1 f(Xk)

ν(n)
≤
∑τν(n)+1

k=1 f(Xi)

ν(n)
.

Since the chain is recurrent, limn↑∞ ν(n) = ∞, and therefore, from (1.32), the
extreme terms of the above chain of inequality tend to

∑
i∈E f(i)xi as n goes to

∞, and this implies (1.31). The case of a function f of arbitrary sign is obtained
by considering (1.31) written separately for f+ = max(0, f) and f− = max(0,−f),
and then taking the difference of the two equalities obtained this way. The differ-
ence is not an undetermined form ∞−∞ due to hypothesis (1.30). �
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Theorem 1.5.1 Let {Xn}n≥0 be an irreducible positive recurrent Markov chain
with the stationary distribution π, and let f : E → R be such that

∑

i∈E

|f(i)|π(i) <∞. (1.33)

Then for any initial distribution µ, Pµ-a.s.,

lim
n↑∞

1

N

N∑

k=1

f(Xk) =
∑

i∈E

f(i)π(i). (1.34)

Proof. Apply Proposition 1.5.1 to f ≡ 1. Condition (1.30) is satisfied, since in
the positive recurrent case,

∑
i∈E xi = E0[T0] <∞. Therefore, Pµ-a.s.,

lim
N↑∞

N

ν(N)
=
∑

j∈E

xj.

Now, f satisfying (1.33) also satisfies (1.30), since x and π are proportional, and
therefore, Pµ-a.s.,

lim
N↑∞

1

ν(N)

N∑

k=1

f(Xk) =
∑

i∈E

f(i)xi.

Combination of the above equalities gives, Pµ-a.s.,

lim
N→∞

1

N

N∑

k=1

f(Xk) = lim
N→∞

ν(N)

N

1

ν(N)

N∑

k=1

f(Xk) =

∑
i∈E f(i)xi∑

j∈E xj
,

from which (1.34) follows, since π is obtained by normalization of x. �

Corollary 1.5.1 Let {Xn}n≥1 be an irreducible positive recurrent Markov chain
with the stationary distribution π, and let g : EL+1 → R be such that

∑

i0,...,iL

|g(i0, . . . , iL)|π(i0)pi0i1 · · · piL−1iL <∞ .

Then for all initial distributions µ, Pµ-a.s.

lim
1

N

N∑

k=1

g(Xk, Xk+1, . . . , Xk+L) =
∑

i0,i1,...,iL

g(i0, i1, . . . , iL)π(i0)pi0i1 · · · piL−1iL .
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Proof. Apply Theorem 1.5.1 to the snake chain {(Xn, Xn+1, . . . , Xn+L)}n≥0, which
is irreducible recurrent and admits the stationary distribution

π(i0)pi0i1 · · · piL−1iL .

�

Note that

∑

i0,i1,...,iL

g(i0, i1, . . . , iL)π(i0)pi0i1 · · · piL−1iL = Eπ[g(X0, . . . , XL)]

Example 1.5.1: Fixed-age retirement policy. Consider the forward re-
currence time hmc defined as follows. Let {Un}n≥1 be a sequence of iid random
variables taking their values in N+ = {1, 2, . . . , } . The random variable Un is
interpreted as the lifetime of some machine, the nth one, which is replaced by the
(n + 1)st one upon failure. Thus at time 0, machine 1 is put in service until it
breaks down at time U1, whereupon it is immediately replaced by machine 2, which
breaks down at time U1 + U2, and so on. The time to next failure of the current
machine at time n is denoted by Xn. More precisely, the process {Xn}n≥0 takes its

values in E = N, equals 0 at time Rk =
∑k

i=1 Ui, equals Uk+1 − 1 at time Rk + 1,
and then decreases of one unit per unit of ime until it reaches the value 0 at time
Rk+1. It is assumed that for all k ∈ N+, P (U1 > k) > 0, so that the state space E
is N. Then {Xn}n≥0 is an irreducible hmc. We assume positive recurrence, that
is E[U ] < ∞, where U = U1. In which case he stationary distribution is given by
the formula

π(i) =
P (U > i)

E[U ]
. (1.35)

A visit of the chain to state 0 corresponds to a breakdown of a machine, and
therefore, in view of the ergodic theorem,

π(0) = lim
N↑∞

1

N

N∑

k=1

1{Xk=0}

is the empirical frequency of breakdowns. Recall that

π(0) = E0[T0]
−1,

where T0 is the return time to 0. Here,

E0[T0] = E[U ],
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and therefore

lim
N↑∞

1

N

N∑

k=1

1{Xk=0} =
1

E[U ]
. (1.36)

Suppose that the cost of a breakdown is so important that it is better to replace
a working machine during its lifetime (breakdown implies costly repairs, whereas
replacement only implies moderate maintenance costs). The fixed-age retirement
policy fixes an integer T ≥ 1 and requires that a machine having reached age T be
immediately replaced. We are interested in computing the empirical frequency of
breakdowns (not replacements).

The forward recurrence chain corresponding to this situation is the same as before,
except that the times Un are replaced by Vn = Un ∧ T . Also, a replacement (not
breakdown) occurs at time n if and only if Xn = 0 and Xn−1 = T − 1. But
Xn−1 = T − 1 implies Xn = 0, and therefore a replacement occurs at time n if and
only if

Xn−1 = T − 1.

The empirical frequency of replacements is, therefore, in view of the ergodic theo-
rem,

lim
N↑∞

1

N

N∑

k=1

1{Xk=T−1} = π(T − 1).

Formula (1.35) applied to the new situation gives

π(T − 1) =
P (V ≥ T )

E[V ]
,

and therefore, since V = U ∧ T ,

π(T − 1) =
P (U ≥ T )

E[U ∧ T ] .

The empirical frequency of visits to state 0 is, by (1.36),

1

E[U ∧ T ] .

The empirical frequency of breakdowns is therefore

1

E[U ∧ T ] −
P (U ≥ T )

E[U ∧ T ] =
P (U < T )

E[U ∧ T ] .
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1.6 Coupling of Markov chains

Variation distance

In rather general terms, the coupling of two given probability distributions of
random elements (random variables or stochastic processes) consists in the con-
struction on the same probability space of a pair of random elements with the
given distributions as marginal distributions, and correlated in an ad hoc manner
so as to obtain bounds on their variation distance, a notion that is now introduced

Definition 1.6.1 Let E be a countable space. The distance in variation between
two probability distributions α and β on E is the quantity

dV (α, β) :=
1

2

∑

i∈E

|α(i)− β(i)|. (1.37)

That dV is indeed a distance is clear.

Lemma 1.6.1 Let α and β be two probability distributions on the same countable
space E. Then

dV (α, β) = sup
A⊆E

{|α(A)− β(A)|}

= sup
A⊆E

{α(A)− β(A)} .

Proof. For the second equality observe that for each subset A there is a subset B
such that |α(A)− β(A)| = α(B)− β(B) (take B = A or Ā). For the first equality,
write

α(A)− β(A) =
∑

i∈E

1A(i){α(i)− β(i)}

and observe that the right-hand side is maximal for

A = {i ∈ E; α(i) > β(i)}

Therefore, with g(i) = α(i)− β(i),

sup
A⊆E

{α(A)− β(A)} =
∑

i∈E

g+(i) =
1

2

∑

i∈E

|g(i)|

since
∑

i∈E g(i) = 0. �
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The distance in variation between two random variables X and Y with values in
E is the distance in variation between their probability distributions, and it is
denoted (with a slight abuse of notation) by dV (X, Y ). Therefore

dV (X, Y ) :=
1

2

∑

i∈E

|P (X = i)− P (Y = i)| .

The distance in variation between a random variable X with values in E and a
probability distribution α on E denoted (again with a slight abuse of notation) by
dV (X,α) is defined by

dV (X,α) :=
1

2

∑

i∈E

|P (X = i)− α(i)| .

The coupling of two discrete probability distributions, π′ on E ′ and π′′ on E ′′, is
the construction of a probability distribution π on E := E ′ × E ′′ such that the
marginal distributions of π on E ′ and E ′′ respectively are π′ and π′′, that is

∑

j∈E′′

π(i, j) = π′(i) and
∑

i∈E′

π(i, j) = π′′(j) .

For two probability distributions α and β on the countable set E, let D(α, β) be
the collection of random vectors (X, Y ) taking their values in E × E, and with
marginal distributions α and β, that is,

P (X = i) = α(i), P (Y = i) = β(i) . (1.38)

Theorem 1.6.1 For any pair (X, Y ) ∈ D(α, β), we have the fundamental cou-
pling inequality

dV (α, β) ≤ P (X 6= Y ), (1.39)

and equality is attained by some pair (X, Y ) ∈ D(α, β), which is then said to
realize maximal coincidence.

Proof. For arbitrary A ⊂ E,

P (X 6= Y ) ≥ P (X ∈ A, Y ∈ Ā) = P (X ∈ A)−P (X ∈ A, Y ∈ A) ≥ P (X ∈ A)−P (Y ∈ A),

and therefore

P (X 6= Y ) ≥ sup
A⊂E

{P (X ∈ A)− P (Y ∈ A)} = dV (α, β).
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We now construct (X, Y ) ∈ D(α, β) realizing equality. Let U,Z, V , and W be
independent random variables; U takes its values in {0, 1}, and Z, V,W take their
values in E. The distributions of these random variables is given by

P (U = 1) = 1− dV (α, β),

P (Z = i) = α(i) ∧ β(i)/ (1− dV (α, β)) ,

P (V = i) = (α(i)− β(i))+/dV (α, β),

P (W = i) = (β(i)− α(i))+/dV (α, β).

Observe that P (V = W ) = 0. Defining

(X, Y ) = (Z,Z) if U = 1

= (V,W ) if U = 0 ,

we have

P (X = i) = P (U = 1, Z = i) + P (U = 0, V = i)

= P (U = 1)P (Z = i) + P (U = 0)P (V = i)

= α(i) ∧ β(i) + (α(i)− β(i))+ = α(i),

and similarly, P (Y = i) = β(i). Therefore, (X, Y ) ∈ D(α, β). Also, P (X = Y ) =
P (U = 1) = 1− dV (α, β). �

The coupling inequality

Definition 1.6.2 (A) A sequence {αn}n≥0 of probability distributions on E is said
to converge in variation to the probability distribution β on E if

lim
n↑∞

dV (αn, β) = 0 .

(B) An E-valued random sequence {Xn}n≥0 such that for some probability dis-
tribution π on E,

lim
n↑∞

dV (Xn, π) = 0, (1.40)

is said to converge in variation to π.

Observe that Definition 1.6.2 concerns only the marginal distributions of the
random sequence (or stochastic process in the following context), not the stochastic
process itself. Therefore, if there exists another stochastic process {X ′

n}n≥0 with
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Xn
D∼ X ′

n for all n ≥ 0, and if there exists a third one {X ′′
n}n≥0 such that X ′′

n

D∼ π
for all n ≥ 0, then (1.40) follows from

lim
n↑∞

dV (X
′
n, X

′′
n) = 0. (1.41)

This trivial observation is useful because of the resulting freedom in the choice of
{X ′

n} and {X ′′
n}. An interesting situation occurs when there exists a finite random

time τ such that X ′
n = X ′′

n for all n ≥ τ .

Definition 1.6.3 Two stochastic processes {X ′
n}n≥0 and {X ′′

n}n≥0 taking their val-
ues in the same state space E are said to couple if there exists an almost surely
finite random time τ such that

n ≥ τ ⇒ X ′
n = X ′′

n. (1.42)

The random variable τ is called a coupling time of the two processes.

Theorem 1.6.2 For any coupling time τ of {X ′
n}n≥0 and {X ′′

n}n≥0, we have the
coupling inequality

dV (X
′
n, X

′′
n) ≤ P (τ > n) . (1.43)

Proof. For all A ⊆ E,

P (X ′
n ∈ A)− P (X ′′

n ∈ A) = P (X ′
n ∈ A, τ ≤ n) + P (X ′

n ∈ A, τ > n)

− P (X ′′
n ∈ A, τ ≤ n)− P (X ′′

n ∈ A, τ > n)

= P (X ′
n ∈ A, τ > n)− P (X ′′

n ∈ A, τ > n)

≤ P (X ′
n ∈ A, τ > n)

≤ P (τ > n).

Inequality (1.43) then follows from Lemma 1.6.1. �

Therefore, if the coupling time is P-a.s. finite, that is limn↑∞ P (τ > n) = 0,

lim
n↑∞

dV (Xn, π) = lim
n↑∞

dV (X
′
n, X

′′
n) = 0 .

This situation will be exploited in the context of homogeneous Markov chains.

Convergence in variation of ergodic hmc’s

Consider an hmc that is irreducible and positive recurrent. In particular, if its
initial distribution is the stationary distribution, it keeps the same distribution at
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all times. The chain is then said to be in the stationary regime, or in equilibrium,
or in steady state.

A question arises naturally: What is the long-run behavior of the chain when the
initial distribution µ is arbitrary? For instance, will it converge to equilibrium?
The classical form of the result is that for arbitrary states i and j,

lim
n↑∞

pij(n) = π(j), (1.44)

if the chain is ergodic, according to the following definition:

Definition 1.6.4 An irreducible positive recurrent and aperiodic hmc is called
ergodic.

We shall prove a much more powerful result.

Theorem 1.6.3 Let P be an ergodic transition matrix on the countable state space
E with stationary distribution π, and let µ be an arbitrary initial distribution. Then

lim
n↑∞

∑

i∈E

|Pµ(Xn = i)− π(i)| = 0,

and in particular,

lim
n↑∞

∑

i∈E

|pji(n)− π(i)| = 0.

Proof.

We prove that, for all probability distributions µ and ν on E,

lim
n↑∞

dV (µ
TPn, νTPn) = 0.

The announced results correspond to the particular case where ν is the stationary
distribution π, and particularizing further, µ = δj. From the discussion preceding
Definition 1.6.3, it suffices to construct two coupling chains with initial distribu-
tions µ and ν, respectively. This is done in the next theorem. �
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Theorem 1.6.4 Let {X(1)
n }n≥0 and {X(2)

n }n≥0 be two independent ergodic hmcs
with the same transition matrix P and initial distributions µ and ν, respectively.
Let τ = inf{n ≥ 0; X

(1)
n = X

(2)
n }, with τ = ∞ if the chains never intersect. Then

τ is, in fact, almost surely finite. Moreover, the process {X ′
n}n≥0 defined by

X ′
n =

{
X

(1)
n if n ≤ τ,

X
(2)
n if n ≥ τ

(1.45)

is an hmc with transition matrix P (see the figure below).

Proof. STEP 1. Consider the product hmc {Zn}n≥0 defined by Zn = (X
(1)
n , X

(2)
n ).

It takes values in E ×E, and the probability of transition from (i, k) to (j, ℓ) in n
steps is pij(n)pkℓ(n).

We first show that this chain is irreducible. The probability of transition from
(i, k) to (j, ℓ) in n steps is pij(n)pkℓ(n). Since P is irreducible and aperiodic, by
Theorem 1.2.5, there exists m such that for all pairs (i, j) and (k, ℓ), n ≥ m implies
pij(n)pkℓ(n) > 0. This implies irreducibility. Note the essential role of aperiodicity.
A simple counterexample is that of the the symmetric random walk on Z, which
is irreducible but of period 2. The product of two indepencent such hmc’s is the
symmetric random walk on Z2 which has two communications classes.

STEP 2. Next we show that the two independent chains meet in finite time.
Clearly, the distribution σ̃ defined by σ̃(i, j) := π(i)π(j) is a stationary distribution
for the product chain, where π is the stationary distribution of P. Therefore, by
the stationary distribution criterion, the product chain is positive recurrent. In
particular, it reaches the diagonal of E2 in finite time, and consequently, P (τ <
∞) = 1.

It remains to show that {X ′
n}n≥0 given by (1.45) is an hmc with transition matrix

P. For this we use the following lemma.

Lemma 1.6.2 Let X1
0 , X

2
0 , Z

1
n, Z

2
n (n ≥ 1), be independent random variables, and

suppose moreover that Z1
n, Z

2
n (n ≥ 1) are identically distributed. Let τ be a non-

negative integer-valued random variable such that for allm ∈ N, the event {τ = m}
is expressible in terms of X1

0 , X
2
0 , Z

1
n, Z

2
n (n ≤ m), that is, more formally {τ =

m} ∈ σ(X1
0 , X

2
0 , Z

1
n, Z

2
n (n ≤ m)). Define the sequence {Zn}n≥1 by

Zn = Z1
n if n ≤ τ

= Z2
n if n > τ

Then, {Zn}n≥1 has the same distribution as {Z1
n}n≥1 and is independent of X1

0 , X
2
0 .
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Proof.

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z1 ∈ A1, . . . , Zk ∈ Ak)

=
k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z1 ∈ A1, . . . , Zk ∈ Ak, τ = m)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z1 ∈ A1, . . . , Zk ∈ Ak, τ > k)

=
k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1, . . . , Z

1
m ∈ Am, τ = m,Z2

m+1 ∈ Am+1, . . . , Z
2
k ∈ Ak)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1, . . . , Z

1
k ∈ Ak, τ > k) .

Since {τ = m} is independent of Z2
m+1 ∈ Am+1, . . . , Z

2
k ∈ Ak (k ≥ m),

=
k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1, . . . , Z

1
m ∈ Am, τ = m)P (Z2

m+1 ∈ Am+1, . . . , Z
2
k ∈ Ak)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1)

=
k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1, . . . , Z

1
m ∈ Am, τ = m)P (Z1

m+1 ∈ Am+1, . . . , Z
1
k ∈ Ak)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1)

=
k∑

m=0

P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1, . . . , Z

1
m ∈ Am, τ = m), Z1

m+1 ∈ Am+1, . . . , Z
1
k ∈ Ak)

+ P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1, . . . , Z

1
k ∈ Ak, τ > k)

= P (X1
0 ∈ C1, X

2
0 ∈ C2, Z

1
1 ∈ A1, . . . , Z

1
k ∈ Ak) .

�

STEP 3. We now finish the proof. The statement of the theorem concerns
only the distributions of {X1

n}n≥0 and {X2
n}n≥0, and therefore we can assume a

representation
Xℓ

n+1 = f(Xℓ
n, Z

ℓ
n+1) (ℓ = 1, 2) ,

where X1
0 , X

2
0 , Z

1
n, Z

2
n (n ≥ 1) satisfy the conditions stated in Lemma 1.6.2. We

verify that τ satisfies the condition of Lemma 1.6.2. Defining {Zn}n≥1 in the same
manner as in this lemma, we have

Xn+1 = f(Xn, Zn+1) ,

which proves the announced result. �
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Example 1.6.1: Consider the random walk {Xn}n≥0 on a group G (defined
by (1.12) and the lines following this equation) with increment measure µ and
transition matrix P. Let {X̂n}n≥0 be another random walk on G, this time cor-
responding to the increment measure µ̂ that is the symmetric of µ, that is, for all
g ∈ G, µ̂(g) = µ(g−1). Let P̂ be the corresponding transition matrix. Then, for all
n ≥ 1, denoting by π the common stationary distribution of the above two chains
(equal the uniform distribution on G), we have that

dV (δ
T
e P

n, π) = dV (δ
T
e P̂

n, π)

Proof. The sequences of increments g1, g2, . . . , gk for the first chain and g−1
k , g−1

k−1, . . . , g
−1
1

for the second chain are equally likely, and therefore for all a = ak ∗ ak−1 ∗ · · · ∗ a1,
δTe P

n(a) = δTe P̂
n(a−1), so that

∑

a∈G

|δTe Pn(a)− 1

|G| | =
∑

a∈G

|δTe P̂n(a−1)− 1

|G| | =
∑

b∈G

|δTe P̂n(b)− 1

|G| | .

�

1.7 Monte Carlo

The problem that we adress now is to generate a discrete random variable with
prescribed probability. For this, one is allowed to use a random generator that
produces at will independent random variables, uniformly distributed on [0, 1]. In
practice, the numbers that such random generators produce are not quite random,
but they look as if they were (they are called pseudo-random generators). The
topic of how to devise a good pseudo-random generator is out of our scope, and
we shall admit that we can trust our favorite computer for providing us with an
iid sequence of random variables uniformly distributed on [0, 1] (from now on we
call them random numbers).

In order to generate a discrete random variable Z with distribution P (Z = ai) =
pi (0 ≤ i ≤ K) we can apply the sampling method of the inverse. A crude
algorithm based on this method would perform successively the tests U ≤ p0?,
U ≤ p0 + p1?, . . ., until the answer is positive. If it is positive at the i-th stage
(i ≥ 0) set Z = ai. The average number of iterations required would therefore be∑

i≥0(i + 1)pi = 1 + E [Z]. This number may be too large, but there are ways of
improving it, as the Example below will show for the Poisson random variable.
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Although very simple in principle, the inverse method has the following draw-
backs when the size r of the state space E is large.

(a) Problems arise that are due to the small size of the intervals partitioning
[0, 1] and to the cost of precision in computing.

(b) In random field simulation, another, maybe more important, reason is the
necessity to enumerate the configurations, which implies coding and decoding of a
mapping from the integers to the usually very large configuration space.

(c) Another situation is that in which the probability density π is known only
up to a normalizing factor, that is, π(i) = Kπ̃(i), and when, of course, the sum∑

i∈E π(i) = K−1 that gives the normalizing factor is difficult, or impossible, to
compute. In physics, this is a frequent case.

Monte Carlo

The quest for a random generator without these ailments is at the origin of the
Monte Carlo Markov chain (mcmc) sampling methodology. The basic principle is
the following.

One constructs an irreducible aperiodic hmc {Xn}n≥0 with state space E and
stationary distribution π. Since the state space is finite, the chain is ergodic, and
therefore, by Theorem 1.6.3, for any initial distribution µ and all i ∈ E,

lim
n→∞

Pµ(Xn = i) = π(i) (1.46)

Therefore, when n is “large,” we can consider that Xn has a distribution close to
π.

The first task is that of designing the mcmc algorithm. One must find an ergodic
transition matrix P on E, the stationary distribution of which π.

In the Monte Carlo context, the transition mechanism of the chain is called a sam-
pling algorithm, and the asymptotic distribution π is called the target distribution,
or sampled distribution.

There are infinitely many transition matrices with a given target distribution,
and among them there are infinitely many that correspond to a reversible chain,
that is, such that

π(i)pij = π(j)pji. (1.47)

We seek solutions of the form
pij = qijαij (1.48)

for j 6= i, where Q = {qij}i,j∈E is an arbitrary irreducible transition matrix on
E, called the candidate-generator matrix: When the present state is i, the next
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tentative state j is chosen with probability qij. When j 6= i, this new state is
accepted with probability αij . Otherwise, the next state is the same state i. Hence,
the resulting probability of moving from i to j when i 6= j is given by (1.48). It
remains to select the acceptance probabilities αij.

Example 1.7.1: The Metropolis algorithm. In the Metropolis algorithm

αij = min

(
1,
π(j)qji
π(i)qij

)
. (1.49)

In Physics, it often arises, and we shall understand why later, that the distribution
π is of the form 1.50.

π(i) =
e−U(i)

Z
, (1.50)

where U : E → R is the “energy function” and Z is the “partition function”,
the normalizing constant ensuring that π is indeed a probability vector. The
acceptance probability of the transition from i to j is then, assuming the candidate-
generating matrix to be symmetric,

αij = min
(
1, e−(U(j)−U(i))

)
.

Example 1.7.2: The modified random walk. Consider the usual random
walk on a graph. Its stationary distribution is in general non-uniform. We are
going to modify it so as to obtain a hmc with uniform stationary distribution.
This can be done by accepting a transition from vertex i to vertex j of the original
random walk with probability αij =

d(i)
d(j)

∧ 1. In this case the resulting probability
transition from i to j, i 6= j, is

pij =
1

d(i)

(
αij =

d(i)

d(j)
∧ 1

)

equal to 1
d(i)

if d(i) > d(j), equal to 1
d(j)

if d(i) < d(j). In particular, say with

d(i) > d(j), pij = pji =
1

d(i)
and therefore, in all cases, pij = pji, and therefore the

detailed balance equations are satisfied by the uniform distribution.

Example 1.7.3: The Barker algorithm. The Barker algorithm, corresponds
to the choice

αij =
π(j)qji

π(j)qji + π(i)qij
. (1.51)
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When the distribution π is of the form 1.50, the acceptance probability of the tran-
sition from i to j is, assuming the candidate-generating matrix to be symmetric,

αij =
e−U(i)

e−U(i) + e−U(j)
.

This corresponds to the basic principle of statistical thermodynamics: when two
states 1 and 2 with energies E1 and E2, choose 1 with probability e−E1

e−E1+e−E2
.

What makes the Metropolis algorithm and the Barker algorithms, so interesting is
the fact that their implementation requires the knowledge of the target distribution
π only up to a normalizing constant, since it depends only on the ratios π(j)/π(i)
(This in particular avoids the need to compute the normalizing constant Z in 1.50,
which is too often inaccessible to exact computation). The latter statement is true
only as long as the candidate-generating matrix Q is known. This is not the case
in the following trivial example.

Example 1.7.4: The Gibbs algorithm. Consider a multivariate probability
distribution

π(x(1), . . . , x(N))

on a set E = ΛN , where Λ is countable. The basic step of the Gibbs sampler for the
multivariate distribution π consists in selecting a coordinate number i ∈ [1, N ], at
random, and choosing the new value y(i) of the corresponding coordinate, given
the present values x(1), . . . , x(i − 1), x(i + 1), . . . , x(N) of the other coordinates,
with probability

π(y(i) | x(1), . . . , x(i− 1), x(i+ 1), . . . , x(N)).

One checks as above that π is the stationary distribution of the corresponding
chain.

The Propp–Wilson algorithm

We now raise our ambitions and construct an exact sample of a given π on a finite
state space E, that is a random variable Z such that P (Z = i) = π(i) for all i ∈ E.
The folowing algorithm is based on a coupling idea. One starts as usual from an
ergodic transition matrix P with stationary distribution π, just as in the classical
mcmc method.

We shall use a representation of P in terms of a recurrence equation, that is, for
given a function f and an iid sequence {Zn}n≥1 independent of the initial state,
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the chain satisfies the recurrence

Xn+1 = f(Xn, Zn+1) . (1.52)

The Propp-Wilson algorithm constructs a family of hmc with this transition ma-
trix with the help of a unique iid sequence of random vectors {Yn}n∈Z, called the
updating sequence, where Yn = (Zn+1(1), · · · , Zn+1(r)) is a r-dimensional random
vector, and where the coordinates Zn+1(i) have a common distribution, that of Z1.
For each N ∈ Z and each k ∈ E, a process {XN

n (k)}n≥N is defined recursively by:

XN
N (k) = k,

and, for n ≥ N ,
XN

n+1(k) = f(XN
n (k), Zn+1(X

N
n (k)).

(Thus, if the chain is in state i at time n, it will be at time n + 1 in state j =
f(i, Zn+1(i).) Each of these processes is therefore a hmc with the transition matrix
P. Note that for all k, ℓ ∈ E, and all M,N ∈ Z, the hmc’s {XN

n (k)}n≥N and
{XM

n (ℓ)}n≥M use at any time n ≥ max(M,N) the same updating random vector
Yn+1.

If, in addition to the independence of {Yn}n∈Z, the components Zn+1(1), Zn+1(2),
. . ., Zn+1(r) are, for each n ∈ Z, independent, we say that the updating is compo-
nentwise independent.

Definition 1.7.1 The random time

τ+ = inf{n ≥ 0;X0
n(1) = X0

n(2) = · · · = X0
n(r)}

is called the forward coupling time (Fig. 3.1). The random time

τ− = inf{n ≥ 1;X−n
0 (1) = X−n

0 (2) = · · · = X−n
0 (r)}

is called the backward coupling time (Fig. 3.1).

Thus, τ+ is the first time at which the chains {X0
n(i)}n≥0, 1 ≤ i ≤ r, coalesce.

Lemma 1.7.1 When the updating is componentwise independent, the forward cou-
pling time τ+ is almost surely finite.

Proof. Consider the (immediate) extension of Theorem 1.6.4 to the case of r
independent hmc’s with the same transition matrix. It cannot be applied directly
to our situation, because the chains are not independent. However, the probability
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00

1
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4
5

E
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τ− = 7 τ+ = 4

Figure 1. Backward and forward coupling

of coalescence in our situation is bounded below by the probability of coalescence
in the completely independent case. To see this, first construct the independent
chains model, using r independent iid componentwise independent updating se-
quences. The difference with our model is that we use too many updatings. In
order to construct from this a set of r chains as in our model, it suffices to use for
two chains the same updatings as soon as they meet. Clearly, the forward cou-
pling time of the so modified model is smaller than or equal to that of the initial
completely independent model. �

For easier notation, we set τ− = τ . Let

Z = X−τ
0 (i).

(This random variable is independent of i. In Figure 1, Z = 2.) Then,

Theorem 1.7.1 With a componentwise independent updating sequence, the back-
wardward coupling time τ is almost surely finite. Also, the random variable Z has
the distribution π.

Proof. We shall show at the end of the current proof that for all k ∈ N, P (τ ≤
k) = P (τ+ ≤ k), and therefore the finiteness of τ follows from that of τ+ proven
in the last lemma. Now, since for n ≥ τ , X−n

0 (i) = Z,

P (Z = j) = P (Z = j, τ > n) + P (Z = j, τ ≤ n)

= P (Z = j, τ > n) + P (X−n
0 (i) = j, τ ≤ n)

= P (Z = j, τ > n)− P (X−n
0 (i) = j, τ > n) + P (X−n

0 (i) = j)

= P (Z = j, τ > n)− P (X−n
0 (i) = j, τ > n) + pij(n)

= An −Bn + pij(n)

But An and Bn are bounded above by P (τ > n), a quantity that tends to 0 as
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n ↑ ∞ since τ is almost-surely finite. Therefore

P (Z = j) = lim
n↑∞

pij(n) = π(j).

It remains to prove the equality of the distributions of the forwards and backwards
coupling time. For this, select an arbitrary integer k ∈ N. Consider an updating
sequence constructed from a bona fide updating sequence {Yn}n∈Z, by replacing
Y−k+1, Y−k+2, . . . , Y0 by Y1, Y2, . . . , Yk. Call τ

′ the backwards coupling time in the
modified model. Clearly τ an τ ′ have the same distribution.

00

1
2
3
4
5

E

−1−2−3−4−5−6−7 +1 +2 +3 +4 +5 +6 +7
Y0 Y0Y1 Y1Y2 Y2Y3 Y3Y4 Y4Y5 Y5Y6 Y6 Y7Y7

Figure 2. τ+ ≤ k implies τ ′ ≤ k

Suppose that τ+ ≤ k. Consider in the modified model the chains starting at
time −k from states 1, . . . , r. They coalesce at time −k+ τ+ ≤ 0 (see Fig. 2), and
consequently τ ′ ≤ k. Therefore τ+ ≤ k implies τ ′ ≤ k, so that

P (τ+ ≤ k) ≤ P (τ ′ ≤ k) = P (τ ≤ k).

00

1
2
3
4
5

E

−1−2−3−4−5−6−7 +1 +2 +3 +4 +5 +6 +7
Y0 Y0Y1 Y1Y2 Y2Y3 Y3Y4 Y4Y5 Y5Y6 Y6 Y7Y7

Figure 3. τ ′ ≤ k implies τ+ ≤ k

Now, suppose that τ ′ ≤ k. Then, in the modified model, the chains starting
at time k − τ ′ from states 1, . . . , r must at time −k + τ+ ≤ 0 coalesce at time k.
Therefore (see Fig. 3), τ+ ≤ k. Therefore τ ′ ≤ k implies τ+ ≤ k, so that

P (τ ≤ k) = P (τ ′ ≤ k) ≤ P (τ+ ≤ k).
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�

Note that the coalesced value at the forward coupling time is not in general a
sample of π. (Exercise: try a counterexample with a two-state hmc.)

The above exact sampling algorithm is often prohibitively time-consuming when
the state space is large. However, if the algorithm required the coalescence of
two, instead of r processes, then it would take less time. The Propp and Wilson
algorithm does this in a special, yet not rare, case.

It is now assumed that there exists a partial order relation on E, denoted by �,
with a minimal and a maximal element (say, respectively, 1 and r), and that we
can perform the updating in such a way that for all i, j ∈ E, all N ∈ Z, all n ≥ N ,

i � j ⇒ XN
n (i) � XN

n (j).

However we do not require componentwise independent updating (but the updat-
ing vectors sequence remains iid). The corresponding sampling procedure is called
the monotone Propp–Wilson algorithm.

Define the backwards monotone coupling time

τm = inf{n ≥ 1;X−n
0 (1) = X−n

0 (r)} .

0

1
2
3
4
5

E

−1−2−3−4−5−6
-n

τ = 6

Figure 4. Monotone Propp–Wilson algorithm

Theorem 1.7.2 The monotone backwards coupling time τm is almost surely finite.
Also, the random variables X−τm

0 (1) = X−τm
0 (r) has the distribution π.

Proof. We can use most of the proof of Theorem 1.7.1. We need only to prove
independently that τ+ is finite. It is so because τ+ is dominated by the first time
n ≥ 0 such that X0

n(r) = 1, and the latter is finite in view of the recurrence
assumption. �
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Monotone coupling will occur with representations of the form (1.52) such that for
all z,

i � j ⇒ f(i, z) � f(j, z),

and if for all n ∈ Z, all i ∈ {1, . . . , r},

Zn+1(i) = Zn+1.

Example 1.7.5: A dam model. We consider the following model of a dam
reservoir. The corresponding hmc, with values in E = {0, 2, . . . , r} satisfies the
recurrence equation

Xn+1 = min(r,max(0, Xn + Zn+1),

where, as usual, {Zn}n≥1 is iid. In this specific model, Xn is the content at time
n of a dam reservoir with maximum capacity r, and Zn+1 = An+1 − c, where An+1

is the input into the reservoir during the time period from n to n+1, and c is the
maximum release during the same period. The updating rule is then monotone.



Chapter 2

Related topics

2.1 Random walks and spanning trees

Consider a finite non-oriented graph and call E the set of vertices, or nodes, of this
graph. Let di be the index of vertex i (the number of edges “adjacent” to node
i). Transform this graph into an oriented graph by splitting each edge into two
oriented edges of opposite directions, and make it a transition graph by associating
to the oriented edge from i to j the transition probability 1

di
(see the figure below).

It will be assumed, as is the case in the figure, that di > 0 for all states i (That is,
the graph is connected).

1

2

3

4

1

2

3

4

1

1
3

1
3

1
2

1
2

1
2

1
2

1
3

A random walk on a graph

We attempt to find a stationary distribution via Theorem 1.2.9. Let i and j be
connected in the graph, and therefore pij =

1
di

and pji =
1
dj
, so that the detailed

69
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balance equation between these two states is

π(i)
1

di
= π(j)

1

dj
.

This gives

π(i) = K
1

di
,

where K is obtained by normalization: K =
(∑

j∈E dj

)−1

.

Example 2.1.1: Random walk on the hypercube, take 1. The random
walk on the (n-dimensional) hypercube is the random walk on the graph with
set of vertices E = {0, 1}n and edges between vertices x and y that differ in
just one coordivate. For instance, in two dimensions, the only possible motions
of a particle performing the random walk on the cube is along its edges in both
directions. Clearly, whatever be the dimension n ≥ 2, di =

1
n
and the stationary

distribution is the uniform distribution.

Example 2.1.2: Cover time of the random walk. The cover time of a
hmc is the number of steps it takes to visit all the states. We derive a bound on
the maximum (with respect to the initial state) average cover time of the random
walk on a graph. For this we shall first observe that the average return time to a
given state i ∈ E is Ei [Ti] =

1
π(i)

= di
|E|

, where di is the index of i. By first-step

analysis, denoting by Ni the set of states (vertices) adjacent to i,

|E|
di

= Ei [Ti] =
1

di

∑

j∈Ni

(1 + Ej [Ti])

and therefore

|E| =
∑

j∈Ni

(1 + Ej [Ti]) ,

from which we obtain the rough bound

Ej [Ti] ≤ |E|

for any pair (i, j) of states. Let now i0 be an arbitrary state and consider the
spanning circuit obtained by a depth-first census of the vertices of the graph (see
the figure below), say i0, i1, i2|E|−2 = i0.
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i1

i2

i5
i7

i8

i11

i0 = i12 = i2|E|−2

|E| = 7

Clearly, the average cover time from i0 is lesser than or equal to

2|E|−3∑

ℓ=0

Eiℓ

[
Tiℓ+1

]
< (2|E| − 2)× |E| < 2|E|2 .

Let {Xn}n∈Z be an irreducible stationary hmc with the finite state space E, tran-
sition matrix P and stationary distribution π. Let G = (E,A) be the associated
directed graph, where A is the set of directed edges (arrows), that is of ordered
pairs of states (i, j) such that pij > 0. The weight of an edge (i, j) is pij. A rooted
spanning tree of G is a directed subgraph of G with the following properties:

(i) As an undirected graph it is a connected graph with E as set of vertices.

(ii) As an undirected graph it is without cycles.

(iii) As a directed graph, each of its vertex has out degree 1, except one vertex,
the root, that has out degree 0.

Denote by S the set of spanning trees of G, and by Si the subset of S consisting
of rooted spanning trees with vertex i ∈ E. The weight w(S) of a rooted spanning
tree of S ∈ S is the product of the weights of all the directed edges in S.

i

A directed graph and one of his directed spanning tree
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Theorem 2.1.1 The stationary distribution π of P is given by

π(i) =

∑
S∈Si

w(S)∑
S∈S w(S)

.

Proof. We define a stochastic process {Yn}n∈Z taking its values in S as follows.
The root of Yn isXn, sayXn = i. Now, by screening the past valuesXn−1, Xn−2, . . .
in this order, let Xn−ℓ1 be the first value different from Xn, let Xn−ℓ2 , ℓ2 > ℓ1,
be the first value different from Xn and Xn−ℓ1 , let Xn−ℓ3 , ℓ3 > ℓ2, be the first
value different from Xn Xn−ℓ1 and Xn−ℓ2 . Continue this procedure until you have
exhausted the (finite) state space E. The spanning tree Yn is the one with directed
edges (Xn−ℓ1 , Xn−ℓ1+1 = Xn), (Xn−ℓ2 , Xn−ℓ2+1), (Xn−ℓ3 , Xn−ℓ3+1) . . .

1

2

3

4

5

n

Xn

n− l4 n− l3 n− l2 n− l1

4

3 2

5
1

The stochastic process {Yn}n∈Z is a hmc.

The forward procedure, that is the procedure allowing to pass from S ∈ S with
root i to T ∈ S with root j in one step is the following:

(a) Add to S the directed (i, j), thus creating a directed spanning graph with
a unique directed loop that contains i and j (this may be a self-loop at i)

(b) Delete the unique directed edge of S out of j, say (j, k), thus breaking the
loop and producing a rooted spanning tree T ∈ S with root j.

A rooted spanning tree T with root j can be obtained from the spanning tree S if
and only if S can be constructed from T by the following reverse procedure based
on a suitable vertex k:

(α) Add to T the directed edge (j, k), thus creating a directed spanning graph
with unique directed loop containing j and k (possibly a self-loop at j).

(β) Delete the unique directed edge (i, j) that lies in the loop, thus breaking
the loop and producing a rooted spanning tree T ∈ S with root i.
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erase

add

i

j

k

add

erase

i

j

k

Let QST be the one-step transition probability of the rooted spanning tree process
{Yn}n∈Z from S with root i to T with root j, and let k be the unique vertex used
in the reveres procedure. We have that QST = pij. Remarking that to pass from
T to S we first added the edge (i, j) and then deleted the unique directed edge
(j, k), and that to pass from S to T , we added the directed edge (j, k) and then
deleted the edge (j, i). Therefore

w(S)QST = w(T )RTS

where RTS := pjk. It follows that
∑

S

w(S)QST =
∑

S

w(T )RTS = w(T )

Therefore, the stationary distribution of the chain, {ρ(S)}S∈S is

ρ(S) =
w(S)∑
S′ w(S ′)

,

and therefore,

π(i) =
∑

T∈Si

ρ(T ) =

∑
T∈Si

w(T )∑
T∈S w(T )

.

�

Corollary 2.1.1 Let {Xn}n∈Z be the stationary random walk on the complete
graph built on the finite state space E. (In particular pij = 1

|E|
for all j 6= i and

the stationary distribution is the uniform distribution on E.) Let τi = inf{n ≥
0 ; Xn = i}. The directed graph with directed edges

(Xτi , Xτi−1), i 6= X0

is uniformly distributed over S.

Proof. Use the proof of Theorem 2.1.1 and the time-reversibility of the random
walk. �
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2.2 Martingales and harmonic functions

Basic examples

Let {Xn}n≥0 be a sequence of discrete random variables1.

Definition 2.2.1 A real-valued stochastic process {Yn}n≥0 such that for each n ≥
0

(i) Yn is a function of Xn
0 := (X0, . . . , Xn), and

(ii) E[|Yn|] <∞ or Yn ≥ 0,

is called a martingale (resp., submartingale, supermartingale) with respect to
{Xn}n≥0 if, moreover,

E[Yn+1 | Xn
0 ] = Yn (resp., ≥ Yn, ≤ Yn). (2.1)

For short, we sometimes say “Xn
0 -martingale” for “martingale with respect to

{Xn}n≥0”, with similar abbreviations for supermartingales and submartingales.

Observe that a martingale is a submartingale and a supermartingale.

Example 2.2.1: Sums of iid. Let X = {Xn}n≥0 be a sequence of centered and
integrable iid random variables. The stochastic process

Yn = X0 +X1 + · · ·+Xn, n ≥ 1

is a Xn
0 –martingale. Indeed, for all n ≥ 1,

E[Yn+1 |Xn
0 ] = E[Yn |Xn

0 ] + E[Xn+1 |Xn
0 ] = Yn + E[Xn+1] = Yn ,

where the second equality is due to the facts that Yn is a function of Xn
0 (Theorem

1.1.3) and that Xn
0 and Xn+1 are independent (Theorem 1.1.4).

Example 2.2.2: Products of iid. Let X = {Xn}n≥0 be a sequence of inte-
grable iid random variables with mean 1. The stochastic process

Yn =
n∏

k=0

Xk, n ≥ 0

1We are dealing in these notes with discrete random variables, and therefore the mention
“discrete” will be generally omitted.
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is a Xn
0 –martingale. Indeed

E[Yn+1 |Xn
0 ] = E

[
Xn+1

n∏

k=0

Xk |Xn
0

]
= E[Xn+1 |Xn

0 ]
n∏

k=0

Xk

= E[Xn+1]
n∏

k=1

Xk = 1× Yn = Yn ,

where the second equality is due to the fact that
∏n

k=0Xk is a function of Xn
0

(Theorem 1.1.3) and the third to the fact that Xn
0 and Xn+1 are independent

(Theorem 1.1.4).

Example 2.2.3: Gambling. Consider the stochastic process {Yn}n≥0 with val-
ues in R+ defined by Y0 = a ∈ R+ and, for n ≥ 0,

Yn+1 = Yn +Xn+1 bn+1(X
n
0 ),

where {Xn}n≥1 is an iid sequence of random variables taking the values +1 or
−1 equiprobably, and where the family of functions bn : {0, 1}n → N, n ≥ 1, is
a given betting strategy, that is, bn+1(X

n
0 ) is the stake at time n + 1 of a gambler

given the observed history Xn
0 := (X0, . . . , Xn) of the chance outcomes up to time

n. The initial conditions are X0 = Y0 = a. Admissible bets must guarantee that
the fortune Yn remains non-negative at all times n, that is bn+1(X

n
0 ) ≤ Yn. The

process so defined is a Xn
0 –martingale. Indeed,

E [Yn+1 | Xn
0 ] = E [Yn | Xn

0 ] + E [Xn+1bn+1(X
n
0 ) | Xn

0 ]

= Yn + E [Xn+1 | Xn
0 ] bn+1(X

n
0 ) = Yn ,

where the second equality uses Theorem 1.1.3 and the assumption that Xn+1 is
independent of Xn

0 and centered (Theorem 1.1.4).

Harmonic functions of Markov chains

Let {Xn}n≥0 be a hmc on the countable space E with transition matrix P. A
function h : E → R is called harmonic (resp., subharmonic, superharmonic) iff

Ph = h (resp., ≥ h,≤ h). (2.2)

In developed form, for all i ∈ E,
∑

j∈E

pijh(j) = h(i) (resp., ≥ h(i),≤ h(i)).
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Superharmonic functions are also called excessive functions.

Equation (2.2) is equivalent to

E[h(Xn+1) | Xn = i] = h(i) (resp., ≥ h(i),≤ h(i)), (2.3)

for all i ∈ E. In view of the Markov property, the left-hand side of the above
equality is also equal to

E[h(Xn+1) | Xn = i,Xn−1 = in−1, . . . , X0 = i0],

and therefore (2.3) is equivalent to

E[h(Xn+1 | Xn
0 ] = h(Xn) (resp., ≤ h(Xn),≥ h(Xn)). (2.4)

Therefore, if either E[|h(Xn)|] <∞ for all n ≥ 0, or h ≥ 0, the process {h(Xn)}n≥0

is, with respect to {Xn}n≥0, a martingale (resp., submartingale, supermartingale).

Convex functions of martingales

Theorem 2.2.1 Let I be an interval of R of arbitrary nature (closed, open, semi-
closed, infinite, etc.) and let φ : I → R be a convex function.

A. Let Y = {Yn}n≥0 be a Xn
0 -martingale, such that P (Yn ∈ I) = 1 for all n ≥ 0.

Assume that E [|φ(Yn)|] < ∞ for all n ≥ 0. Then, the process {φ(Yn)}n≥0 is a
Xn

0 –submartingale.

B. Assume moreover that φ is non-decreasing and suppose this time that Y is a
Xn

0—submartingale. Then, the process {φ(Yn)}n≥0 is a Xn
0 –submartingale.

Proof. By Jensen’s inequality for conditional expectations,

E [φ(Yn+1)|Xn
0 ] ≥ φ(E [Yn+1|Xn

0 ]) .

Therefore (case A)

E [φ(Yn+1)|Xn
0 ] ≥ φ(E [Yn+1|Xn

0 ])

= φ(Yn),

and (case B)

E [φ(Yn+1)|Xn
0 ] ≥ φ(E [Yn+1|Xn

0 ])

≥ φ(Yn) .

(For the last inequality, use the submartingale property E [Yn+1|Xn
0 ] ≥ Yn and the

hypothesis that φ is non-decreasing.) �
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Example 2.2.4: Powers of martingales. Let Y = {Yn}n≥0 be a Xn
0 -

martingale and let p ≥ 1. Applying Theorem 2.2.1 with the convex function
x→ |x|p, we have that if E [|Yn|p] <∞, {|Yn|p}n≥0 is a Xn

0 –submartingale.

Example 2.2.5: Modulus of a martingale. Let Y = {Yn}n≥0 be a Xn
0 -

martingale and let p ≥ 1. Applying Theorem 2.2.1 with the convex function
x→ x+, we have that {Y +

n }n≥0 is a Xn
0 –submartingale.

Optional sampling

Martingale theory rests on two pillars. The first pillar of martingale theory is the
optional sampling theorem. It has many versions, and that given next is a rather
simple one, but already very powerful.

We first recall the definition of a stopping time.

Definition 2.2.2 Let {Xn}n≥0 be some sequence of random variables taking their
values in X . A randome variable T taking integer values and possibly the value ∞
is called a Xn

0 -stopping time if for all integers m the event {T = m} is expressible
in terms of Xn

0 , that is, more precisely, there exists a function gm : Xm+1
0 → {0, 1}

such that
1{T=m} = gm(X

m+1
0 ) .

Theorem 2.2.2 Let {Mn}n≥0 be a Xn
0 –martingale, and let T be a Xn

0 -stopping
time. Suppose that at least one of the following conditions holds:

(α) P (T ≤ n0) = 1 for some n0 ≥ 0.

(β) P (T <∞) = 1 and |Mn| ≤ K <∞ when n ≤ T .

Then
E[MT ] = E[M0]. (2.5)

Proof. (α) Write

MT −M0 =

n0−1∑

k=0

(Mk+1 −Mk)1{k<T}.

Since T is a stopping time of {Xn}n≥0,

1{k<T} = ϕ(Xk
0 )
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for some function ϕ, and therefore, using the basic rules of conditioning (Theorems
1.1.2 and 1.1.5)

E[(Mk+1 −Mk)1{k<T}] = E[(Mk+1 −Mk)ϕ(X
k
0 )]

= E
[
E[(Mk+1 −Mk)ϕ(X

k
0 )|Xk

0 )]
]

= E
[
E[(Mk+1 −Mk)|Xk

0 )]ϕ(X
k
0 )
]
= 0.

Therefore,

E[MT −M0] =

n0−1∑

k=0

E[(Mk+1 −Mk)1{k<T}] = 0.

(β) Apply the result of (α) to the stopping time T ∧ n0 to obtain

E[MT∧n0 ] = E[M0].

Therefore,

|E[MT ]− E[M0]| = |E[MT ]− E[MT∧n0 ]|
≤ E[|MT −MT∧n0 ]|

= E[
∞∑

k=n0+1

|Mk −Mk∧n0 | 1{k=T}]

≤ E[
∞∑

k=n0+1

2K1{k=T}]

= 2KP (T > n0).

Since T is finite, limn0↑∞ P (T > n0) = 0, and therefore E[MT ] = E[M0]. �

Example 2.2.6: The ruin problem via martingales. Consider the sym-
metric random walk {Xn}n≥0 on Z with X0 = 0. It is a martingale (with respect
to itself). Let T be the first time n for which Xn = −a or +b, where a, b > 0. This
is a stopping time, and moreover T < ∞. We can apply Theorem 2.2.2 (optional
sampling), part (β), with K = sup(a, b), to obtain

0 = E[X0] = E[XT ].

Writing
v = P (−a is hit before b),

we have
E[XT ] = −av + b(1− v),
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and therefore

v =
b

a+ b
.

Example 2.2.7: A counterexample. Consider the symmetric random walk
of the previous example, but now define T to be the hitting time of b > 0. We
know that T < ∞, since the symmetric walk on Z is recurrent. If the optional
sampling theorem applied, we would have

0 = E[X0] = E[XT ] = b,

an obvious contradiction. The optional sampling theorem (Theorem 2.2.2) does
not apply because neither condition (α) nor (β) thereof is satisfied.

Example 2.2.8: The ballot problem, take 3. In the ballot problem, let Xk

be the number of votes in advance (can be negative) for candidate I and define for
0 ≤ k ≤ n− 1, where n := a+ b,

Mk :=
Xn−k

n− k
.

In Exercise ??, you are invited to prove that the sequenceM0,M1, . . . ,Mn−1 forms
a martingale. Admitting this, let τ be the firstMk

0 -stopping time τ at whichXk = 0
if such k exists, or n− 1 otherwise. By the optional sampling theorem (Theorem
2.2.2),

E [Mτ ] = E [M0] =
E [Xn]

n
=
a− b

a+ b
. (⋆)

Let A be the event that candidate I leads all the way to victory. If A occurs, then
τ = n − 1 and Mτ = Mn−1 = X1 and X1 = 1 (in this case, candidate I has the
first vote). If A does not occut, there is an intermediate time when the candidates
have an equal count, and therefore, τ being the first such time, τ < n − 1 and
Mτ = 0. Therefore

E [Mτ ] = P (A) .

Comparison with (⋆) gives

P (A) =
a− b

a+ b
.
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The martingale convergence theorem

We now introduce the second pillar of martingale theory, the martingale conver-
gence theorem. This result is the probabilistic counterpart of the convergence of a
non-negative non-increasing, or bounded nondecreasing, sequence of real numbers
to a finite limit.

Theorem 2.2.3 Let S be a Xn
0 -submartingale, L1-bounded, that is such that

sup
n≥0

E[|Sn|] <∞. (2.6)

Then S converges P -a.s. to an integrable random variable S∞.

The proof is omitted.

Corollary 2.2.1 (a) Any non-positive submartingale S converges to an integrable
random variable.
(b) Any non-negative supermartingale converges to an integrable random variable.

Proof. (b) follows from (a) by changing signs. For (a), we have

E[|Sn|] = −E[Sn] ≤ −E[S0] = E[|S0|] <∞.

Therefore (2.6) is satisfied and the conclusion follows from Theorem 2.2.3. �

We shall apply this result to absorption problems concerning Markov chains.

Example 2.2.9: Branching process via martingales. We are going to
illustrate the power of the concept of martingale by revisiting the branching process
of Section ?? (to which we refer for the notation) and obtaining the results thereof
via martingale theory. It is assumed that P (Z = 0) < 1 and P (Z ≥ 2) > 0 (to get
rid of trivialities). The stochastic process

Yn =
Xn

mn
,

where m is the average number of sons of a given individual, is a martingale with
respect to {Xn}n≥0.

Indeed, each of theXn members of the nth generation gives birth on the average to
m sons, and does this independently of the rest. Therefore, E[Xn+1|Xn] = mXn,
and

E

[
Xn+1

mn+1
|Xn

0

]
= E

[
Xn+1

mn+1
|Xn

]
=
Xn

mn
.
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By the martingale convergence theorem, almost surely

lim
n↑∞

Xn

mn
= Y <∞.

In particular, if m < 1, then limn↑∞Xn = 0 almost surely. Since Xn takes integer
values, this implies that the branching process eventually becomes extinct.

If m = 1, then limn↑∞Xn = X∞ <∞, and it is easily argued that this limit must
be 0. Therefore, in this case as well the process eventually becomes extinct.

For the case m > 1, we consider the unique solution in (0, 1) of x = g(x) (see
Theorem ??). Suppose we can show that Zn = xXn is a martingale. Then, by the
martingale convergence theorem, it converges to a finite limit, and therefore Xn

has a limit X∞, which, however, can be infinite. One can easily argue that this
limit cannot be other than 0 (extinction) or ∞ (nonextinction). Since {Zn}n≥0

is a martingale, x = E[Z0] = E[Zn], and therefore, by dominated convergence,
x = E[Z∞] = E[xX∞ ] = P (X∞ = 0). Therefore, x is the probability of extinction.

It remains to show that {Zn}n≥0 is a martingale. We have

E[xXn+1 |Xn = i] = xi.

This is obvious if i = 0, and if i > 0, Xn+1 is the sum of i independent random
variables with the same generating function g. Therefore, E[xXn+1 |Xn = i] =
g(x)i = xi. From this last result and the Markov property,

E[xXn+1 |Xn
0 ] = E[xXn+1 |Xn] = xXn .

Example 2.2.10: A cellular automaton. Consider a chessboard of size
N × N , on which are placed stones, exactly one on each square. Each stone has
one among k possible colors. The state Xn of the process at time n is the N ×N
matrix with elements in {1, . . . , k} describing the chessboard and the color of the
stone in each square. The evolution of {Xn}n≥0 is that of a homogeneous Markov
chain, where the transition from Xn to Xn+1 is as follows. Select one case of the
chessboard at random, and change the color of the stone there, the new color being
the color of a stone chosen at random among the 4 neighboring stones. To avoid
boundary effects, we shall consider that the chessboard is a bi-torus in the sense
of the Figure below.

We shall see that the only absorbing states are the monochromatic states and
prove, using a martingale argument, that probability of being absorbed in a specific
state is equal to the initial proportion of states of this color.
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Neighbors in the cellular automaton model

The chain has 2k − 1 absorbing classes. Each such class corresponds to a given
nonempty subset of ℓ different colors. For instance, with ℓ = 3, we consider all
the configurations of the chessboard with a combination of three given colors, say
blue, white and red. It is straightforward to verify that one can pass (in several
steps) from a configuration with at least one stone of each color, blue, white or
red, to any other such configuration. Any monochromatic state is of course closed.

Denote by Yn the proportion of red stones at stage n. The process {Yn}n≥0

is a martingale with respect to {Xn}n≥0. Indeed, Yn is a function of Xn and is
integrable, since it is bounded by 1. Also, E[Yn+1|Xn

0 ] = Yn, as the following
exchange argument shows.

Let αn+1 be the box selected at time n+ 1 and let βn+1 be the selected neigh-
bor of αn+1. Then, for any pair (α, β) of boxes, P (αn+1 = α, βn+1 = β|Xn

0 ) =
P (αn+1 = β, βn+1 = α|Xn

0 ) = 1
8N2 . Clearly, if the result αn+1 = α, βn+1 = β

changes Yn to Yn+1 = Yn + ∆Yn+1, the result αn+1 = β, βn+1 = α changes Yn to
Yn+1 = Yn − ∆Yn+1. Since these two situations are equiprobable, the martingale
property easily follows.

By the martingale convergence theorem, limn↑∞ Yn = Y exists, and by domi-
nated convergence E[Y ] = limn↑∞E[Yn]. Therefore, since E[Yn] = E[Y0], we have
E[Y ] = E[Y0] = y0, where y0 is the initial proportion of red stones. Because
|∆Yn| = 0 or 1

N2 for all n, {Yn}n≥0 can converge only if it remains constant after
some (random) time, and this constant is either 0 or 1. Since the limit 1 corre-
sponds to absorption by the “all-red” state, we see that the probability of being
absorbed by the “all-red” state is equal to the initial proportion of red stones.

Example 2.2.11: Fair game not so fair. Consider the situation in Exam-
ple 2.2.3, assuming that the initial fortune a is a positive integer, and that the
bets are also positive integers (that is the functions bn+1(X

n
0 ) ∈ N+ except if

Yn = 0, in which case the gambler is not allowed to bet anymore, or equivalently
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bn(X
n−1
0 , 0) = 0). In particular, for all n ≥ 0, Yn ≥ 0. Therefore the process Y

is a non-negative FX
n -martingale, and by the martingale convergence theorem, it

almost surely has a finite limit. Since the bets are assumed positive integers when
the fortune of the player is positive, this limit cannot be other than 0. Since Yn
is a non-negative integer for all n ≥ 0, this can happen only if the fortune of the
gambler becomes null in finite time.

Theorem 2.2.4 An irreducible recurrent hmc has no non-negative superharmonic
or bounded subharmonic functions besides the constant functions.

Proof. If h is non-negative superharmonic (resp., bounded subharmonic), then the
stochastic sequence {h(Xn)}n≥0 is a non-negative supermartingale (resp., bounded
submartingale), and therefore, by the martingale convergence theorem it converges
to a finite limit Y . Since {Xn}n≥0 visits any state i ∈ E infinitely often, one must
have Y = h(i) almost surely for all i ∈ E. In paticular, h is a constant. �

Corollary 2.2.2 A necessary and sufficient condition for an irreducible hmc to
be transient is the existence of some state conventionally called 0 and of a bounded
function h : E → R, not identically null and satisfying

h(j) =
∑

k 6=0

pjkh(k), for all j 6= 0. (2.7)

Proof. Let T0 be the return time to state 0. First-step analysis shows that the
bounded function h defined by

h(j) = Pj(T0 = ∞)

satisfies (2.7). If the chain is transient, h is nontrivial (not identically null). This
proves necessity.

Conversely, suppose that (2.7) holds for a not identically null bounded function.
Define h̃ by h̃(0) = 0 and

h̃(j) = h(j) if j 6= 0,

and let α =
∑

k∈E p0kh̃(k). Changing the sign of h̃ if necessary, α can be assumed

≥ 0. Then h̃ is subharmonic and bounded. If the chain were recurrent, then by
Theorem 2.2.4, h̃ would be a constant. This constant would be equal to h̃(0) = 0,
and this contradicts the assumed nontriviality of h. �

Example 2.2.12: Repair shop, take 6. The state equation is

Xn+1 = (Xn − 1)+ + Zn+1,
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where {Zn}n≥1 is an iid sequence independent of the initial state X0. In terms of
the probability distribution P (Z1 = k) = ak, k ≥ 0, its transition matrix is

P =




a0 a1 a2 a3 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
...

...
...

...



.

We assume that the chain is irreducible, that is P (Z1 = 0) < 1 and P (Z1 ≥ 2) > 0.
We shall show that, if E[Z1] > 1, the system of equations (2.7) admits a bounded
nontrivial solution, and therefore, by Corollary 2.2.2, the chain is transient.

Indeed, trying h(j) = 1 − ζj for a solution, we can check that equations (2.7)
reduce to a single equation in ζ,

∑

k≥0

P (Z1 = k)ζk = ζ, (2.8)

for which there is, under condition E[Z1] > 1 and the irreducibility condition, a
unique solution ζ ∈ (0, 1) (see Theorem ??).

Therefore, h(i) = 1− ζ i is a solution of (2.7) that is nontrivial and bounded.

Theorem 2.2.5 Let the hmc with transition matrix P be irreducible, and suppose
that there exists a function h : E → R such that {i ; h(i) < K} is finite for all
finite K, and such that

∑

k∈E

pikh(k) ≤ h(i), for all i 6∈ F, (2.9)

for some finite subset F ⊂ E. Then the chain is recurrent.

The conditions of the above result are also necessary (we shall not prove this here),
and this is why it is called a criterion. Note that it might then as well be called a
transience criterion.

Proof. Since {i ; h(i) < 0} is finite, inf h(i) > −∞, and therefore, adding a
constant if necessary, one may assume without loss of generality that h ≥ 0. Let
τ = τ(F ) be the return time to F , and define Yn = h(Xn)1{n<τ}. Equality (2.9) is
just E[h(Xn+1) | Xn = i] ≤ h(i) for all i 6∈ F . For i 6∈ F , we have using the basic
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rules for conditional expectation (Theorems 1.1.4, 1.1.3 and 1.1.2)

Ei[Yn+1 | Xn
0 ] = Ei[Yn+11{n<τ} | Xn

0 ] + Ei(Yn+11{n≥τ} | Xn
0 ]

= Ei[Yn+11{n<τ} | Xn
0 ] ≤ Ei[h(Xn+1)1{n<τ} | Xn

0 ]

= 1{n<τ}Ei[h(Xn+1) | Xn
0 ] = 1{n<τ}Ei[h(Xn+1) | Xn]

≤ 1{n<τ}h(Xn),

where the third equality comes from the fact that 1{n<τ} is a function of Xn
0 , the

fourth equality is the Markov property, and the last inequality is true because
Pi-a.s., Xn 6∈ F on n < τ . Therefore, Pi-a.s., for i 6∈ F , Pi-a.s,

Ei[Yn+1|Xn
0 ] ≤ Yn,

that is, {Yn}n≥0 is, under Pi, a non-negative supermartingale with respect to
{Xn}n≥0. By the martingale convergence theorem, limn↑∞ Yn = Y∞ exists and
is finite, Pi-a.s.

Suppose, in view of contradiction, that the chain is transient. It must then visit
any finite subset of the state space only a finite number of times. In particular, for
arbitrary K, we can have h(Xn) < K only for a finite (random) number of indices
n. This implies that limn→∞ h(Xn) = +∞, Pj-a.s. (for any j ∈ E). For this to be
compatible with the fact that {1{n<τ}h(Xn)} has Pi-a.s. a finite limit for i 6∈ F ,
we must have Pi(τ <∞) = 1.

In summary, Pi(τ < ∞) = 1 for all i 6∈ F . Since F is finite, some state in F
must be recurrent, hence the announced contradiction. �

Example 2.2.13: Repair shop, take 7. We know that this hmc is positive
recurrent only if E[Z1] < 1, and that it is transient if E[Z1] > 1. We now examine
the case E[Z1] = 1, for which there are only two possibilities left: transient or null
recurrent. It turns out that the chain is null recurrent in this case. Indeed, one
easily verifies that Theorem 2.2.5 applies with h(i) = i and F = {0}. Therefore,
the chain is recurrent. Since it is not positive recurrent, it is null-recurrent.

Here is another application of the martingale convergence theorem in the vein of
the previous results.
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Theorem 2.2.6 Let the hmc {Xn}n≥0 with transition matrix P be irreducible and
let h : E → R be a bounded function such that

∑

k∈E

pikh(k) ≤ h(i), for all i 6∈ F, (2.10)

for some set F , not assumed finite. Suppose, moreover, that there exists i 6∈ F
such that

h(i) < h(j), for all j ∈ F. (2.11)

Then the chain is transient.

Proof. Let τ be the return time in F and let i 6∈ F satisfy (2.11). Defining
Yn = h(Xn∧τ ), we have that, under Pi, {Yn}n≥0 is a (bounded) supermartingale
(exercise) with respect to {Xn}n≥0. By the martingale convergence theorem, the
limit Y of Yn = h(Xn∧τ ) exists and is finite, Pi-almost surely. By bounded conver-
gence, Ei[Y ] = limn↑∞Ei[Yn], and since Ei[Yn] ≤ Ei[Y0] = h(i) (supermartingale
property), we have Ei[Y ] ≤ h(i).

If τ were Pi-a.s. finite, then Yn would eventually be frozen at a value h(j) for j ∈ F ,
and therefore by (2.11), Ei[Y ] > h(i), a contradiction with the last inequality.

Therefore, Pi(τ < ∞) < 1, which means that with a strictly positive probability,
the chain starting from i 6∈ F will not return to F . This is incompatible with
irreducibility and recurrence. �

The maximum principle

Let {Xn}n≥0 be an hmc with countable state space E and transition matrix P.

Let D be an arbitrary subset of E, called the domain. The complement D of D
in E will be called the boundary. Let c : D → R and ϕ : D → R be non-negative
functions called the unit time cost and the final cost, respectively. Let T be the
hitting time of D.

For each state i ∈ E, define

h(i) = Ei

[
∑

0≤k<T

c(Xk) + ϕ(XT )1{T<∞}

]
. (2.12)

The function h : E → R so defined is non-negative and possibly infinite. It is
called the average cost. Note that T is not required to be finite, and that D may
be empty.
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Theorem 2.2.7 The function h : E → R+ defined by (2.12)

(i) is non-negative and satisfies

h =

{
Ph+ c on D,
ϕ on D ,

(2.13)

(ii) and is majored by any non-negative function u : E → R such that

u ≥
{

Pu+ c on D,
ϕ on D.

(2.14)

(iii) Moreover, if for all i ∈ E, Pi(T < ∞) = 1, then (2.13) has at most one
non-negative bounded solution.

Proof. (i) Properties h ≥ 0 and h = ϕ on D are satisfied by definition. First-step
analysis gives, for i ∈ D,

h(i) = c(i) +
∑

j∈E

pijh(j) (2.15)

(rely on intuitive arguments or see the details after the proof).

(ii) Define for n ≥ 0 the non-negative function hn : E → R by

hn(i) = Ei

[
n−1∑

k=0

c(Xk)1{k<T} + ϕ(XT )1{T<n}

]
. (2.16)

Observe that h0 ≡ 0 and, by monotone convergence, limn↑∞ ↑ hn = h. Also, with
a proof similar to that of (i),

hn+1 =

{
Phn + c on D,
ϕ on D.

(2.17)

With u as in (2.14), we have u ≥ h0. By induction, u ≥ hn (this is true for n = 0,
and if this true for some n, it is true for n+1. Indeed u ≥ Pu+c ≥ Phn+c = hn+1

on D, and u ≥ ϕ = hn+1 on D). Therefore, u ≥ limn→∞ hn = h.

(iii) If u is bounded and non-negative, then by Example 2.2,

Mn = u(Xn)− u(X0)−
n−1∑

k=0

(P− I)u(Xk) (2.18)
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is a Lévy martingale with respect to {Xn}n≥0. By the optional sampling theorem,
for all integers K ≥ 0, Ei[MT∧K ] = Ei[M0] = 0, and therefore

u(i) = Ei[u(XT∧K)]− Ei[
T∧K−1∑

k=0

(P− I)u(Xk)] = Ei[u(XT∧K) +
T∧K−1∑

k=0

c(Xk)],

since by hypothesis (I−P)u = c onD. Since Pi(T <∞) = 1, limK↑∞Ei[u(XT∧K ] =
Ei[u(XT )] by dominated convergence. But u(XT ) = ϕ(XT ) because u = ϕ on D.
Also, limK↑∞Ei[

∑T∧K−1
k=0 c(Xk)] = Ei[

∑T−1
k=0 c(Xk)] by monotone convergence. Fi-

nally,

u(i) = Ei[
T−1∑

k=0

c(Xk) + ϕ(XT )] = h(i).

Proof of (2.15)

Write for i ∈ D,

v(i) = Ei[c(X0) +
∑

1≤n<T

c(Xn) + ϕ(XT )1{T<∞}]

= c(i) + Ei[
∑

1≤n<T

c(Xn) + ϕ(XT )1{T<∞}],

that is,

v(i) = c(i) +
∑

j∈E

Ei[Z1{X1=j}],

where
Z =

∑

1≤n<T

c(Xn) + ϕ(XT )1{T<∞}.

Since X0 = i ∈ D implies that T ≥ 1 on {X0 = i}, the random variable Z is a
function of X1, X2, . . . , and therefore, by the Markov property,

Ei[Z1{X1=j}] = E[Z |X1 = j]pij.

Now, since T ≥ 1 on {X0 = i} when i ∈ D, the quantity Z in the above calculations
can be rewritten as

Z =
∑

0≤n<T−1

c(Yn) + ϕ(YT−1)1{T−1<∞},

where Yn = Xn+1. Also, for the hmc {Yn}n≥0, T
′ = T − 1 is the hitting time of

D, and therefore

E[Z |X1 = j] = E[
∑

0≤n<T ′

c(Yn) + ϕ(YT ′)1{T ′<∞} |Y0 = j],
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and this quantity is just v(j), since {Xn}n≥0 and {Yn}n≥0 have the same transition
matrix, and therefore have the same distribution when their initial states are the
same. �

Theorem 2.2.7 can be rephrased as follows. The function h given by (2.12) is a
minorant of all non-negative solutions of (2.14), and for u = h, the inequalities in
(2.14) become equalities. Moreover, if h is bounded and Pi(T < ∞) = 1 for all
i ∈ E, then h is the unique solution of (2.13).

2.3 The electrical network analogy

Let G = (V, E) be a finite graph, that is, V is a finite collection of vertices, or
nodes, and E is a subset of (unordered) pairs of vertices, denoted by e = 〈i, j〉 and
one then notes i ∼ j (or equivalently j ∼ i) the fact that i and j are the end
vertices of a the edge 〈i, j〉. This graph is assumed connected. The edge/branch
e = 〈i, j〉 has a positive number ce = cij (= cji) attached to it. In preparation
for the electrical network analogy, call ce the conductance of edge e, and call its
inverse Re =

1
ce

the resistance of e.

Define a hmc on E := V with transition matrix P

pij =
cij
Ci

,

where
Ci =

∑

j∈V

cij .

The homogeneous Markov chain introduced in this way is called a random walk
on the graph G = (V, E). We shall occasionally call it the network Markov chain.
The state Xn at time n is interpreted as the position on the set of vertices of a
particle at time n. When on vertex i the particle chooses to move to an adjacent
vertex j with a probability proportional to the conductance of the corresponding
edge, that is with probability pij =

cij
Ci
. Note that this hmc is irreducible since the

graph G is assumed connected and the conductances are positive. Moreover, it is
reversible with stationary probability

π(i) =
Ci∑
j∈V Cj

.

To see this, it suffices to check the reversibility equations

π(i)
cij
Ci

= π(j)
cji
Cj

,
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using the hypothesis that cij = cji = ce. A symmetric random walk on the graph
G = (V, E) is a particular random walk for which ce ≡ 1 (or any constant). In this
case, at any given time, the particle being in a given site chooses at random the
adjacent site where it will move. The corresponding stationary probability then
takes the form

π(i) =
di
2|E|

where di is the degree of node i (the number of nodes to which it is connected)
and |E| is the number of edges.

The connection between random walks and reversible hmc’s is in fact both ways.
Given a reversible irreducible positive recurrent transition matrixP = {pij}i,j∈V on
V with stationary probability π, we may define the conductance of edge e = 〈i, j〉
by cij = π(i)pij (= cji by reversibility) and define in this way a random walk with
the same transition matrix. In particular Ci = π(i) and pij =

cij
Ci
.

The graph G will now be interpreted as an electric network where electricity flows
along the edges of the graph (the “branches” of the electrical network). By con-
vention, if i 6∼ j, cij = 0. To each oriented pair (i, j) there is associated a potential
difference Φij and a current Iij which are real numbers and satisfy the antisym-
metry conditions

Iji = −Iij and Φji = −Φij

for all edges 〈i, j〉. Two distinct nodes will play a particular role: the source a and
the sink b.

Kirchoff’s laws and Ohm’s law

The potential differences follow Kirchoff’s potential law: For any sequence of ver-
tices i1, i2, . . . , in+1 such that in+1 = i1 and ik ∼ ik+1 for all 1 ≤ k ≤ n,

n∑

ℓ=1

Φiℓ,iℓ+1
= 0 .

They also follow Kirchoff’s current law: For all nodes i ∈ V , i 6= a, b,

∑

j∈V

Iij = 0 .

Finally, the currents and potentials are linked by Ohm’s law: For all edges e = 〈i, j〉

Iij = ceΦij .
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It readily follows from Kirchoff’s potential law that there exists a function Φ :
V → R determined up to an additive constant such that

Φij = Φ(j)− Φ(i) .

Note that, by Ohm’s law, the current Iij and the potential difference Φ(j)− Φ(i)
have the same sign (“currents flow in the direction of increasing potential”).

Using Ohm’s law, Kirchoff’s potential law can be expressed in terms of currents:

n∑

ℓ=1

Iiℓ,iℓ+1

ciℓ,iℓ+1

= 0 .

In particular both Kirchoff’s laws are linear in the currents. Therefore we have
the superposition principle:

Theorem 2.3.1 If I and I ′ are solutions of Kirchoff’s laws with the same source
a and sink b, then so is their sum I + I ′.

From Kirchoff’s current law and Ohm’s law, we have that for all i 6= a, b,

∑

i∈V

cij(Φ(j)− Φ(i)) = 0 ,

or equivalently

Φ(i) =
∑

j∈V

cij
Ci

Φ(j) .

Therefore the potential function Φ is, with respect to this transition matrix, har-
monic on V \{a, b}. In particular, by Theorem 2.2.7, it is uniquely determined by
its boundary values Φ(a) and Φ(b) = 0.

Probabilistic interpretation of voltage and current

We start with the voltage. Recall that Φ is harmonic on D = V \{a, b} and that if
we fix its values on {a, b}, it is then uniquely determined. We call Φ1 the solution
corresponding to a unit voltage at a and a null voltage at b:

Φ1(a) = 1 , Φ1(b) = 0 .

The function h given by
h(i) = Pi (Ta < Tb)

(the probability that starting from i, a is reached before b) is harmonic on D =
V \{a, b} and that h(a) = 1 and h(b) = 0. By unicity, Φ1 ≡ h.
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We now interpret the current. A particle performing the random walk associated
to the network moves from a to b, but now it is supposed to leave the network
once it has reached b. We show that the current Iij from i to j is proportional to
the expected number of passages of this particle from i to j minus the expected
number of passages in the opposite direction, from j to i.

Proof. Let u(i) be the expected number of visits to node i before it reaches b and
leaves the network. Clearly u(b) = 0. Also for i 6= a, b, u(i) =

∑
j∈V u(j)pji. But

Cipij = Cjpji so that u(i) =
∑

j∈V u(j)pij
Ci

Cj
and finally

u(i)

Ci

=
∑

j∈V

pij
u(j)

Cj

.

Therefore the function Φ given by

Φ(i) =
u(i)

Ci

.

is harmonic on D = V \{a, b}. It is the unique such function whose values at a
and at b are specified by

Φ(a) =
u(a)

Ca

, Φ(b) = 0 . ⋆

Whith such voltage function,

Iij = (Φ(i)− Φ(j))cij

=

(
u(i)

Ci

− u(j)

Cj

)
cij

= u(i)
cij
Ci

− u(j)
cji
Cj

= u(i)pij − u(j)pji .

But u(i)pij is the expected number of crossings from i to j and u(j)pji is the
expected number of crossings in the opposite direction. �

The above interpretation of currents in terms of edge crossings avails for the specific
voltage Φ considered, not for the “standardized” voltage Φ1. Both currents are
proportional. To determine the factor of proportionality, we may use the fact that,
under voltage Φ determined by (⋆),

∑

j∈V

Iaj = 1
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because, in view of the probabilistic interpretation of current in this case, the sum
is equal to the expected value of the difference between the number of times the
particle leaves a and the number of times it enters a, that is 1 (each time the
particle enters a it leaves it immediately after, except for the one time when it
leaves a forever to be eventually absorbed in b).

Effective resistance and escape probability

When a voltage Φ(a) is applied at a and a null voltage at b, let Ia be the current
flowing out of the source a (and therefore into the sink b). The effective resistance
between a and b is defined by

Reff =
Φ(a)

Ia
(2.19)

This quantity does not depend on the value Φ(a) since multiplication the voltage
by a factor implies multiplication of the current by the same factor. When Φ(a) =
Φ1(a) = 1, the effective conductance equals the current Ia flowing from a. But in
this case

Ia =
∑

j∈V

(Φ1(a)− Φ1(j))caj

=
∑

j∈V

(1− Φ1(j))caj

= Ca

(
1−

∑

j∈V

Φ1(j)
caj
Ca

)

= Ca

(
1−

∑

j∈V

pajΦ1(j)

)
.

But the quantity
(
1−∑j∈V pajΦ1(j)

)
is the “escape probability”

Pesc := P (Tb < Ta)

that is the probability that the particle starting from a reaches b before returning
to a. Therefore

Ceff = CaPesc .

Dissipated energy and Thomson’s principle

We start with a definition: a flow on the network (or, more precisely, on the graph)
with source a and sink b is be a collection of real numbers J = {Jij}i,j∈V , such
that
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(a) Jij = −Jji,
(b) Jij = 0 if i 6∼ j,

(c)
∑

j∈V Jij = 0 for all i 6= a, b

Denote by Ji =
∑

j∈V Jij the flow out of i. In particular Ji = 0 for all i 6= a, b.
Also

Ja = −Jb ,
as the following calculation shows

Ja + Jb =
∑

I∈V

Ji

=
∑

i,j∈V

Jij =
1

2

∑

i,j∈V

(Jij + Jji) = 0 .

Finally, for any function w : V → R,

(w(a)− w(b))Ja =
1

2

∑

i,j∈V

(w(j)− w(i))Jij , (⋆)

Indeed, from the properties of flows
∑

i,j∈V

(w(i)− w(j))Jij =
∑

i,j∈V

w(i)Jij −
∑

i,j∈V

w(j)Jij

=
∑

i,j∈V

w(i)Jij +
∑

i,j∈V

w(j)Jji

=
∑

i∈V

w(i)Ji +
∑

j∈V

w(j)Jj

= w(a)Ja + w(b)J(b) + w(a)Ja + w(b)J(b)

= w(a)Ja − w(b)J(a) + w(a)Ja − w(b)J(a) = 2(w(a)− w(b))Ja .

A unit flow J is one for which Ja = 1.

These preliminaries given, we introduce the energy dissipated in the network by
the flowJ :

E(J) =
1

2

∑

i,j∈V

J2
ijRij.

This is a meaningful electrical quantity for the special case where the flow is a
current I corresponding to a potential Φ, in which case, by Ohm’s law:

E(I) =
1

2

∑

i,j∈V

I2ijRij =
1

2

∑

i,j∈V

Iij(Φ(j)− Φ(i)).
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Theorem 2.3.2 The effective resistance between the source and the sink is equal
to the energy dissipated in the network when a unit current passes from the source
to the sink.

Proof. By (⋆),
E(I) = (Φ(a)− Φ(b))Ia = Φ(a)Ia ,

and by definition (2.19) of the effective resistance Reff between a and b,

E(I) = I2aReff ,

so that, if we adjust the input current to be Ia = 1, we have that �

The following result is known as Thomson’s principle.

Theorem 2.3.3 The energy dissipation E(J) is minimized among all unit flows
J by the unit current flow I.

Proof. Let J be a unit flow from a to b and let I be a unit current flow from a to
b. Define D = J − I. This is a flow from a to b with Da = 0. We have that∑

i,j∈V

J2
ijRij =

∑

i,j∈V

(Iij +Dij)
2Rij

=
∑

i,j∈V

I2ijRij + 2
∑

i,j∈V

IijDijRij +
∑

i,j∈V

D2
ijRij

=
∑

i,j∈V

I2ijRij + 2
∑

i,j∈V

(Φ(j)− Φ(i))Dij +
∑

i,j∈V

D2
ijRij.

From (??) with w = Φ and J = D, the middle term equals 4(Φ(a)−Φ(b))Da = 0,
so that ∑

i,j∈V

J2
ijRij =

∑

i,j∈V

I2ijRij +
∑

i,j∈V

D2
ijRij ≥

∑

i,j∈V

I2ijRij .

�

Rayleigh’s monotonicity law

We can now state and prove Rayleigh’s principle:

Theorem 2.3.4 The effective resistance between two points can only increase as
any resistance in the circuit increases.

Proof. Change the resistances Rij to Rij ≥ Rij and let I and I be the corre-
sponding unit current flows. Then

Reff =
1

2

∑

i,j∈V

I
2

ijRij ≥
1

2

∑

i,j∈V

I
2

ijRij .
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But by Thomson’s principle,

1

2

∑

i,j∈V

I
2

ijRij ≥
1

2

∑

i,j∈V

I2ijRij = Reff .

�

Recurrence via effective resistance

Let now G = (V, E) be an infinite connected graph with finite-degree vertices,
and distinguish some arbitrary vertex, henceforth called 0. Recall that the graph
distance d(i, j) between two vertices is the smallest number of edges to be crossed
when going from i to j. For N ≥ 0, let

KN = {i ∈ V ; d(0, i) ≤ N}

and
∂KN = KN −KN−1 = {i ∈ V ; d(0, i) = N}

Let GN be the restriction of G to KN . A graph GN is obtained from GN by
merging the vertices of ∂KN in a single vertex named bN . Let Reff (n) be the
effective resistance between 0 and bN of the network GN . Since GN is obtained
from GN+1 by merging the vertices of ∂KN ∪ {bN+1}, Reff (N) ≤ Reff (N + 1). In
particular the limit

Reff = lim
N↑∞

Reff (N)

exists. But it may be infinite. In fact, this gives a criterion of recurrence for the
network hmc {Xn}n≥o. More precisely:

Theorem 2.3.5 The probability of return to 0 of the network hmc is

P (Xn = 0 for some n ≥ 1) = 1− 1

C0Reff

.

In particular this chain is recurrent if and only if Reff = ∞.

Proof. The formula

hN(i) = P (Xn hits KN before 0)

defines an harmonic function on VN\{{0}∪KN} with boundary conditions hN(0) =
0 and hN(i) = 1 for all i ∈ KN . Therefore, the function gN defined

gN(i) = hN(i) on KN−1 ∪ {bN}
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and gN(bN) = 1 is a potential function for the network GN with source 0 and sink
bN . Therefore

P0 (Xn returns to 0 befor reaching ∂KN) = 1−
∑

j∼0

p0jgN(j)

= 1−
∑

j∼0

c0j
C0

(gN(j)− gN(0)).

By Ohm’s law,
∑

j∼0 c0j(gN(j)−gN(0)) is the the total current IN(0) out of 0, and
therefefore since the potential difference between bN and 0 is 1, IN(0) =

1
Reff (N)

.

Therefore

P0 (Xn returns to 0 before reaching ∂KN) = 1− 1

C0Reff (N)

and the result follows since by the sequential continuity of probability

P (Xn = 0 for some n ≥ 1) = lim
N↑∞

P0 (Xn returns to 0 before reaching ∂KN) .

�

2.4 Gibbs fields

Markov fields are so called Gibbs fields in honour of the Josiah Willard Gibbs, the
father of Statistical Mechanics. The physicist Ernst Ising used them as a simplified
model of ferromagnetism, and yet another physicist, Rudolf Peierls, showed that
such mathematical model could predict the phase transition phenomenon.

Definition 2.4.1 Let G = (V, E) be a finite graph, and let v1 ∼ v2 denote the fact
that (v1, v2) is an edge of the graph. We shall also refer to elements of V as sites.
Let Λ be a finite set, the phase space. A random field on V with phases in Λ is a
collection X = {X(v)}v∈V of random variables X(v) with values in Λ.

A random field can be regarded as a random variable taking its values in the
configuration space E := ΛV . A configuration x ∈ ΛV is of the form x = (x(v), v ∈
V ), where x(v) ∈ Λ for all v ∈ V . For a given configuration x and a given subset
A ⊆ S, define

x(A) = (x(v), v ∈ A),

the restriction of x to A. If S\A denotes the complement of A in V , one writes
x = (x(A), x(V \A)). In particular, for fixed v ∈ V , x = (x(v), x(V \v)), where
S\v is a shorter way of writing V \{v}.
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Of special interest are the random fields characterized by local interactions. This
leads to the notion of Markov random field. The “locality” is in terms of the
neighbourhood structure inherited from the graph structure. More precisely, for
any v ∈ V , Nv := {w ∈ V ;w ∼ v} is the neighborhhod of v. In the following, Ñv

denotes the set Nv ∪ {v}.

Definition 2.4.2 The random field X is called a Markov random field (mrf) with
respect to the neighborhood system N if for all sites v ∈ V , the random variables
X(v) and X(V \Ñv) are independent given X(Nv).

In mathematical symbols:

P (X(v) = x(v) | X(V \v) = x(S\v)) = P (X(v) = x(v) | X(Nv) = x(Nv)) (2.20)

for all x ∈ ΛV and all v ∈ V . Property (2.20) is clearly of the Markov type: the
distribution of the phase at a site is directly influenced only by the phases of the
neighboring sites.

Note that any random field is Markovian with respect to the trivial topology, where
the neighborhood of any site is the whole set V . However, the interesting Markov
fields (from the point of view of modeling, simulation, and optimization) are those
with relatively small neighborhoods.

Definition 2.4.3 The local characteristic of the mrf at site v is the function
πs : ΛV → [0, 1] defined by

πv(x) = P (X(v) = x(v) | X(Nv) = x(Nv)).

The family {πv}v∈V is called the local specification of the mrf.

One sometimes writes
πv(x) = π(x(v) | x(Nv))

in order to stress the role of the neighborhood system.

We say that a mrf satisfies the positivity condition if its probability distribution
is strictly positive.

Theorem 2.4.1 Two distributions of an mrf with a finite configuration space
ΛV that satisfy the positivity condition and have the same local specification are
identical.

Proof. Enumerate V as {1, 2, . . . , K}. Therefore x = (x1, . . . , xK−1, xK) ∈ ΛK .
The following identity

π(x) =
K∏

i=1

π(xi | x1, . . . , xi−1, yi+1, . . . , yK)

π(yi | x1, . . . , xi−1, yi+1, . . . , yK)
π(y) (⋆)
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holds for any x, y ∈ ΛK . For the proof, one checks that

π(x) =
π(xK | x1, . . . , xK−1)

π(yK | x1, . . . , xK−1)
π(x1, . . . , xK−1, yK)

by simply rewriting the conditional probabilities thereof using Bayes’s definition.
Similarly,

π(x1, . . . , xK−1, yK) =
π(xK−1 | x1, . . . , xK−2, yK)

π(yK−1 | x1, . . . , xK−2, yK)
π(x1, . . . , xK−2, yK−1, yK)

and so forth. The above calculations make sense because of the positivity condi-
tion.

Let now π and π′ be probability distributions with the same local specifications
and satisfying the positivity condition. Choose any y. Identity (⋆) shows that for
all x,

π′(x)

π(x)
=
π′(y)

π(y)

a constant, necessarily equal to 1 since π and π′ are probability distributions. �

Cliques, potential, and Gibbs distributions

Consider the probability distribution

πT (x) =
1

ZT

e−
1
T
U(x) (2.21)

on the configuration space ΛV , where T > 0 is the temperature, U(x) is the en-
ergy of configuration x, and ZT is the normalizing constant, called the partition
function. Since πT (x) takes its values in [0, 1], necessarily −∞ < U(x) ≤ +∞.
Note that U(x) < +∞ if and only if πT (x) > 0. One of the challenges associated
with Gibbs models is obtaining explicit formulas for averages, considering that it
is generally hard to compute the partition function.

Such distributions are interesting for physicists when the energy is expressed in
terms of a potential function describing the local interactions. The notion of clique
then plays a central role.

Definition 2.4.4 Any singleton {v} is a clique. A subset C ⊆ V with more than
one element is called a clique if and only if any two distinct sites of C are mutual
neighbors. A clique C is called maximal if for any site v, C ∪ {v} is not a clique.
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Definition 2.4.5 A Gibbs potential on ΛV relative to the neighborhood system N
is a collection {VC}C⊆V of functions VC : ΛV → R ∪ {+∞} such that

(i) VC ≡ 0 if C is not a clique,

(ii) for all x, x′ ∈ ΛV and all C ⊆ V ,

(x(C) = x′(C)) ⇒ (VC(x) = VC(x
′)) .

The energy function U : ΛV → R ∪ {+∞} is said to derive from the potential
{VC}C⊆V if

U(x) =
∑

C

VC(x) .

The function VC depends only on the phases at the sites inside subset C. One
could write more explicitly VC(x(C)) instead of VC(x), but this notation will not
be used.

In this context, the distribution in (2.21) is called a Gibbs distribution.

Example 2.4.1: Ising Model, take 1. In statistical physics, the following
model is regarded as a qualitatively correct idealization of a piece of ferromagnetic
material. Here V = Z

2
m = {(i, j) ∈ Z

2, i, j ∈ [1,m]} and Λ = {+1,−1}, where ±1
is the orientation of the magnetic spin at a given site. The figure below depicts
two particular neighborhood systems, their respective cliques, and the boundary
of a 2× 2 square for both cases.
In Ising’s finite model, V = Z

2
m, Λ = {+1,−1}, and the neighborhood system is

as in (α) of Fig. 7.1.1. The Gibbs potential is

V{v}(x) = −H
k
x(v),

V〈v,w〉(x) = −J
k
x(w)x(v),

where 〈v, w〉 is the 2-element clique {v, w}, where w ∈ Nv. Here, k is the Boltz-
mann constant, H is the external magnetic field, and J is the internal energy of an
elementary magnetic dipole. The energy function corresponding to this potential
is therefore

U(x) = −J
k

∑

〈v,w〉

x(v)x(w)− H

k

∑

v∈V

x(v).
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in black: boundary

(α) (β)

neighborhoods

(1)

(2)

(3)

(4)

cliques

(up to a rotation)

(of the white square)

Two examples of neighborhoods, cliques, and boundaries
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The Markov–Gibbs equivalence

Gibbs distributions with an energy deriving from a Gibbs potential relative to a
neighborhood system are distributions of Markov fields relative to the same neigh-
borhood system. This result admits a (partial) converse, Theorem 2.4.3 below.

Theorem 2.4.2 If X is a random field with a distribution π, of the form (2.21),
where the energy U(x) derives from a Gibbs potential {VC}C⊂V relative to the graph
structure G = (V, E), then X is Markovian relatively to the same graph structure.
Moreover, its local specification is given by the formula

πv(x) =
e−

∑
C∋v VC(x)

∑
λ∈Λ e

−
∑

C∋v VC(λ,x(V \v))
, (2.22)

where the notation
∑

C∋v means that the sum extends over the sets C that contain
the site v.

Proof. First observe that the right-hand side of (2.22) depends on x only through
x(v) and x(Nv). Indeed, VC(x) depends only on (x(w), w ∈ C), and for a clique
C, if w ∈ C and v ∈ C, then either w = v or w ∼ v. Therefore, if one can show
that P (X(v) = x(v)|X(V \v) = x(V \v)) equals the right-hand side of (2.22), and
in particular is a function of x(v) and x(Nv) only, then the Markov property (2.20)
and equality (2.22) will be proven. By definition of conditional probability,

P (X(v) = x(v) | X(V \v) = x(S\v)) = π(x)∑
λ∈Λ π(λ, x(V \v)) . (†)

But

π(x) =
1

Z
e−

∑
C∋v VC(x)+

∑
C 6∋v VC(x),

and similarly,

π(λ, x(V \v)) = 1

Z
e−

∑
C∋v VC(λ,x(V \v))−

∑
C 6∋v VC(λ,x(S\v)).

If C is a clique and v is not in C, then VC(λ, x(V \v)) = VC(x) and is therefore
independent of λ ∈ Λ. Therefore, the righthand side of (†) is found, after factoring
out exp x(w)

{
−∑C 6∋v VC(x)

}
, to be equal to the righthand side of (2.22). �

The local energy at site v of configuration x is

Ev(x) =
∑

C∋v

VC(x).
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With this notation, (2.22) becomes

πv(x) =
e−Ev(x)

∑
λ∈Λ e

−Ev(λ,x(V \v))
.

Example 2.4.2: Ising Model, take 2. The local characteristics in the Ising
model are

πv
T (x) =

e
1
kT {J ∑

w;|w−v|=1 x(w)+H}x(v)

e+
1
kT {J ∑

w∼v x(w)+H} + e−
1
kT {J ∑

w∼v x(w)+H} .

Theorem 2.4.2 above is the direct part of the Gibbs–Markov equivalence theorem:
A Gibbs distribution relative to a neighborhood system is the distribution of a
Markov field with respect to the same neighborhood system. The converse part
(Hammersley–Clifford theorem) is important from a theoretical point of view, since
together with the direct part it concludes that Gibbs distributions and mrf’s are
essentially the same objects.

Theorem 2.4.3 Let π be the distribution of a Markov random field with respect
to the graph structure G = (V, E) and satisfying the positivity condition. Then

π(x) =
1

Z
e−U(x)

for some energy function U deriving from a Gibbs potential {VC}C⊆V associated
with the same graph structure G = (V, E).
The proof is omitted. However, quite often in practice, the potential as well as the
topology of V can be obtained directly from the expression of the energy.

Example 2.4.3: Markov chains as Markov fields. Let V = {0, 1, . . . N}
and Λ = E, a finite space. A random fieldX on V with phase space Λ is therefore a
vector X with values in EN+1. Suppose that X0, . . . , XN is a homogeneous Markov
chain with transition matrix P = {pij}i,j∈E and initial distribution ν = {νi}i∈E.
In particular, with x = (x0, . . . , xN),

π(x) = νx0px0x1 · · · pxN−1xN
,

that is,
π(x) = e−U(x),

where

U(x) = − ln νx0 −
N−1∑

n=0

(ln pxixi+1
).
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Clearly, this energy derives from a Gibbs potential associated with the nearest-
neighbor topology for which the cliques are, besides the singletons, the pairs of
adjacent sites. The potential functions are:

V{0}(x) = − ln νx0 , V{n,n+1}(x) = − ln pxnxn+1 .

The local characteristic at site n, 2 ≤ n ≤ N − 1, can be computed from formula
(2.22), which gives

πn(x) =
exp(ln pxn−1xn

+ ln pxnxn+1)∑
y∈E exp(ln pxn−1y + ln pyxn+1)

,

that is,

πn(x) =
pxn−1xn

pxnxn+1

p
(2)
xn−1xn+1

,

where p
(2)
ij is the general term of the two-step transition matrix P2. Similar compu-

tations give π0(x) and πN(x). We note that, in view of the neighborhood structure,
for 2 ≤ n ≤ N −1, Xn is independent of X0, . . . , Xn−2, Xn+2, . . . , XN given Xn−1

and Xn+1.

Natural sampling in Physics

We shall see that, according to the theory of Statistical Physics, Nature performs
in a natural (of course!) way Monte Carlo method. As a matter of fact, the
basic ideas of mmc was first proposed by physicists. Although only the “static”
aspects of Gibbs fields were presented so far, in Nature, the dynamical aspects are
sometimes essential. For instance, the orientation of the magnetic spins in a ferro-
magnet vary constantly in time, and the macroscopic properties are in fact those
of the statistical equilibrium. The following mathematical development captures
the essential aspects of Statistical Physics.

Consider a random field that changes randomly with time. We then have a stochas-
tic process {Xn}n≥0, where

Xn = (Xn(v), v ∈ V )

and Xn(v) ∈ Λ. The state at time n of this process is a random field on V with
phases in Λ, or equivalently, a random variable with values in the state space
E = ΛV , which for simplicity we assume finite. The stochastic process {Xn}n≥0

will be called a dynamical random field.
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The purpose of the current subsection is to show how a given random field prob-
ability distribution

π(x) =
1

Z
e−U(x) (2.23)

can arise as the stationary distribution of a field-valued Markov chain. According
to the general principles of the Monte Carlo Markov chain method, we just need to
exhibit an irreducible aperiodic Markov chain {Xn}n≥0 with state space E = ΛV

and stationary distribution (2.23).

The Gibbs sampler uses a strictly positive probability distribution (qv, v ∈ V )
on V , and the transition from Xn = x to Xn+1 = y is made according to the
following rule. The new state y is obtained from the old state x by changing
(or not) the value of the phase at one site only. The site s to be changed (or
not) at time n is chosen independently of the past with probability qv. When
site v has been selected, the current configuration x is changed into y as follows:
y(V \v) = x(V \v), and the new phase y(v) at site v is selected with probability
π(y(v) | x(V \v)). Thus, configuration x is changed into y = (y(v), x(V \v)) with
probability qvπ(y(v) | x(V \v), according to the local specification at site v. This
gives for the nonzero entries of the transition matrix

P (Xn+1 = y | Xn = x) = qvπ(y(v) | x(V \v))1y(V \v)=x(V \v). (2.24)

Suppose that the corresponding chain is irreducible and aperiodic. To prove that
π is the stationary distribution, we use the detailed balance test (Theorem 1.2.9).
This test suggests to check that the detailed balance equations do hold true. For
this to be true, we must have for all x, y ∈ ΛV ,

π(x)P (Xn+1 = y | Xn = x) = π(y)P (Xn+1 = x | Xn = y),

that is, in view of (2.24), for all v ∈ V ,

π(x)qvπ(y(v) | x(V \v)) = π(y)qvπ(x(v) | x(V \v)).

This is indeed so, since the last equality reduces to the identity

π(x)qv
π(y(v), x(S\v)

P (X(V \v) = x(V \v)) = π(y(v), x(V \v))qv
π(x)

P (X(V \v) = x(V \v)) .

Example 2.4.4: Ising model, take 3: what magnets do. In the Ising model
(Examples 2.4.1 and 2.4.1), the local specification at site s depends only on the
local configuration x(Nv). Note that small neighborhoods speed up computations.
Note also that the Gibbs sampler is a natural sampler, in the sense that in a piece
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of ferromagnetic material, for instance, the spins are randomly changed according
to the local specification. When nature decides to update the orientation of a
dipole, it does so according to the law of statistical mechanics. It computes the
local energy

E(x(v), x(Nv)) = x(v)

(
J

k

∑

w∼v

x(w) +
H

k

)

for each of the two possible spins, that is E+ = E(+1, x(Nv)) and E− = E(−1, x(Nv)),
and takes the corresponding orientation with a probability proportional to e−E+

and e−E− , respectively, according to the fundamental law of statistical mechanics.

2.5 Phase transition in the Ising model

Consider the slightly generalized Ising model of a piece of ferromagnetic material,
with spins distributed according to

πT (x) =
1

ZT

e
−U(x)

T . (2.25)

The finite site space is enumerated as S = {1, 2, . . . , N}, and therefore a con-
figuration x is denoted by (x(1), x(2), . . . , x(N)). The energy function has two
terms,

U(x) = E0(x)−
H

k

N∑

i=1

x(i),

where the term E0(x) is assumed symmetric, in the sense that for any configuration
x,

E0(x) = E0(−x).
The constant H is the external magnetic field. The magnetic moment of configu-
ration x is

m(x) =
N∑

i=1

x(i),

and the magnetization is the average magnetic moment per site

M(H, T ) =
1

N

∑

x∈E

πT (x)m(x).

In Exercise ??, you are invited to check that

∂M(H, T )

∂H
≥ 0.
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Also, it is clear that

M(−H, T ) = −M(H, T )

and

−1 ≤M(H, T ) ≤ +1.

In summary, at fixed temperature T , the magnetization M(H, T ) is a nondecreas-
ing odd function of H with values in [−1,+1]. Also,

M(0, T ) = 0 , (⋄)

since for any configuration x, m(−x) = −m(x), and therefore πT (−x) = πT (x)
when H = 0. Moreover, the magnetization is an analytic function of H.

However, the experimental results seem to contradict the last two assertions. In-
deed, if an iron bar is placed in a strong magnetic field H parallel to the axis,
it is completely magnetized with magnetization M(H, T ) = +1, and if the mag-
netic field is slowly decreased to 0, the magnetization decreases, but tends to a
limit M(0, T ) = M0 > 0, in disagreement with (⋄). By symmetry, we therefore
have a discontinuity of the magnetization at H = 0 (see the figure below (a)), in
contradiction to the theoretical analyticity of the magnetization as a function of
H.

This discontinuity is called a phase transition by physicists, by analogy with the
discontinuity in density at a liquid–gas phase transition. It occurs at room tem-
perature, and if the temperature is increased, the residual, or spontaneous, mag-
netization M0 decreases until it reaches the value 0 at a certain temperature Tc,
called the critical temperature. Then for T > Tc, the discontinuity at 0 disappears,
and the magnetization curve is smooth (see the figure below (c)). At T = Tc, the
slope at H = 0 is infinite, i.e., the magnetic susceptibility is infinite (see the figure
below (b)).

The discrepancy with experience and theory observed below the critical temper-
ature is due to the fact that the experimental results describe a situation at the
thermodynamical limit N = ∞. For fixed but large N the theoretical magnetiza-
tion curve is analytic, but it presents for all practical purposes the same aspect as
in Figure a below.

To summarize the experimental results, it seems that below the critical tempera-
ture, the spontaneous magnetization has, when no external magnetic field is ap-
plied, two “choices.” We shall now explain this phenomenon within the classical
Ising model.

Consider the Ising model in the absence of external field (H = 0). The energy of
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H

−1

M(H)

T < Tc

−M0

0

M0

+1

H

+1
M(H)

T = Tc

0

−1

H

+1
M(H)

T > Tc

0

−1

a b c

Magnetization and critical temperature

a configuration x is of the form

U(x) = −J
∑

〈v,w〉

x(v)x(w),

where 〈v, w〉 represents an unordered pair of neighbors. When the cardinal of the
site space V is infinite, the sum in the expression of the energy is not defined for
all configurations, and therefore one cannot define the Gibbs distribution πT on
ΛV by formula (2.25). However, the local specification

πv
T (x) =

eβ
∑

〈v,w〉 x(v)x(w)

eβ
∑

〈v,w〉 x(w) + e−β
∑

〈v,w〉 x(w)
, (2.26)

where β is, up to a factor, the inverse temperature, is well-defined for all configu-
rations and all sites.

In the sequel, we shall repeatedly use abbreviated notation. For instance, if π is
the distribution of a random field X under probability P , then π((x(A)) denotes
P (X(A) = x(A)), π(x(0) = +1) denotes P (X(0) = +1), etc.

A probability distribution πT on ΛV is called a solution of the DLR problem if it
admits the local specification (2.26)2.

When V = KN = Z
2 ∩ [−N,+N ]2, we know that there exists a unique solution,

given by (2.25). When S = Z
2, Dobrushin has proven the existence of at least one

solution of the DLR problem. One way of constructing a solution is to select an

2DLR stands for Dobrushin (1965), and Lanford and Ruelle (1969).
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arbitrary configuration z, to construct the unique probability distribution π
(N)
T on

ΛV such that
π
(N)
T (z(V \KN−1)) = 1

(the field is frozen at the configuration z outside KN−1) and such that the restric-

tion of π
(N)
T to KN−1 has the required local characteristics, given by (2.26), and

then let N tend to infinity. A solution πT of the DLR problem corresponding to
the configuration z selected is obtained as follows. For all configurations x and all
finite subsets A ⊂ V , the following limit exists:

πT (x(A)) = lim
N↑∞

π
(N)
T (x(A)), (2.27)

and moreover, there exists a unique random field X with the local specification
(2.26) and such that, for all configurations x and all finite subsets A ⊂ V ,

P (X(A) = x(A)) = πT (x(A)).

Note that π
(N)
T depends on the configuration z only through the restriction of z to

the boundary KN\KN−1.

If the DLR problem has more than one solution, we say that a phase transition
occurs. The method given by Dobrushin to construct a solution suggests a way of
proving phase transition when it occurs. It suffices to select two configurations z1
and z2, and to show that for a given finite subset A ⊂ S, the right-hand side of
(2.27) is different for z = z1 and z = z2. It has been proven by Peierls (1936) that
for sufficiently small values of the temperature, phase transition occurs. Peierls
applied the above program with z1 being the configuration with all spins positive
and z2 the all negative configuration, and with A = {0}, where 0 denotes the
central site of Z2.

Denote then by π
(N)
+ (resp., π

(N)
− ) the restriction to KN of π

(N)
T when z = z1 (resp.,

z = z2). We shall prove that if T is large enough, then π
(N)
+ (x(0) = −1) < 1

3
for

all N . By symmetry, π
(N)
− (x(0) = +1) < 1

3
, and therefore π

(N)
− (x(0) = −1) > 2

3
.

Passing to the limit N ↑ ∞, we see that π+(x(0) = −1) < 1
3
and π−(x(0) = −1) >

2
3
, and therefore, the limiting distributions are not identical.

We now proceed to the execution of the above program. For all x ∈ ΛKN ,

π
(N)
+ (x) =

e−2βno(x)

Z
(N)
+

, (2.28)

where no(x) is the number of odd bounds in configuration x, that is, the number of

cliques 〈v, w〉 such that x(v) 6= x(w), and where Z
(N)
+ is the normalization factor.
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To obtain (2.28), it suffices to observe that

−
∑

〈v,w〉

x(v)x(w) = no(x)− ne(x),

where ne(x) is the number of even bounds, and that ne(x) =M −no(x), where M
is the total number of pair cliques. Therefore,

U(x) = 2βno(x)−M,

from which (2.28) follows.

Before proceeding to the proof of the announced upper bound for π
(N)
+ (x(0) = −1),

a few definitions are needed. Actually, no formal definition will be proposed;
instead, the reader is referred to pictures. The figure below features circuits C of
various lengths.

circuit C of length 10

site zero

border frozen at +1

circuit C(x; 0) around 0

of length 18

Circuits in the Ising model

For a given configuration x, C(x; 0) denotes the circuit which is the boundary
of the largest connected batch of sites with negative phases, containing site 0. It
is a circuit around 0. If the phase at the central site is positive, then C(x; 0) is the
empty set.

For a given configuration x, denote by x̃ the configuration obtained by reversing
all the phases inside circuit C(x; 0). For a given circuit C around 0,

π
(N)
+ (C(x; 0) = C) =

∑
x;C(x;0)=C e

−2βno(x)

∑
y e

−2βno(y)
.
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But ∑

z

e−2βno(z) ≥
∑

y;C(y;0)=C

e−2βno(ỹ)

(one can always associate to a configuration y such that C(y; 0) = C the config-
uration z = ỹ, and therefore the sum on the right-hand side is a subsum of the
left-hand side). Therefore,

π
(N)
+ (C(x; 0) = C) ≤

∑
x;C(x;0)=C e

−2βno(x)

∑
x;C(x;0)=C e

−2βno(x̃)
.

If x is such that C(x; 0) = C, then n0(x̃) = n0(x)−L, where L is the length of C,
and therefore

π
(N)
+ (C(x; 0) = C) ≤ e−2βL.

In particular,

π
(N)
+ (x(0) = −1) ≤

∑
r(L)e−2βL,

where the latter summation is over all lengths L of circuits around 0, and r(L)
is the number of nonempty circuits around 0 of length L. The possible lengths
are 4, 6, . . . , 2f(N), where f(N) ↑ ∞ as N ↑ ∞. In order to bound r(L) from
above, observe that a circuit around 0 of length L must have at least one point
at a distance smaller than or equal to L

2
of the central site 0. There are L2 ways

of selecting such a point, and then at most 4 ways of selecting the segment of C
starting from this point, and then at most 3 ways of selecting the next connected
segment, and so on, so that

r(L) ≤ 4L23L.

Therefore,

π
(N)
+ (x(0) = −1) ≤

∑

L=4,6,...

4L2(3e−2β)L.

Now, the series
∑

L=4,6,... L
2xL has a radius of convergence not less than 1, and

therefore, if 3e−β is small enough, or equivalently if T is large enough, π
(N)
+ (x(0) =

−1) < 1
3
for all N .

2.6 Percolation

Consider the set V = Z2 (the (infinite) grid or (infinite) lattice) whose elements
are called nodes or vertices. Let ENN the collection of nearest-neighbour potential
edges, that is the collection of all unordered pairs 〈u, v〉 of mutually adjacent
vertices3. A percolation graph on Z2 is, by definition, a graph G = (V,E) where

3Vertex u = (i, j) has 4 adjacent vertices v = (i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1).
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V = Z2 and E is a subset of ENN . The graph (V,ENN) is called the fully connected
percolation graph. The dual grid (or lattice) in two dimensions V ′ is the original
grid V = Z2 shifted by (1

2
, 1
2
) (its vertices are of the form (i′, j′) = (i+ 1

2
, j + 1

2
)).

In a given percolation graph G, a path from vertex u to vertex v is, by definition,
a sequence of vertices v0, v1, . . . , vm such that u = v0 and v = vm 6= u, and for
all 0 ≤ i ≤ m − 1, 〈vi, vi+1〉 is an edge of G. Note that in this definition the
extremities u and v must be different. Such path is called loop-free if the vertices
thereof are distinct. If in addition there is an edge linking u and v, the sequence
v0 = u, v1, . . . , vm = v, u is called a circuit (we insist that it has to be loop-free to
be so called).

The random percolation graph Gp on Z2, where p ∈ [0, 1], is a random element
taking its values in the set of percolation graphs on Z2, and whose collection Ep

of edges is randomly selected according to the following procedure. Let be given a
collection {U〈u,v〉}〈u,v〉∈ENN

of iid random variables uniformly distributed on [0, 1],
called the random generators. Then the potential edge 〈u, v〉 is included in Ep

(becomes an edge of Gp) if and only if U〈u,v〉 ≤ p. Thus, a potential edge becomes
an edge of Gp with probability p independently of all other potential edges. The
specific procedure used to implement this selection allows to construct all the
random percolation graphs simultaneously, using the same collection of random
generators. In particular, if 0 ≤ p1 < p2 ≤ 1, Gp1 ⊆ Gp2 , by which it is meant that
Ep1 ⊆ Ep2 .
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Two vertices u and v of a given percolation graph are said to be in the same
component, or to be connected, if there exists a path of this graph connecting
them. A component of the percolation graph is a set C of mutually connected
vertices such that no vertex outside C is connected to a vertex in C. Its cardinal
is denoted by |C|. Denote by C(G, u) the component of the percolation graph
containing vertex u.

We now introduce the notion of a dual percolation graph. The dual percolation
graph of a given percolation graph G on V = Z2 is a percolation graph on the
dual grid V ′ which has an edge linking two adjacent vertices u′ and v′ if and only
if this edge does not cross an edge of G. We call G′ such a graph. In particular
G′

p is the dual random percolation graph of the random percolation graph Gp.

Subcritical and supercritical percolation

Percolation is said to occur in a given percolation graph if there exists an infinite
component. The fundamental result of this section is:

Theorem 2.6.1 There exists a critical value pc ∈ [1
3
, 2
3
] such that the probability

that Gp percolates is null if p < pc ( the subcritical case), and equal to 1 if p > pc
( the supercritical case).

The proof will be given after some preliminaries. We start with a trivial observation
concerning C(Gp, 0) (0 stands for (0, 0), the origin of Z2). Defining

θ(p) = P (|C(Gp, 0)| = ∞),

the probability that the origin is in an unbounded component of the random perco-
lation graph Gp, we have that θ(0) = 0 and θ(1) = 1. Next, θ : [0, 1] → [0, 1] is non-
decreasing. Indeed if 0 ≤ p1 < p2 ≤ 1, Gp1 ⊆ Gp2 , and therefore |C(Gp1 , 0|) = ∞
implies |C(Gp2 , 0|) = ∞. This remark provides an opportunity to introduce the
notions of increasing set and increasing function defined on the set of percolation
graphs.

Definition 2.6.1 A set A of percolation graphs is called non-decreasing if for all
percolation graphs G(1), G(2) such that G(1) ⊆ G(2), G(1) ∈ A implies that G(2) ∈ A.
A function f taking its values in the set of percolation graphs on Z2 is called
non-decreasing if G(1) ⊆ G(2), G(1) ∈ A implies that f(G(1)) ≤ f(G(2)).

In particular 1A is a non-decreasing function whenever A is a non-decreasing set.

Example 2.6.1: The event {|C(G, 0)| = +∞} is a non-decreasing event. So is
the event “there is a path in G fom a given vertex u to a given vertex v”.
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In very much the same way as we proved the non-decreasingness of the function
θ, one can prove the following result.

Lemma 2.6.1 If A is a non-decreasing event, then the function p→ P (Gp ∈ A) is
non-decreasing. If f is a non-decreasing function, then the function p→ E[f(Gp)]
is non-decreasing.

Theorem 2.6.1 will be obtained as a consequence of the following lemma.

Lemma 2.6.2 There exists a critical value pc ∈ [1
3
, 2
3
] such that θ(p) = 0 if p < pc,

and θ(p) > 0 if p > pc.

We now show how Lemma 2.6.2 has Theorem 2.6.1 for consequence. Let A be the
non-decreasing event “there exists an infinite component”. The random variable
1A(Gp) does not depend on any finite subset of the collection of independent vari-
ables {U〈u,v〉}〈u,v〉∈ENN

. By Kolmogorov’s 0–1-law, P (Gp ∈ A) can take only one
of the values 0 or 1. Since on the other hand P (Gp ∈ A) ≥ θ(p), θ(p) > 0 implies
P (Gp ∈ A) = 1. Also, by the union bound,

P (Gp ∈ A) ≤
∑

u∈Z2

P (|C(Gp, u)| = +∞)

=
∑

u∈Z2

P (|C(Gp, 0)| = +∞) =
∑

u∈Z2

θ(p) ,

and therefore, θ(p) = 0 implies that P (Gp ∈ A) = 0.

What remains to be done is the proof of Lemma 2.6.2.

Part 1. We show that for p < 1
3
, θ(p) = 0. Call σ(n) the number of loop-free paths

starting from 0 and of length n. Such path can be constructed progressively edge
by edge starting from the origin. For the first edge (from 0) there are 4 choices,
and for each of the n− 1 remaining edges there are at most 3 choices. Hence the
bound

σ(n) ≤ 4× 3n−1 .

We order these σ(n) paths arbitrarily.

Let N(n,G) be the number of paths of length n starting from 0 in a percolation
graph G. If there exists in Gp an infinite path starting from 0 (or equivalently, if
there exists an infinite component of Gp containing the origin) then, for each n
there exists at least one path of length n starting from 0, that is,

{|C(Gp, 0)| = ∞} = ∩∞
n=1{N(n,Gp) ≥ 1}
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and therefore, for all n ≥ 1,

θ(p) ≤ P (N(n,Gp) ≥ 1) = P
(
∪σ(n)

i=1 {Yi(Gp) = 1}
)

where Yi(Gp) is the indicator function for the presence in Gp of the i-th loop-
free path of length n starting from 0 in the fully connected percolation graph.
Therefore, by the union bound,

θ(p) ≤
σ(n)∑

i=1

P (Yi(Gp) = 1) ≤ σ(n)pn = 4p(3p)n−1 .

If p < 1
3
, this quantity tends to 0 as n ↑ +∞.

Part 2. We show that for p > 2
3
, θ(p) > 0.

The statement that |C(Gp, 0)| < ∞ is equivalent to saying that 0 is surrounded
by a circuit of G′

p.

Call ρ(n) the number of circuits of length n of the fully connected dual graph that
surround the origin of the original grid. We have that

ρ(n) ≤ nσ(n− 1) ,

which accounts for the fact that such circuits contain at most a path of length
n− 1 that passes through a dual vertex of the form (1

2
, 1
2
+ i) for some 0 ≤ i < n.

The set C of circuits of the fully connected dual percolation graph that surround
the origin 0 of the original grid is countable. Denote by Ck ⊂ C the subset of such
circuits that surround the box Bk ⊂ S = Z2 of side length k centered at the origin
0. Call ∆(Bk) the boundary of Bk. The two following statements are equivalent:

(i) There is no circuit of Ck that is a circuit of G′
p,

(ii) There is at least one vertex u ∈ ∆(Bk) with |C(Gp, u)| = ∞.



116 CHAPTER 2. RELATED TOPICS

Therefore

P
(
∪u∈∆(Bk){|C(Gp, u)| = ∞}

)
= P

(
∩c∈Ck{c is not a circuit of G′

p}
)

= 1− P
(
∪c∈Ck{c is a circuit of G′

p}
)

≥ 1−
∑

c∈Ck

P
(
{c is a circuit of G′

p}
)
. (2.29)

A given circuit of length n occurs in the dual random percolation graph G′
p with

probability (1− p)n and therefore

∑

c∈Ck

P
(
{c is a circuit of G′

p}
)
≤

∞∑

n=4k

nσ(n− 1)(1− p)n ≤ 4

9

∞∑

n=4k

(3(1− p))nn .

(2.30)
If p > 2

3
, the series

∑∞
n=1(3(1− p))nn converges, and therefore, for k large enough,

4
9

∑∞
n=4k(3(1 − p))nn < 1. From this and (2.29), we obtain that for large enough

k,
P
(
∪u∈∆(Bk){|C(Gp, u)| = ∞}

)
> 0

which implies that P (|C(Gp, 0)| = ∞) > 0 since there is a positive probability
that there exists in Gp a path from the origin to any point of the boundary of Bk.
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