
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Admission Shaping with Network Calculus
Anne Bouillard

Abstract—Several techniques can be used for computing de-
terministic performance bounds in FIFO networks. The most
popular one, as far as Network Calculus is concerned, is Total
Flow Analysis (TFA). Its advantages are its algorithmic efficiency,
acceptable accuracy and adapted to general topologies. However,
handling cyclic dependencies is mostly solved for token-bucket
arrival curves. Moreover, in many situations, flows are shaped at
their admission in a network, and the network analysis does not
fully take advantage of it. In this paper, we generalize the ap-
proach to piece-wise linear concave arrival curves and to shaping
several flows together at their admission into the network. We
show through numerical evaluation that the performance bounds
are drastically improved.

Index Terms—Network calculus, FIFO multiplexing, perfor-
mance evaluation, shaping.

I. INTRODUCTION

With the development of time-sensitive networks, it be-
comes necessary to compute reliable delay bounds in net-
works. To this aim, Network Calculus is a theory able to
guarantee delay upper bounds. In broad strokes, two types of
results are useful for computing accurate bounds: a) refined
modeling of the network elements, especially for multi-class
switches; b) accurate FIFO analysis, to compute delay bounds
within one class of traffic. In this paper, we focus on the later
type.

In Network Calculus, several methods have been studied for
computing performance bounds in FIFO networks: Least Up-
per Delay Bounds (LUDB) [1], Total Flow Analysis (TFA) [6],
[9], Linear Programming (LP) [4], [2]. While LUDB applies to
very restrictive settings (token-bucket arrival curves), TFA and
LP can handle more general arrival curves, link-shaping [6]
and cyclic dependencies [2], [9].

TFA is the most popular method, due to its algorithmic
efficiency, and can, in some cases, be quite accurate compared
to the more complex LP methods. While any arrival curve
can be used in feed-forward networks, using tools dedicated
to the fast computation of the Network Calculus operations,
like Nancy [10], analyzing networks with cyclic dependencies
is usually restricted to token-buckets arrival curves. Indeed, a
fixed point on the arrival curves needs to be computed, and
in case of token-bucket, this boils down to computing a fixed
point of the burst parameters, as FP-TFA in [7] or using LP
in [2]. Recently, FP-TFA has been upgraded to very general
shapes of curves in [8].

However, these works do not consider that several flows may
be shaped together at the admission in the network, either due
to some previous analysis or some admission control. Only

A. Bouillard is a researcher at the Paris Research Center of Huawei
Technologies France, 18, quai du Point du Jour, 92100 Boulogne-Billancourt,
France e-mail: anne.bouillard@huawei.com.

considering this shaping as an arrival curve at the entrance of
the network may not be enough to get accurate performances.

In this paper we generalize the LP-based fixed point ap-
proach in two directions: 1) when the arrival curve is a com-
bination of token-buckets (that is, piece-wise linear concave);
2) when the admission into the network is regulated, hence
several flows are shaped together. We show that, especially
with the admission shaping, the performance bounds are
drastically improved.

The paper is organized as follows: in Section II we describe
our model as well as the state-to-the-art TFA method, then in
Section III, we present our contribution, and in Section IV,
we illustrate how our approach improves the delay guarantees
through numerical evaluation.

II. NETWORK CALCULUS AND TOTAL FLOW ANALYSIS

Network Calculus [5], [3] is a theory developed for com-
puting worst-case performance upper bounds, such as end-
to-end delays or backlogs. This section is devoted to a brief
presentation of the model and of the TFA analysis.

A. Process and server model

A process 𝐴 : R+ → R+ is a non-decreasing function where
𝐴(𝑡) represents the amount of data transiting through a point
of a network before time 𝑡. It is constrained by an arrival
curve 𝛼, if for all 0 ≤ 𝑠 ≤ 𝑡, 𝐴(𝑡) − 𝐴(𝑠) ≤ 𝛼(𝑡 − 𝑠). In
other words, 𝛼(𝑡) represents the maximum of data that can
transit during a time interval of length 𝑡. The most classical
family of functions for the arrival curves is the token-bucket:
𝛾𝑏,𝑟 : R+ → R; 𝑡 ↦→ 𝑏 + 𝑟𝑡1. The parameter 𝑏 is called the
burst and 𝑟 the arrival rate.

A server is a relation between an arrival process 𝐴 and
departure process 𝐷. It is described by a service curve 𝛽 and
a shaper 𝜎. On the one hand, the service curve 𝛽 is a guarantee
on the amount of data that can be served during time intervals:
𝐷 ≥ 𝐴∗𝛽, with for all 𝑡 ≥ 0, 𝑓 ∗𝑔(𝑡) = inf0≤𝑠≤𝑡 𝑓 (𝑠)+𝑔(𝑡−𝑠).
On the other hand, the shaper 𝜎 represents the physical
limitation, for example the link capacity, and bounds the
maximum amount of data that can be transmitted to the next
server (that is, 𝜎 is an arrival curve for 𝐷). The most classical
family of functions for the service curve is the rate-latency
curve: 𝛽𝑅,𝑇 : R+ → R; 𝑡 ↦→ 𝑅(𝑡 −𝑇)+, and token-bucket curve
𝛾𝐿,𝐶 for the shaper, where in particular 𝐶 represents the link
capacity, and 𝐿 is usually the maximum packet length.

Usually, several processes are multiplexed in a server. We
assume that data is served in its arrival order (FIFO). The
aggregation of processes 𝐴1, . . . , 𝐴𝑚 is

∑𝑚
𝑖=1 𝐴𝑖 . We will also

1This function is usually defined with 𝛾𝑏,𝑟 (0) = 0. Here the results will
not be changed by taking the simplified version, but will be easier to express.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

assume admission-shaping: several flows, e.g., 𝐴1, . . . , 𝐴𝑚 can
be constrained by an arrival curve 𝛼 at their entrance in the
network. This means that

∑𝑚
𝑖=1 𝐴𝑖 has arrival curve 𝛼.

We are interested in computing a) a worst-case delay bound
in a server; b) an arrival curve for the departure processes from
the server (of individual flows or groups of flows).

Theorem 1 ([3]). Consider a FIFO server offering a service
curve 𝛽 and shaper 𝜎. Assume an arrival process 𝐴 to the
server with arrival curve 𝛼, that 𝐴 is the aggregation of two
processes 𝐴1 and 𝐴2: 𝐴 = 𝐴1+ 𝐴2, and that 𝛼1 is a constraint
for process 𝐴1. Then,
• the horizontal distance between 𝛼 and 𝛽 is 𝑑, an upper

bound of the worst-case delay of the process: 𝑑 =

ℎ(𝛼, 𝛽) := sup{𝑢 ≥ 0 | ∃𝑡 ≥ 0, 𝛼(𝑡) > 𝛽(𝑡 + 𝑢)};
• an arrival curve for the departure process of process 𝐴1

is 𝛼1 (· + 𝑑) ∧ 𝜎, with 𝑓 (· + 𝑑) : 𝑥 ↦→ 𝑓 (𝑥 + 𝑑).

The horizontal distance, hence the delay, can be computed
by the mathematical program max{t− s | 𝛼(s) > 𝛽(t)}. When
𝛼 and 𝛽 are respectively piece-wise linear concave and convex,
this is a LP, the strict inequality is not needed, and it becomes

max{t − s | 𝛼(s) ≥ A = D ≥ 𝛽(t)}. (1)

We introduce the variables A and D respectively representing
the values of the processes at some times, 𝐴(𝑠) and 𝐷 (𝑡), they
will be used in the next LPs.

B. Network Model

• There are 𝑛 FIFO servers numbered from 1 to 𝑛. Server
𝑗 offers service curve 𝛽 𝑗 and is a 𝜎𝑗 -shaper.

• There are 𝑚 flows numbered from 1 to 𝑚. Each flow 𝑖

has an arrival curve 𝛼𝑖 and follows a path (sequence of
servers) 𝜋𝑖 = ⟨𝜋𝑖 (1), . . . , 𝜋𝑖 (|𝜋𝑖 |)⟩. We denote by 𝛼𝑖, 𝑗 the
arrival curve at the output of server 𝑗 ∈ 𝜋𝑖 .

• There are 𝑝 admission-shapers. We denote P𝑎𝑑𝑚 =

{(𝐼𝑘 , 𝑗𝑘), 𝑘 ≤ 𝑝}, where 𝐼𝑘 the set of shaped flows and
𝑗𝑘 the server at which the flows enter the network. The
sets 𝐼𝑘 are disjoint. The arrival curve of group 𝑘 is 𝛼′

𝑘
.

The underlying graph of the network is a graph whose nodes
are the servers, and the set of edges consists of the pairs of
servers crossed in a row by any flow: 𝐸 = {(𝜋𝑖 (𝑘), 𝜋𝑖 (𝑘 +
1)) | 𝑖 ≤ 𝑚, 𝑘 < |𝜋𝑖 |}. We denote by • 𝑗 (resp. 𝑗•) the set of
predecessors (resp. successors) of 𝑗 in the graph. The set of
flows crossing server 𝑗 is Fl(𝑗) and can be decomposed into
Fl(ℎ, 𝑗) the set of flows following the edge (ℎ, 𝑗) and New(𝑗)
the set of flows entering the network at server 𝑗 .

C. Total Flow Analysis

Let us present the TFA analysis from the state of the art,
that is, when there is no admission-shaping. It relies on the
two results presented in Theorem 1.

For each server 𝑗 , we compute
1) the arrival curve 𝛼 (𝑗) of the arrival process of the

network:

𝛼 (𝑗) =
∑︁
ℎ∈• 𝑗
(𝜎ℎ ∧

∑︁
𝑖∈Fl(ℎ, 𝑗)

𝛼𝑖,ℎ) +
∑︁

New(𝑗)
𝛼𝑖; (2)

2) the worst-case delay bound in the server 𝑑 𝑗 =

ℎ(𝛼 (𝑗) , 𝛽 𝑗);
3) the arrival curve for the departure process of each flow:

for all ℎ ∈ • 𝑗 and all 𝑖 ∈ Fl(ℎ, 𝑗), 𝛼𝑖, 𝑗 = 𝛼𝑖,ℎ (· + 𝑑 𝑗).
Once a delay bound has been computed for all servers, an
end-to-end delay bound for each flow is the sum of the delays
of the servers on its path. If the network is feed-forward,
these operations can be performed in the topological order
of the servers. Otherwise, the functions 𝛼𝑖, 𝑗 are computed
as a fixed point. When 𝛼𝑖 are token-buckets, 𝛼𝑖, 𝑗 as the
same arrival rate as 𝛼𝑖 , and only the burst parameters need
to be computed. It was shown in [9] that the smallest fixed
point of the equation gives valid arrival curves. There can
be multiple equivalent iterative ways to compute it, including
using parallel programming [7]. In [2] it is proved that there
is in fact a unique fixed point, that can be computed using a
linear program.

III. TFA FOR CONCAVE ARRIVAL CURVES AND
ADMISSION-SHAPING

The section presents the contributions: the generalization to
piecewise linear concave arrival curves and admission-shaping.

A. Piecewise linear concave arrival curves

This first generalization is rather straightforward, and it
is enough to introduce additional burst parameters: if 𝛼𝑖 =

minℓ≤ℓ𝑖 𝛾𝑏ℓ ,𝑟ℓ , then for all 𝑑 ≥ 0, 𝛼𝑖 (·+𝑑) = minℓ≤ℓ𝑖 𝛾𝑏ℓ+𝑟ℓ𝑑,𝑟ℓ .
So the only difference is that ℓ𝑖 burst parameters need to be
maintained instead of only one for each flow and server.

B. Admission-shaping propagation

Let us first focus on how the admission-shaping can be prop-
agated to the subsequent servers. Consider (𝐼𝑘 , 𝑗𝑘) ∈ P𝑎𝑑𝑚,
and let 𝑑 𝑗𝑘 be the delay bound of 𝑗𝑘 . In Eq. (2), the last term,
focusing on the entering flows can be changed to∑︁

𝑖∈New(𝑗𝑘)\𝐼𝑘

𝛼𝑖 + (𝛼′𝑘 ∧
∑︁
𝑖∈𝐼𝑘

𝛼𝑖). (3)

It may also be beneficial to propagate these constraints.
However, all flows do not follow the same path. Assume for
example that 𝐼𝑘 = 𝐽1 ∪ 𝐽2, and that the second server of the
flows in 𝐽1 (resp. 𝐽2) is 𝑗1 (resp. 𝑗2). From Theorem 1, an
arrival curve for the flows in 𝐽1 (resp. 𝐽2) at server 𝑗1 (resp.
𝑗2) is then also 𝛼′

𝑘
(·+𝑑 𝑗𝑘). Algorithm 1 gives the flows that can

be shaped together due to the propagation of constraints for
each server (in short, they share a common prefix-path). They
are represented by pairs: the subset of flows concerned and
the server. We also construct an underlying graph. Edges E
record how the pairs are constructed, to allow the propagation
of the constraints.

Initially the pairs P𝑎𝑑𝑚 are given by the model. In loop
(4-10), for each pair, the algorithm looks at the constraints
that can be propagated to the next server: for each successor
ℎ of node 𝑗 , the constraints can be propagated to the subset
of flows following the edge (𝑗 , ℎ) (lines 6-9).

Note that since the sets (𝐼𝑘)𝑘≤𝑝 are disjoint, the graph
(P, E) is a forest with 𝑝 trees, whose roots are P𝑎𝑑𝑚. We

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Algorithm 1: Building the admission-shaping pairs

1 begin
2 P ← P𝑎𝑑𝑚; E ← ∅;
3 P𝑎𝑢𝑥 ← P;
4 while P𝑎𝑢𝑥 ≠ ∅ do
5 Let (𝐼, 𝑗) ∈ P𝑎𝑢𝑥 ;
6 foreach ℎ ∈ 𝑗• do
7 if 𝐼 ∩ Fl(𝑗 , ℎ) ≠ ∅ then
8 P ← P ∪ {(𝐼 ∩ Fl(𝑗 , ℎ), ℎ)};
9 E ← E ∪ {(𝐼, 𝑗), (𝐼 ∩ Fl(𝑗 , ℎ), ℎ)};

10 P𝑎𝑢𝑥 ← P𝑎𝑢𝑥 \ {(𝐼, 𝑗)};
11 Return P

denote by P𝑘 and E𝑘 the nodes and edges in the tree with
root (𝐼𝑘 , 𝑗𝑘).

C. A fixed point equation

In this paragraph, we show how to compute the burst
parameters from one another. Let us first introduce some
notations for the constants and variables of the linear program
to come:

• the arrival curve for flow 𝑖 is 𝛼𝑖 = minℓ≤ℓ𝑖 𝛾𝑏𝑖,ℓ ,𝑟𝑖,ℓ . Then
for all 𝑗 ∈ 𝜋𝑖 , 𝛼𝑖, 𝑗 = infℓ≤ℓ𝑖 𝛾𝑥𝑖, 𝑗,ℓ ,𝑟𝑖,ℓ : the variables 𝑥𝑖, 𝑗 ,ℓ
represent the burst parameters of every linear piece of
arrival curve of flow 𝑖 after server 𝑗 ;

• for each admission-shaping constraint (𝐼𝑘 , 𝑗𝑘) ∈ P𝑎𝑑𝑚,
the shaping constraint is 𝛼′

𝑘
= minℓ≤ℓ′

𝑘
𝛾𝑏′

𝑘,ℓ
,𝑟 ′

𝑘,ℓ
. Then

for all (𝐼, 𝑗) ∈ P𝑘 , 𝛼′
𝐼, 𝑗

= infℓ≤ℓ′
𝑘
𝛾𝑦𝐼, 𝑗,ℓ ,𝑟 ′𝑘,ℓ . The vari-

ables 𝑦𝐼, 𝑗 ,ℓ represent the burst parameter of every linear
piece of the propagation of the admission-shaping after
server 𝑗 ;

• 𝑛 servers with service curve 𝛽 𝑗 = max𝑞≤𝑞 𝑗
𝛽𝑅 𝑗,𝑞 ,𝑇𝑗,𝑞

and
shaping curve 𝜎𝑗 = min𝑞≤𝑞′

𝑗
𝛾𝐿 𝑗,𝑞 ,𝐶 𝑗,𝑞

.

To compute the delay bounds in the network, we need to
compute values for the variables of type 𝑥 and 𝑦. If 𝑥 and 𝑦 at
the input of a server are known, the two paragraphs above
allow to compute the values 𝑥 and 𝑦 at the output of the
server. This defines a function 𝐹 : R𝑁

+ → R𝑁
+ , where 𝑁 be the

total number of variables. From [3, Theorem 12.1], finding a
solution boils down to finding the largest fixed point of the
equation 𝐹 (𝑧) = 𝑧.

Table I details the computation of function 𝐹 with a linear
program. The variables of the LP (in bold) are the time
variables s 𝑗 , t 𝑗 and process variables A𝑖, 𝑗 and D 𝑗 . It follows
the simple mathematical programming of Eq. (1). The main
difference is that the arrival process must be decomposed into
single flows (Arr.), according to their incoming edges (Shap.),
or to the admission shaping pairs (A.-Sh.). Note that from
one set of constraints for server 𝑗 , one can compute its delay
bound, as well as its related variables (burst parameters at the
output of the server). Only the objective is modified. The next
theorem gives a single LP for computing all delays in the
network.

Maximize t 𝑗 − s 𝑗 (𝑑 𝑗)
or 𝑥𝑖,ℎ,ℓ′ + 𝑟𝑖,ℓ′ (t 𝑗 − s 𝑗) (𝑥𝑖, 𝑗,ℓ′)
or 𝑦𝐼,ℎ,ℓ′ + 𝑟𝑘′ ,ℓ′ (t 𝑗 − s 𝑗) (𝑦𝐼′ , 𝑗,ℓ′)
such that 0 ≤ s 𝑗 ≤ t 𝑗 (Time)
∀𝑖 ∈ New(𝑗) , ℓ ≤ ℓ𝑖 A𝑖, 𝑗 ≤ 𝑏𝑖,ℓ + 𝑟𝑖,ℓs 𝑗 (Arr.)
∀𝑖 ∈ Fl(ℎ, 𝑗) , ℓ ≤ ℓ𝑖 A𝑖, 𝑗 ≤ 𝑥𝑖,ℎ,ℓ + 𝑟𝑖,ℓs 𝑗
∀(𝐼, 𝑗) ∈ P𝑎𝑑𝑚, ℓ ≤ ℓ′

𝑘

∑
𝑖∈𝐼 A𝑖, 𝑗 ≤ 𝑏′

𝑘,ℓ
+ 𝑟𝑘,ℓs 𝑗 (A.-Sh.)

∀((𝐼, ℎ) , (𝐼 ′ , 𝑗)) ∈ E𝑘
ℓ ≤ ℓ′

𝑘

∑
𝑖∈𝐼′ A𝑖, 𝑗 ≤ 𝑦𝐼,ℎ,ℓ + 𝑟𝑘,ℓs 𝑗

∀𝑞 ≤ 𝑞 𝑗 D 𝑗 ≥ 𝑅 𝑗,𝑞t − 𝑅 𝑗,𝑞𝑇𝑗,𝑞 (Serv.)
D 𝑗 ≥ 0

∀ℎ ∈ • 𝑗 , 𝑞 ≤ 𝑞′
ℎ

∑
𝑖∈Fl(ℎ, 𝑗) A𝑖, 𝑗 ≤ 𝐿ℎ,𝑞 +𝐶ℎ,𝑞s 𝑗 (Shap.)∑
𝑖 A𝑖 = D 𝑗 (hor. d.)

TABLE I: LP for the delay bound of server 𝑗 , variables 𝑥𝑖, 𝑗 ,ℓ′

and 𝑦𝐼, 𝑗 ,ℓ′ , with (𝐼, 𝑗) ∈ P𝑘′ .

Theorem 2. 𝐹 has a unique fixed point. The delay bounds for
each server in the network can be computed by extracting the
values of the variables d 𝑗 of the LP of Table II.

Proof. Let us first have a look at the LP of Table I for
computing each coordinate of 𝐹. We notice that variables 𝑥

and 𝑦 appear a) at most once, as upper bounds in the linear
constraints b) positively in the objective. From [2, Th. 7], this
means that 𝐹 has a unique fixed point, and can be found as
the solution of max{∑𝑁

𝑖=1 𝑧𝑖 | ∀𝑖 ≤ 𝑁, 𝐹𝑖 (𝑧) ≤ 𝑧𝑖}. This is the
linear program of Table II, where the objective is replaced by
the sum of all 𝑥 and 𝑦 variables: the first set of constraints
corresponds to the computation of 𝐹𝑖 and the second set of
constraints to 𝐹𝑖 (𝑧) ≤ 𝑧𝑖 . We see from the different objectives
of Table I that these variables depend positively and linearly
in d. Then the objective can be replaced by optimizing the
sum of the delays. □

Since the fixed point is unique, it can also be computed with
iterative methods, starting from any initial value for variables
of type 𝑥 and 𝑦. The parallelization of iterative scheme, as
described in [7], should hold similarly, starting from null
values for 𝑥 and 𝑦, because function 𝐹 is non-decreasing.

Maximize
∑

𝑗 d 𝑗

such that for all server 𝑗 0 ≤ s 𝑗 ≤ t 𝑗
d 𝑗 = t 𝑗 − s 𝑗

∀𝑖 ∈ New(𝑗) , ℓ ≤ ℓ𝑖 A𝑖, 𝑗 ≤ 𝑏𝑖,ℓ + 𝑟𝑖,ℓs 𝑗
∀𝑖 ∈ Fl(ℎ, 𝑗) , ℓ ≤ ℓ𝑖 A𝑖, 𝑗 ≤ x𝑖,ℎ,ℓ + 𝑟𝑖,ℓs 𝑗
∀(𝐼, 𝑗) ∈ P𝑎𝑑𝑚, ℓ ≤ ℓ′

𝑘

∑
𝑖∈𝐼 A𝑖, 𝑗 ≤ 𝑏′

𝑘,ℓ
+ 𝑟𝑘,ℓs 𝑗

∀((𝐼, ℎ) , (𝐼 ′ , 𝑗)) ∈ E𝑘 , ℓ ≤ ℓ′
𝑘

∑
𝑖∈𝐼′ A𝑖, 𝑗 ≤ y𝐼,ℎ,ℓ + 𝑟𝑘,ℓs 𝑗

∀𝑞 ≤ 𝑞 𝑗 D 𝑗 ≥ 𝑅 𝑗,𝑞t − 𝑅 𝑗,𝑞𝑇𝑗,𝑞

D 𝑗 ≥ 0
∀ℎ ∈ • 𝑗 , 𝑞 ≤ 𝑞′

ℎ

∑
𝑖∈Fl(ℎ, 𝑗) A𝑖, 𝑗 ≤ 𝐿ℎ,𝑞 +𝐶ℎ,𝑞s 𝑗∑
𝑖 A𝑖 = D 𝑗

∀𝑖 ∈ Fl(ℎ, 𝑗) , ∀ℓ ∈ ℓ𝑖 x𝑖, 𝑗,ℓ ≤ x𝑖,ℎ,ℓ + 𝑟𝑖,ℓd 𝑗

∀((𝐼, ℎ) , (𝐼 ′ , 𝑗)) ∈ E𝑘 , ∀ℓ ≤ ℓ′
𝑘

y𝐼′ , 𝑗,ℓ ≤ y𝐼,ℎ,ℓ + 𝑟 ′𝑘,ℓd 𝑗

TABLE II: Linear program for computing all delays.

The number of variables grows linearly with the number of
token-buckets in the description of the system, so the LP of
Table II can also be solved in polynomial time.

IV. NUMERICAL EVALUATION

Let us consider a unidirectional ring of 𝑛 servers. The edges
of the underlying graph are {(𝑖, 𝑖 + 1), 𝑖 < 𝑛} ∪ {(𝑛, 1)}. End-
stations connected to that ring send packets along the whole

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

10 15 20 25 30 35 40 45
access link rate (Mbps)

0.14

0.16

0.18

0.20

0.22

0.24

en
d-
to
-e
nd

 d
el
ay

 (m
s)

arrival curve
access link
arrival curve + access link

(a)

5

4 3

2

16

Up

Down

(b)

35 40 45 50 55 60
shaping rate (Mbps)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

en
d-

to
-e

nd
 d

el
ay

s (
m

s)

no shaping
no shaping propagation
shaping propagation
ring delay
shaping delay

(c)

Fig. 1: Numerical experiments with 𝑛 = 20 nodes in the ring: (a) Usecase 1: end-to-end delay bound of a flow, with 𝛾4ℓ,4𝑟 ,
𝛾ℓ,𝐶 and 𝛾4ℓ,4𝑟 ∧ 𝛾ℓ,𝐶 , in function of the shaping rate 𝐶. (b) Usecase 2: upstream traffic is shaped and directed from any
node (here node 5) to nodes 1 and 𝑛; downstream traffic from nodes 1 and 𝑛 (here node 1) to any other node. (c) Usecase 2:
end-to-end delay bound comparison of an upstream flow.

ring. The service and shaping rate of the servers is 1 Gbps,
and the latency of the servers is 5 𝜇s.

In the first usecase, each end-station 𝑗 sends 4 packets of
length ℓ =1 kb every 1 ms along the path ⟨𝑖, . . . , 𝑛, 1, . . . 𝑖−1⟩,
𝑖 ≤ 𝑛. The arrival curve from each end-station is then a token-
bucket with rate 4 Mbps and burst 4 kb. Assume that the links
connecting the end-stations to the ring is 𝐶. Then the arrival
curve to the ring can be refined to 𝛼 = 𝛾4ℓ,4𝑟 ∧ 𝛾ℓ,𝐶 , with
𝑟 = 1 Mbps. Figure 1a shows the end-to-end delay bound of
any flow if we assume that arrival curve is token-bucket (𝛾4ℓ,4𝑟
or 𝛾ℓ,𝐶) or 𝛼. We see that considering 𝛼 can capture the better
of both token-buckets and also slightly improves the delay
bounds.

The second use-case illustrates the power of propagating
shaping constraints. Here, we rather consider the ring as an
access-ring, and the upstream traffic arrives according to the
scheme of Figure 1b traffic is generated at end-stations, and
forwarded to the switches of the ring (we assume 8 end-
stations per switch). Upstream traffic’s destination is either
server 1 or 𝑛. The downstream traffic is generated from nodes
1 and 𝑛 to every node. Each switch in the ring has a token-
bucket shaper to regulate the incoming traffic to the ring with
rate 𝐶 and burst ℓ =1 kb.

All flows have a token-bucket arrival curve with rate 4 Mbps
and burst 4 kb. Admission-shaping for the upstream flows
(2 flows) is token-bucket with rate 𝐶 and burst ℓ. For the
downstream (2𝑛 flows from servers 1 and 𝑛), it is token-bucket
with rate 160 Mbps and burst 2ℓ.

Figure 1c shows the end-to-end delay of the longest up-
stream flow obtained as a function of the shaping rate 𝐶

(in red). The delay is the sum of the shaping delay (at the
admission shaper, dotted) and the ring delay, after the shaping
(dashed). Intuitively, the smaller the shaping rate, the larger
the shaping delay and smaller the ring delay. We also compare
the delays without admission-shaping (in blue) and when the
admission-shaping constraints are not propagated (in yellow).
We observe that 1) the delay bounds are greatly reduced
by inserting shapers for admission in the network and are

minimized for 𝐶 = 33.64 Mbps; 2) propagating the shaping
constraints also allows to compute more accurate performance
bounds.

V. CONCLUSION

In this paper, we presented an extension of the TFA algo-
rithms for the analysis of FIFO networks. It takes into account
concave piece-wise linear arrival curves and shaping several
flows at the admission in the network, and is valid for every
topology. We demonstrate that in particular, shaping at the
admission can be beneficial. The propagation of admission-
shaping can also be generalized similarly to the shaping curves
of the servers for flows following a common sub-path. That
could be beneficial in particular for servers with a small link
capacity.

REFERENCES

[1] L. Bisti, L. Lenzini, E. Mingozzi, and G. Stea. Estimating the worst-
case delay in FIFO tandems using network calculus. In ValueTools ’08,
pages 67:1–67:10, 2008.

[2] A. Bouillard. Trade-off between accuracy and tractability of network
calculus in FIFO networks. Perform. Evaluation, 153:102250, 2022.

[3] A. Bouillard, M. Boyer, and E. Le Corronc. Deterministic Network
Calculus: From Theory to Practical Implementation. ISTE, 2018.

[4] A. Bouillard and G. Stea. Exact Worst-Case Delay in FIFO-Multiplexing
Feed-Forward Networks. IEEE/ACM Trans. Netw., 23(5):1387–1400,
2015.

[5] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet, volume LNCS 2050.
Springer-Verlag, 2001. revised version 4, May 10, 2004.

[6] A. Mifdaoui and T. Leydier. Beyond the Accuracy-Complexity Trade-
offs of Compositional Analyses using Network Calculus for Complex
Networks. In 10th International Workshop on Compositional Theory
and Technology for Real-Time Embedded Systems (co-located with RTSS
2017), pages 1–8, 2017.

[7] S. Plassart and J. L. Boudec. Equivalent versions of total flow analysis.
CoRR, abs/2111.01827, 2021.

[8] S. M. Tabatabaee, M. Boyer, J.-Y. Le Boudec, and J. Migge. Efficient
and accurate handling of periodic flows in time-sensitive networks. In
2023 IEEE 29th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 303–315, 2023.

[9] L. Thomas, J.-Y. Le Boudec, and A. Mifdaoui. On Cyclic Dependencies
and Regulators in Time-Sensitive Networks. In IEEE Real-Time Systems
Symposium, RTSS, pages 299–311, 2019.

[10] R. Zippo and G. Stea. Nancy: An efficient parallel network calculus
library. SoftwareX, 19:101178, 2022.

