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Abstract

Stochastic Network Calculus is a probabilistic method to compute performance
bounds in networks, such as end-to-end delays. It relies on the analysis of stochas-
tic processes using formalism of (Deterministic) Network Calculus. However,
unlike the deterministic theory, the computed bounds are usually very loose com-
pared to the simulation. This is mainly due to the intensive use of the Boole’s
inequality. On the other hand, analyses based on martingales can achieve tight
bounds, but until now, they have not been applied to sequences of servers. In this
paper, we improve the accuracy of Stochastic Network Calculus by combining
this martingale analysis with a recent Stochastic Network Calculus results based
on the Pay-Multiplexing-Only-Once property, well-known from the Determinis-
tic Network calculus. We exhibit a non-trivial class of networks that can benefit
from this analysis and compare our bounds with simulation.

Keywords: Stochastic Network Calculus, Martingale, performance evaluation,
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1 Introduction

New communication technologies aim at providing strong end-to-end delay guarantees.

Some of these guarantees can be deterministic, in the sense that all packets must be

transmitted in time less than some predefined value. However, these guarantees are in

some cases too conservative, as the worst-case delay of a packet can be very large and

rarely occurs. To this end, performances of type ”the delay of a packet must be less

than 10ms in 99.99% of the cases” is desired. Examples of applications are industrial

networks, virtual reality, audio and video conferencing networks.

Network Calculus (NC) is a theory that aims at providing performance bounds,

such as end-to-end delays or buffer occupancy for large classes of systems: general

classes of arrival processes and service duration, different service policies, general

topologies. From the seminal work of Cruz (1995), Deterministic Network Calculus

(DNC, Chang (2000); Le Boudec and Thiran (2001); Bouillard et al (2018)) has suc-

ceeded to provide accurate performance bounds in many types of networks (aircraft,

industrial network, time-sensitive networking...). Stochastic Network Calculus (SNC)

takes its root in the works of Yaron and Sidi (1993) and Chang (1994), that respectively

led to the tailbounded and moment-generating-function (MGF)-based SNC.

Several existing SNC analyses.

The tailbounded SNC, analyzed in depth in Liu and Jiang (2008), is based on the

computation of the probability of elementary events, for instance, ”the arrivals during

a given interval of time exceeds b”. The probability that the end-to-end delay satisfies

some deadline is then obtained by the combination of these elementary events. The

analysis of large networks requires a smart combination of these events, see e.g., Ciucu

et al (2006). Bouillard and Nowak (2015) combine advanced results from DNC with

this framework. As such, it can handle many scheduling policies and topologies. In

particular when the stochastic processes involved are independent and have strong
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long-term properties (e.g., the maximum backlog centric model), the performances

scale linearly with the size of the network(Liu and Jiang, 2008, Sec 6.2.6).

The MGF-based SNC is based on the computation of the MGF of the arrival and

service processes. When all these processes are independent, then their MGFs can

easily be combined, making aggregation of flows more accurate than with the tail-

bounded approach, as soon as several random processes are involved (Rizk and Fidler

(2013)). The computation of end-to-end delays however still requires the combination

of elementary events. When processes are independent, the MGF-based SNC leads to

better bounds than the tailbounded SNC. In particular, Ciucu et al (2006) show that

the performance bounds scale in O(n lnn) for a system with n servers in sequence,

crossed by one-hop flows, whereas Fidler (2006) proved a O(n) scale with MGF anal-

ysis. A precise comparison between tailbounded and MGF-based SNC has also been

done in Rizk and Fidler (2013); Fidler and Rizk (2015).

When flows are not independent, the Hölder inequality is used to compute perfor-

mance bounds with MGF-based SNC. Until recently, the analysis of tandem network

also induced the application of some Hölder inequality to handle the dependency

of processes after crossing a common server Nikolaus and Schmitt (2017). A recent

work Bouillard et al (2022), based on the Pay-Multiplexing-Only-Once (PMOO) prin-

ciple Bouillard et al (2008); Schmitt et al (2008), proposes to adapt a result from DNC

in this framework and get rid of the Hölder inequalities for independent processes.

One shared drawback of these two methods is that they strongly rely on the appli-

cation of the union bound (also known as Boole’s inequality), which makes them highly

inaccurate, even for small networks. Some improvements, like flow prolongation Niko-

laus and Schmitt (2020), can be used to reduce the size of the network to analyze,

hence improve the accuracy, but does not allow getting rid of these union bounds.

In order to avoid the use of the union bound, Poloczek and Ciucu (2014) use

a martingale representation for the processes and rely on the Doob’s inequality
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for super-martingales. The delay bounds computed that way are almost tight com-

pared to the simulation. This method generalizes previous works by Duffield (1994)

and Kingman (1964) from queuing theory to several service policies, to very general

arrival processes (Ciucu and Poloczek (2019)) and to systems with replications (Ciucu

et al (2021)). Most works focus on random arrivals with deterministic service. In

contrast, Poloczek and Ciucu (2015) define a service-martingale to extend to stochas-

tic services with applications to wireless connections and random access protocols.

However, this method has been applied only to networks that have no server in

sequence.

Contribution of the paper.

The contribution of this paper is to extend the martingale analysis from Poloczek and

Ciucu (2014) to sequences of servers (called tandem networks). Since it does not seem

possible to define a unique martingale representing the whole tandem network, we

rather focus on the application of the martingale analysis at a server only and combine

it with the recent results related to the MGF-based SNC of Bouillard et al (2022). We

show on small examples the improvements that can be obtained, as well as the limits

of our approach.

Note that another analysis of tandem networks can be founded in the litera-

ture Angrishi and Killat (2011), which is attempted to use sub-martingales for the

analysis of tandem networks, and recently used for the analysis of URLLC (Ultra

Reliable Low Latency Communications) networks Yu et al (2022). Unfortunately, this

approach is not sound, and we explain why as another contribution of this paper.

Organization of the paper.

The paper is organized as follows: in Section 2, we introduce the necessary frame-

work: MGF-based SNC, the class of stochastic models used in this paper, namely
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the Markov-modulated processes (MPP), and a more recent formalization of MGF-

based SNC based on analytical combinatorics and corresponding results on PMOO

analysis from Bouillard et al (2022). In Section 3, we present the main result of the

paper. We start by generalizing Theorem 3 from Duffield (1994) and present a key

theorem for the local application of the Doob’s martingale inequality, and then use it

for the analysis of tandem networks. For the sake of clarity, we explain our approach

through a toy network before giving the general result. In Section 4, we explain why

the analysis of Angrishi and Killat (2011) and Yu et al (2022) is not sound. Finally,

in Section 5, we compare our performance bounds with the simulation and with the

bounds of Bouillard et al (2022).

2 Stochastic Network Calculus framework

In this section we present the necessary framework for our analysis. First, we define

the NC formalism. Second, we specialize it to the MGF-based SNC and to the class

of MMPs. More details can be found in Chang (2000); Fidler (2006). Then we give

a combinatorial presentation of the MGF-based SNC, that allow to present results

from Bouillard et al (2022) on tandem networks.

In the whole paper, we assume time and space are discrete. We deal with bivariate

functions, and always assume that their definition domain is N2
≤ = {(t, u) ∈ N2 | t ≤ u}

and that they are in the set F = {f : N2
≤ → N+ | ∀t ≥ 0, f(t, t) = 0}. The main

notations, defined below, are summarized in Table 1.

2.1 Network Calculus formalism

Arrival processes.

A bivariate process A ∈ F of a flow represents the amount of data of that flow

arrived in the network during any interval of time: let at ∈ N be the amount of data
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t, u, v time variables

Flows and data processes
i,m index of flows, number of flows
at arrivals at time slot t
A, Ai bivariate arrival processes
FA(θ, z) arrival bounding generating function
fi, ℓi first and last servers crossed by flow i
D, Di bivariate departures processes

Service processes
j, n index of a server, number of servers
st service at timeslot t
S, Sj bivariate service processes
FS(θ, z) service bounding generating function

Performance bounds
q(t) backlog at time t
d(t) delat at time t
Fd(θ, z) delay bounding generating function

Generating functions

F (z) =
∑

k∈N fkz
k Generating function associated with sequence (fk)k∈N

rF dominant singularity (or radius of convergence) of F

Markov-modulated processes
X , P , π state space, transition matrix, and stationary distribution
φx(θ) MGF associated to state x
ψ(θ) exponential transition matrix,
λ(θ), ν(θ) its largest eigenvalue and associated eigenvector
(σ(θ), ρ(θ)) MGF-based SNC characterization of a processes
M(θ, u, v) martingale representation of a process

Table 1 Table of notations

arriving during the t-th time slot. We define for all t ≤ u, A(t, u) =
∑u−1

v=t av, with

the convention A(t, t) = 0. Consequently, A is additive: A(t, u) +A(u, v) = A(t, v).

S-servers.

Let S ∈ F be a bivariate function. A server is a dynamic S-server if the relation

between its bivariate arrival and departure processes A ∈ F and D ∈ F satisfies for

all t ≥ 0, A(0, t) ≥ D(0, t) ≥ min0≤u≤v A(0, u) + S(u, t).

This notion of dynamic S-server is often too weak to perform network analysis, and

we need the notion of work-conserving S-servers: define st as the amount of service

offered by the server during time slot t. Then the service offered by this server is

S(t, u) =
∑u−1

v=t sv, which defines S as an additive bivariate function of F . If during
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(t, u] the server is never empty (for all v ∈ (t, u], A(0, v) > D(0, v)), then for all

t ≤ v ≤ u, D(v, u) = S(v, u)).

In general, a server is crossed by several flows, with respective arrival and departure

processes Ai and Di, i ∈ {1, . . . ,m} in case of m flows. We say that a server is a

dynamic S-server (resp. a work-conserving S-server) if it is for the aggregated arrival

and departure processes A =
∑m

i=1Ai and D =
∑m

i=1Di. Moreover, we assume that

the system is causal, and we also have for all i ∈ {1, . . . ,m} and all t ≥ 0, Ai(0, t) ≥

Di(0, t).

Performance bounds.

Consider a dynamic S-server and A andD its respective arrival and departure bivariate

processes. The backlog at time t is q(t) = A(0, t) − D(0, t) and the virtual delay at

time t is d(t) = inf{T ≥ 0 | A(0, t) ≤ D(0, t+ T )}.

Theorem 1 (Performance bounds Chang (2000); Fidler (2006)). Let A be a bivariate

process crossing an S-dynamic server. Then

� q(t) ≤ sup0≤s≤tA(s, t)− S(s, t);

� for all T ∈ N, d(t) ≥ T =⇒ ∃u ≤ t, A(u, t) > S(u, t+ T − 1).

We call the delay virtual delay because this is the delay when data exit the system

in their arrival order. This is not necessarily the case when several flows cross the same

system.

2.2 Markov modulated processes and SNC

SNC is the study of systems described above when A and S are described by stochastic

processes, and we want to upper-bound the violation probability (v.p.) of some backlog

or delay, more precisely, P(q(t) ≥ b) and P(d(t) ≥ T ).
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The (σ(θ), ρ(θ)) representations is used to bound these quantities, using MGF-

based SNC. In this paragraph, we first present this (σ(θ), ρ(θ)) characterization, then

define the MMPs, that have a (σ(θ), ρ(θ)) representation and will be used in this paper.

2.2.1 MGF-based SNC and (σ(θ), ρ(θ))-representations

MGF-based SNC mainly uses two probabilistic inequalities: the union bound (or

Boole’s inequality, denoted (UB) in the equations) and Chernoff bounds (∀θ > 0,

P(X ≥ x) ≤ E[eθX ]
eθx

, denoted (CB)), that require computing MGF of a process. For

example, the backlog v.p. would be for all θ > 0,

P(q(t) ≥ b) ≤ P(∃u ≤ t, A(u, t)− S(u, t) ≥ b)
(UB)

≤
∑
u≤t

P(A(u, t)− S(u, t) ≥ b)

(CB)

≤
∑
u≤t

E[eθ(A(u,t)−S(u,t))]e−θb.

Independence between the arrival and service processes (⊥⊥) is a common assump-

tion in MGF-based SNC we make. Hence, we now need to bound the MGFs of A(u, t)

and S(u, t), using the (σ(θ), ρ(θ)) representations.

� An arrival process A is (σA(θ), ρA(θ))-constrained if for all (t, u) ∈ N2
≤, E[eθA(t,u)] ≤

eθ(σA(θ)+ρA(θ)(u−t)).

� A service process is (σS(θ), ρS(θ))-constrained if for all (t, u) ∈ N2
≤, E[e−θS(t,u)] ≤

eθ(σS(θ)−ρS(θ)(u−t)).

Remark 1. � E[eθA(t,u)] is increasing in θ, but might not be finite from some value,

in which case we set σ(θ) = ρ(θ) = +∞;

� −θ is used in the MGF of the service processes instead of θ. This is to upper bound

the arrival processes, and lower bound on the service processes.
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We can now complete the computation of the backlog v.p., as we obtain a geometric

sum (GS):

P(q(t) ≥ b) ≤
∑
u≤t

E[eθA(u,t)]E[e−θS(u,t)]e−θb. (⊥⊥)

≤
∑
u≤t

eθ(σA(θ+ρA(θ)(u−t))eθ(σS(θ)−ρS(θ)(u−t))e−θb (σ, ρ)

≤ eθ(σA(θ)+σS(θ)−b)

1− eθ(ρA(θ)−ρS(θ))
. (GS) (1)

The sum is finite if and only if ρS(θ) > ρA(θ), and in that case, the bound is

valid for all t ∈ N. A system is said stable if for all t, E[q(t)] < ∞. Here, a sufficient

condition is the existence of a positive θ > 0 such that ρS(θ) > ρA(θ).

V.p. for the delay can be obtained similarly or from (Bouillard et al, 2022, Lemma

2), and

P(d(t) ≥ T ) ≤ eθ(σA(θ)+σS(θ)+ρA(θ)−ρS(θ)T )

1− eθ(ρA(θ)−ρS(θ)
. (2)

2.2.2 Markov modulated processes

Many stochastic processes have (σ(θ), ρ(θ)) representations. In this paper, we focus

on the family of MMPs detailed in (Chang, 2000, Chapter 7).

Let us denote by yt the amount of arrival or service at time slot t (yt is either at or

st depending on the context). In short, in an MMP, the amount of data yt at each time

slot t follows the distribution that depends on a state described by a homogeneous

discrete-time Markov chain (MC).

Example 1 (Markov-modulated On-Off process (MMOO)). An MMOO process: the

MC has two states, On and Off. When in the Off state, there is no arrival, and

the amount of arrival when in the On state is generated according to a distribution.
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Conditionally to being in the On state, the amount of data generated is independent of

the past evolution of the process.

More generally, let us consider (X(t))t∈N an ergodic MC on a finite space X , with

transition matrix P and stationary distribution π. Define for all x ∈ X , (Yx(t))t∈N an

i.i.d sequence of random variables (rv) with MGF φx : θ 7→ E[eθYx(0)]. The quantity

Yx(t) represents the number of data generated at time slot t if the MC is in state x.

We assume that (X(t))t∈N and (Yx(t))t∈N, x ∈ X are mutually independent.

Example 2 (MMOO process (continued)). The Markov chain (X(t))t∈N has two

states: X = {Off, On}. Its transition matrix and stationary distribution are given by

P =

 1− p p

q 1− q

 and π =

(
q

p+ q
,

p

p+ q

)
.

There is no data generated in state Off, so φOff(θ) = 1 for all θ ∈ R. If for example

data are generated according to a Poisson process of intensity µ in state On, then

φOn(θ) = eµ(e
θ−1) for all θ ∈ R.

The sequence (yt)t∈N, with yt = YX(t)(t) for all t ∈ N is an MMP.

In this paper, we assume that the process is stationary: X(0) is distributed accord-

ing to the stationary distribution π and then, for all t ∈ N, X(t) is also distributed

according to π: πP = π.

As a consequence, for all T ∈ N, the time-reversed process (X(T − t))t≤T is a

MC. By Kolmogorov’s extension one can extend this process to (X(T − t))t∈N. This

process is also an ergodic MC with stationary probability π, and transition matrix

P r = (π(j)π(i)Pj,i)i,j∈X .

MMOO process: A two-state ergodic MC is time-reversible and that P r = P .

The exponential transition matrix associated to the MMP is ψ(θ) =

(P r
i,jφj(θ))i,j∈X . For all values of θ such that ψ(θ) is finite, this matrix is primitive,

and from the Perron-Frobenius theorem,
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� ψ(θ) has an eigenvalue λ(θ) that is strictly positive, and strictly larger in mod-

ulus than any other eigenvalue of ψ(θ). This eigenvalue is simple (its associated

eigenspace has dimension 1);

� the unique right-eigenvector ν(θ) associated to λ(θ) and satisfying ⟨ν(θ), π⟩ =∑
x∈X πxν(θ)x = 1 is strictly positive (all its coefficients are strictly positive).

MMOO process: For the MMOO process, we have

ψ(θ) =

 1− p peµ(e
θ−1)

q (1− q)eµ(e
θ−1)

 .

The spectral analysis is left to the interested reader, that can refer to (Chang, 2000,

Ex. 7.2.7).

We say that an arrival process A is generated by an MMP if there exists an

MMP (at)t∈N such that for all (t, u) ∈ N2
≤, A(t, u) =

∑u−1
i=t ai, and similarly for a

work-conserving S-server.

In the following we will consider several arrival processes Ai and servers Sj . The

quantities defined above will be indexed by Ai or Sj accordingly.

(σ(θ), ρ(θ))-characterization of a process

If an arrival process A is generated by an MMP with exponential transition matrix

ψA(θ), then from (Chang, 2000, Ex. 7.2.7),

� ρA(θ) =
1
θ lnλA(θ) and

� a simple adaptation of (Beck, 2016, Chapter 10) to the special case of stationary

processes shows that σA(θ) =
1
θ ln

(
1

minx∈X νA(θ)x

)
.

Similarly, if a service process S is generated by an MMP with exponential transition

matrix ψS(θ), then ρS(θ) = − lnλS(−θ)
θ and σS(θ) =

1
θ ln

(
1

minx∈X νS(−θ)x

)
.
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2.3 Analytic combinatorics and (σ, ρ)-representation

In this paragraph, we use generating functions (GFs) from analytic combinatorics

(Sedgewick and Flajolet (1996)) also used in Bouillard et al (2022). GFs allow more

compact and general characterizations than the traditional (σ(θ), ρ(θ)) representa-

tions, in particular for representing servers in tandem. We first give an example

explaining the use of a more general representation than (σ(θ), ρ(θ)). Then we provide

a generalization that uses GFs, and the computation of performance bounds.

2.3.1 Processes without a (σ(θ), ρ(θ)) representation

Let us anticipate on Theorem 4 (cf. Paragraph 2.4), and consider two work-conserving

servers in tandem. The end-to-end dynamic server of this tandem is characterized by

a product of geometric series: assume S1 and S2 the respective service processes of the

two work-conserving servers having the same (σ(θ), ρ(θ) representation. The end-to-

end service is then ∀(u, t) ∈ N≤, Se2e(u, t) ≥ infu≤v≤t S1(u, v) + S2(v, t). We use the

the union bound to upper-bound E[e−θSe2e(u,t)]:

E
[
e−θSe2e(u,t)

]
≤ E

[
e−θ(infu≤v≤t S1(u,v)+S2(v,t))

]
= E

[
sup

u≤v≤t
e−θ(S1(u,v)+S2(v,t))

]
≤

∑
u≤v≤t

E
[
e−θ(S1(u,v)+S2(v,t))

]
(UB)

≤
∑

u≤v≤t

eθ(2σ(θ)−ρ(θ)[v−u+t−v])
(⊥⊥),(σ,ρ)

=
∑

u≤v≤t

eθ(2σ(θ)−ρ(θ)(t−u)) = (t− u+ 1)eθ(2σ(θ)−ρ(θ)(t−u)). (3)

The bound given in Eq. (3) for the Se2e-dynamic server is not a (σ(θ), ρ(θ))-

representation. However, similar to the (σ(θ), ρ(θ))-framework, E[e−θSe2e(u,t)] depends
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only on the time variables by their difference:

E[e−θSe2e(t,t+k)] ≤ (k + 1)eθ(2σ(θ)−ρ(θ)k = [zk]
e2θσ(θ)(

1− e−θρS(θ)z
)2 ,

where [zk]G(z) is the k-th term of the GF G.

2.3.2 Bounding generating functions

Generating functions

Let f = (fk)k∈N be a non-negative sequence. The GF associated to f is F (z) =∑
k∈N fkz

k, and fk = [zk]F (z) denotes the k-th term of the sequence. An important

example is the geometric sequence: for all k ∈ N, fk = rk and F (z) =
∑

k∈N(rz)
k =

(1− rz)−1.

Analytic combinatorics is a branch of combinatorics. For a collection of combinato-

rial objects, fk corresponds to the number of objects of size k. The idea is to represent

this collection by the function F (z) =
∑

k∈N fkz
k, the GF. One advantage of GF is

the close relation between the asymptotic behavior of the sequence and the singulari-

ties of its GF. The radius of convergence (or dominant singularity) of F is defined by

rF = sup{z ≥ 0 |
∑

k∈N fkz
k <∞}. One important result is that if F has a dominant

singularity of multiplicity 1, then fk ∼k→∞ cr−k
F for some constant c (Sedgewick and

Flajolet, 1996, Ch. 5). This can be checked for the example of the geometric series

F (z) = (1− rz)−1, whose unique (hence dominant) singularity is r−1.

Bounding generating functions for processes

An arrival process has the arrival bounding generating function (arrival bgf) FA(θ, z)

if for all k ∈ N, for all t ∈ N, E[eθA(t,t+k)] ≤ [zk]FA(θ, z). When A has a (σA(θ), ρA(θ))

representation, then FA(θ, z) = eθσA(θ)

1−eθρA(θ)z
is an arrival bgf of A. Its radius of

convergence is rA(θ) = e−θρA(θ).
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Similarly, a service process has the service bounding generating function (service

bgf) FS(θ, z) if for all k ∈ N, for all t ∈ N, E[e−θS(t,t+k)] ≤ [zk]FS(θ, z). If S is

(σS(θ), ρS(θ))-characterized, then , FS(θ, z) = eθσS(θ)

1−e−θρS(θ)z
. Its radius of convergence

is rS(θ) = eθρS(θ).

Cauchy product of geometric series

In Eq. (3), we recognize the Cauchy product of two sequences (the MGFs of the

service processes): the Cauchy product of (fk)k∈N and (gk)k∈N is (hk)k∈N with hk =∑k
k′=0 fk′gk−k′ for all k ∈ N. An important result from analytical combinatorics is that

the GF of the Cauchy product is the product of the GFs: H(z) = F (z)G(z). Applying

this to the product of n geometric series translates into the following equalities: for all

α1, . . . , αn ∈ (0, 1),

∑
k1,...,kn≥0

k1+···+kn=k

n∏
j=1

α
kj

j = [zk]

n∏
j=1

1

1− zαj
and

∑
k1,...,kn≥0

n∏
j=1

α
kj

j =

n∏
j=1

1

1− αj
. (4)

2.3.3 Bounding performance using generating functions

Defining a delay bounding generating function (delay bgf) of a process as a generating

function Fd(z) such that for all T ≥ 0, P(d(t) ≥ T ) ≤ [zT ]Fd(z) also allows more

compact representations. Since the backlog v.p. P(q(t) ≥ b) has a simpler expression,

we do not define one for the backlog.

We can state the theorem for performance computation.

Theorem 2 ((Bouillard et al, 2022, Corollary 3 and Lemma 2)). Consider a dynamic

S-server offering a service bounded by the service bgf FS(θ, z) and crossed by a flow

with bivariate process A that is (σA, ρA)-constrained. Assume independence between

the arrival and service processes. For all θ such that rA(θ)rS(θ) > 1,

1. Backlog v.p. bound: P(q(t) ≥ b)≤e−θbeθσA(θ)FS(θ, e
θρA(θ)).

2. Delay bgf: Fd(θ, z) = eθσA(θ) e
θρA(θ)FS(θ,eθρA(θ))−zFS(θ,z)

1−ze−θρA(θ) .
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Remind that rA(θ) = e−θρA(θ) and rS(θ) = eθρS(θ). It is shown in (Duffield, 1994,

Lemma 1) that in the stationary regime f : θ 7→ lnE[eθ(a1−s1)] = − ln(rA(θ)rS(θ)) is

convex on its definition set, and f(0) = 0. Consequently (Duffield, 1994, Lemma 2),

there exists θ > 0 satisfying rA(θ)rS(θ) > 1 (i.e., f is decreasing on some interval

[0, x]) if and only if f ′(0) < 0, that is E[a1] − E[s1] < 0: there are in average fewer

arrivals than the service offered, and the system is said stable.

We set θ∗ = sup{θ ≥ 0 | rA(θ)rS(θ) > 1}. This value can be +∞ in case the

arrivals are almost surely less than the services at each time step.

In the particular case of a (σS(θ), ρS(θ))-characterized dynamic server, FS(θ, z) =

eθσS(θ)

1−e−θρS(θ)z
, and the condition rA(θ)rS(θ) > 1 also reads ρA(θ)−ρS(θ) < 0 or ρS(θ) >

ρA(θ). For all θ < θ∗, the delay bgf is

Fd(θ, z) =
eθ(σA(θ)+σS(θ)+ρA(θ))

1− e−θ(ρS(θ)−ρA(θ))
· 1

1− ze−θρS(θ)
,

and the backlog and delay v.p. are exactly those in Equations (1) and (2).

We can observe that the v.p depends on the choice of θ that needs to be optimized.

For a fixed value of θ, the v.p. of the backlog decreases exponentially fast with rate

θ. The higher the value of θ, the higher the decay rate, but the denominator that

decreases to 0 when θ approaches θ∗.

2.4 Tandem network model

In this paragraph, we describe our model of tandem network. Examples are given in

Figure 1.

(a)
1 21

(b)
1 2 31

2

3

Fig. 1 Examples of network: (a) two-server tandem; (b) interleaved tandem.

Assumption 1 (Topology). The notations will be used throughout the paper.
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(H1) The network is composed of n servers, numbered from 1 to n. Each server j is a

Sj-work-conserving server. We assume FIFO per-flow and arbitrary multiplexing:

there is no assumption about the service order of data, except that data from the

same flow are served in their arrival order.

(H2) There are m flows circulating in the network, numbered from 1 to m. For all flow

i, there exist fi ≤ ℓi ∈ Nn, such that flow i crosses servers fi, fi + 1, . . . , ℓi. We

denote by Ai the bivariate arrival process of flow i. We write i ∈ Fl(j) if flow i

crosses server j.

(H3) Flow 1, for which we are going to compute performance bounds and is then also

called the flow of interest, crosses the whole tandem network (f1 = 1 and ℓ1 = n).

PMOO’s technique consists in computing an end-to-end dynamic server for flow 1

in order to guarantees its performances. The formula, intuitively obtained by removing

the cross traffic when it interferes with flow 1, is given in next theorem.

Theorem 3 (End-to-end dynamic server (Bouillard et al, 2022, Theorem 6)). With

the notations and assumptions (H1)–(H3), the end-to-end service offered to flow 1 is

a dynamic Se2e-server with ∀0 ≤ t1 ≤ tn+1 and [·]+ = max(·, 0),

Se2e(t1, tn+1) =
[

inf
tj≤tj+1,
1≤j≤n

n∑
j=1

[Sj(tj , tj+1)]−
m∑
i=2

Ai(tfi , tℓi+1)
]
+
.

Example 3. Dynamic end-to-end servers for the networks (a) and (b) of Figure 1 are:

� S
(a)
e2e(t1, t3) = [inft1≤t2≤t3 S1(t1, t2) + S2(t2, t3)]+ and

� S
(b)
e2e(t1, t4) = [inft1≤t2≤t3≤t4 S1(t1, t2) + S2(t2, t3) + S3(t3, t4) − A2(t1, t3) −

A3(t2, t4)]+.

In the latter example, the end-to-end service considers the service of server j on the

time interval [tj , tj+1]. The arrival process of flow 2 is taken into account on the time
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interval [t1, t3], which corresponds to the periods concerning servers 1 and 2, which

are precisely the servers on the path of flow 2.

Assumption 2 (Processes). We make the following assumptions on the processes:

(H4) arrival processes (Ai)
m
i=1 and service processes (Sj)

n
j=1 are stationary MMPs, with

notations explained in Paragraph 2.2;

(H5) arrival processes (Ai)
m
i=1 and service processes (Sj)

n
j=1 are mutually independent.

We now can give a bound of the end-to-end service using a service bgf.

Theorem 4 (End-to-end service bgf (Bouillard et al, 2022, Theorem 8)). With

notations and assumptions (H1)–(H5), a service bgf for flow 1 is

FSe2e
(θ, z) = eθ(

∑m
i=2 σAi

(θ)+
∑n

j=1 σSj
(θ))

n∏
j=1

1

1− e−θ(ρSj
(θ)−

∑
i∈Fl(j)\{1} ρAi

(θ))z
.

Theorem 4 is obtained from Theorem 3 by bounding the MGF of the end-to-

end service E[e−θSe2e(t,t+k)] for each interval length k. MGF-based SNC uses the

union bound to replace the expectation of a maximum (the infimum transforms into a

supremum because of the ”−θ” MGF of a service process) as a sum of the expectations.

The sum of products of expectations then translate into Cauchy products of series,

and the product of the GFs (see Eq. (4)).

Example 4. Service bgf for the end-to-end servers of networks (a) and (b) of Figure 1

are (dependencies in θ are omitted in the second example for the sake of concision):

� F
S

(a)
e2e

(θ, z) = FS1
(θ, z) ·FS2

(θ, z) = e
θ(σS1

(θ)+σS2
(θ))(

1−e
−θρS1

(θ)
z
)(

1−e
−θρS2

(θ)
z
) is the product of the

two service bgfs of the work-conserving servers and

� F
S

(b)
e2e

(θ, z) = e
θ(σS1

+σS2
+σS3

+σA2
+σA3

)(
1−e

−θ(ρS1
−ρA2

)
z
)(

1−e
−θ(ρS2

−ρA2
−ρA3

)
z
)(

1−e
−θ(ρS3

−ρA3
)
z
) can be inter-

preted as the product of the three residual servers, when the arrival processes of the

cross traffic is removed from the service.
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Stability and bottlenecks

Consider a tandem network described as above. This network is stable if the backlog

of flow 1 is bounded in expectation. In our setting, this corresponds to the existence

of θ > 0 such that ∀b ∈ N, P(q(t) > b) ≤ C(θ)e−θb for some constant C(θ) ∈ R+.

When Theorem 4 is combined with the arrival curve for flow 1, the backlog v.p.

bound is

P(q(t) ≥ b) ≤ e−θbeθ(
∑m

i=1 σAi
(θ)+

∑n
j=1 σSj

(θ))∏n
j=1

(
1− e−θ(ρSj

(θ)−
∑

i∈Fl(j) ρAi
(θ))) ,

and is defined for all θ such that rA(θ)rSe2e(θ) > 1. Here, rA(θ) = e−θρA(θ) and the

dominant singularity of Fe2e(θ, z) is

rSe2e
(θ) = min

j∈{1,...,n}
eθ(ρSj

(θ)−
∑

i∈Fl(j)\{1} ρAi
(θ)).

In other words, for all server j, one must have ρSj (θ) >
∑

i∈Fl(j) ρAi(θ). Let us

denote for each server j,

θ∗j = sup
{
θ ≥ 0 | ∀j ∈ {1, . . . , n}, ρSj

(θ) >
∑

i∈Fl(j)

ρAi
(θ)

}
.

The formula for the backlog v.p. is then valid for all θ < θ∗ = minnj=1 θ
∗
j . We call the

bottleneck(s) the server(s) at which this minimum is reached.

3 Tandem analysis with localized use of martingales

In this section, we describe the main contribution of the paper. We extend to the case

of multiple servers the use of martingale in the network calculus framework. As stated

in the introduction, the use of the martingale is localized at one server. Nevertheless,

performance bounds are improved. In this analysis, we rather follow the approach

of Duffield (1994). First, in Paragraph 3.1, we generalize their Theorem 3 to Theorem 5
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that is key for the analysis. Then in Paragraph 3.2, we detail the analysis for the two-

server tandem of Figure 1(a), that is representative enough of the approach. Finally,

we will state the general result, Theorem 6 in Paragraph 3.3.

3.1 Martingales for arrival and service processes

Consider an arrival process A generated by a MMP. Using the notation of Para-

graph 2.2, we can define for all (u, v) ∈ N2
≤,

MA(θ, u, v) = eθA(u,v)−θρA(θ)(v−u)νA(θ)XA(u).

Let FA(u, v) be the σ-algebra generated by (XA(u), . . . , XA(v), au, . . . , av−1).

Lemma 1. For all θ ∈ R such that ψA(θ) is defined, for all (u, v) ∈ N2
≤, {MA(θ, u−

τ, v)}τ∈N is a martingale with respect to the filtration (FA(u− τ, v))τ∈N.

This result is almost a rewriting of Lemma 1 of Duffield (1994) to the specific case

of MMP and is omitted for the sake pf space. However, the complete proof can be

found in Bouillard (2024). The main difference is on that we use bivariate functions

for the service, and then make explicit that the martingale is used in reversed-time. If

A has i.i.d increments, then MA(θ, u, v) = eθA(u,v)−θρA(θ)(v−u).

Similarly, if S is the service process of a work-conserving server generated by a

MMP, we can define for all (u, v) ∈ N≤,

MS(θ, u, v) = e−θS(u,v)+θρS(θ)(v−u)νS(−θ)XS(u).

If FS(u, v) is the σ-algebra generated by (XS(u), . . . , XS(v), su, . . . , sv−1), then for

all θ ∈ R such that ψS(−θ) is defined, for all (u, v) ∈ N2
≤, {MS(θ, u − τ, v)}τ∈N is a

martingale with respect to the filtration (FS(u− τ, v))τ∈N.
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Theorem 5. Consider mutually independent arrival processes (Ai)
m
i=1 and service

process S satisfying Assumptions (H5) − (H6), and (ui, vi)
m
i=0 ∈ (N2

≤)
m+1 and Y a

random variable independent of (Ai)
m
i=1 and S. Define for all τ ∈ N,

Wτ =

m∑
i=1

Ai(ui − τ, vi)− S(u0 − τ, v0).

For all θ ∈ R+ satisfying
∑m

i=1 ρAi
(θ) − ρS(θ) ≤ 0, there exists a constant ξ(Ai),S(θ)

independent of (ui, vi)
m
i=0 such that

P(sup
τ≥0

Wτ ≥ Y ) ≤ ξ(Ai),S(θ)E[e−θY ]eθ(
∑m

i=1 ρAi
(θ)(vi−ui)−ρS(θ)(v0−u0))).

Compared to Theorem 3 of Duffield (1994), we clearly separate the arrival processes

and the service processes. This enables us to consider them from different end point:

while in Duffield (1994), the starting time is 0 and backward processes are implicitly

used, the equivalent would be to set ui = vi = 0 for all i ∈ {0, . . . ,m}. So here, we

introduce more flexibility in the definition of the process (Wτ )τ∈N. Nevertheless, the

proof of Theorem 5 follows the lines of Theorem 3 of Duffield (1994) and is omitted

here for the sake of space. However, it is detailed in Bouillard (2024).

The constant ξ(Ai),S(θ) depends on the MMP of the arrival and service processes.

It can be expressed as ξ(Ai),S(θ) = (inf{ν(θ)x | x ∈ P})−1, where ν(θ) is the tensor

product of the νX(θ)’s, X ∈ {A1, . . . , Am, S} and P is the set of states that have a

positive probability to receive more arrivals than the amount of service offered. When

all processes have i.i.d. increments, then ξ(Ai),S(θ) = 1. More generally, with the choice

of σX(θ) in Paragraph 2.2, we have ξ(Ai),S(θ) ≤ eθ(σS(θ)+
∑m

i=1 σAi
(θ)), with equality if

there can be more arrivals than service in all states.
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3.2 Analysis of a two-server tandem network

We now compute new bounds of the v.p. for the backlog and delay for tandem networks

on the small, yet representative example of Figure 1(a).

3.2.1 Backlog violation probability

Consider the network of Figure 1(a). From Theorems 1 and 3, the v.p. for backlog b is

P(q(t3) ≥ b) ≤ P(∃t1 ≤ t2 ≤ t3, A1(t1, t3)− S1(t1, t2)− S2(t2, t3) ≥ b).

The next computation is done in several steps: first in (5) we partially use the union

bound and sum on all t2, then in (6), we apply Theorem 5 with Y = b + S2(t2, t3),

u0 = u1 = t2, v0 = t2 and v1 = t3. This is valid for all θ ∈ [0, θ∗1 ]. In (7), we use the

(σ(θ), ρ(θ)) representations to bound the expectation, and finally, in (8), we sum all

the terms. The sum is finite for all θ ∈ [0, θ∗2). For all θ ∈ [0, θ∗1 ] ∩ [0, θ∗2),

P(q(t3) ≥ b) ≤ P
(

sup
t1≤t2≤t3

A1(t1, t3)− S1(t1, t2)− S2(t2, t3) ≥ b
)

(UB) ≤
∑
t2≤t3

P
(
sup
t1≤t2

A1(t1, t3)− S1(t1, t2) ≥ b+ S2(t2, t3)
)

(5)

≤
∑
t2≤t3

P
(
sup
τ≥0

A1(t2 − τ, t3)− S1(t2 − τ, t2) ≥ b+ S2(t2, t3)
)

(Th. 5) ≤
∑
t2≤t3

ξA1,S1(θ)e
θρA1

(θ)(t3−t2)E
[
e−θ(b+S2(t2,t3))

]
(6)

(σ,ρ) ≤
∑
t2≤t3

ξA1,S1
(θ)eθρA1

(θ)(t3−t2)−ρS2
(θ)(t3−t2)+σS2

(θ)−b) (7)

(GS) ≤ ξA1,S1
(θ)eθ(σS2

(θ)−b)

1− e−θ(ρS2
(θ)−ρA1

(θ))
. (8)

One can first remark that with slightly modified constant terms, this formula is similar

to the backlog v.p. for the network made only of server 2 and flow 1 (see Eq. (1)).
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This formula can also be compared with the one obtained with the PMOO analysis

from Bouillard et al (2022): ∀θ ∈ [0,min(θ∗1 , θ
∗
2)),

P(q(t) ≥ b) ≤ eθ(σS2
(θ)+σS1

(θ)+σA1
(θ)−b)(

1− e−θ(ρS1
(θ)−ρA1

(θ))
)(
1− e−θ(ρS2

(θ)−ρA1
(θ))

) .
Intuitively, if θ∗1 < θ∗2 (server 1 is the bottleneck), the optimal value taken for the

PMOO formula is around θ∗1 , and the value of 1− e−θ(ρS1
(θ)−ρA(θ)) be very small. The

localized use of the martingale analysis then drastically improves the bound. On the

contrary, if θ∗2 ≤ θ∗1 , the gain is more limited as the optimal value for θ will approach

θ∗2 , and in the two expressions, the factor (1− e−θ(ρS2
(θ)−ρA(θ))) is small resulting in a

large prefactor in both analyses. The gain for the partial use of the martingale is then

approximately (1− e−θ(ρS1
(θ)−ρA1

(θ)))−1 only.

The gain would then be much larger if the application of the martingale analysis

could be localized at server 2. Unfortunately, this seems to be a much more difficult

problem. Indeed, a first attempt for this would be to compute

P(q(t3) ≥ b) ≤
∑
t1≤t3

P
(

sup
t1≤t2≤t3

A1(t1, t3)− S1(t1, t2)− S2(t2, t3) ≥ b
)
.

In this latter expression, the process (S1(t1, t2)+S2(t2, t3))t2∈[t1,t3] is not a martingale,

and the presented approach cannot be applied.

The issue can be solved when the first server is a constant-rate server: there exists

a constant C1 such that for all (t1, t2) ∈ N2
≤, S1(t1, t2) = C1(t2 − t1). Then instead of

fixing t2 for applying Theorem 5 at server 2, one can fix k = t2 − t1. In line (9), t1 is

replaced by t2−k. In line (10), use the constant rate service property: S1(t2−k, t2) =

C1k does not depend on t2. Theorem 5 is then applied in line (11) with u1 = t3 − k,
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and u0 = v0 = v1 = t3.

P(q(t3) ≥ b) ≤ P
(

sup
t1≤t2≤t3

A1(t1, t3)− S1(t1, t2)− S2(t2, t3) ≥ b
)

(UB) ≤
∑
k≥0

P
(
sup
t2≤t3

A1(t2 − k, t3)− S1(t2 − k, t2)− S2(t2, t3) ≥ b
)

(9)

≤
∑
k≥0

P
(
sup
t2≤t3

A1(t2 − k, t3)− S2(t2, t3) ≥ b+ C1k
)

(10)

≤
∑
k≥0

P
(
sup
τ≥0

A1(t3 − k − τ, t3)− S2(t3 − τ, t3) ≥ b+ C1k
)

(Th. 5) ≤
∑
k≥0

ξA1,S2
(θ)e−θ(b−ρA1

(θ)k)e−θC1k (11)

(GS) ≤ ξA1,S2
(θ)e−θb

1− e−θ(ρC1
−ρA1

(θ))
.

Remark that if S2 is also a constant rate-server, and end-to-end server is S1 ∧S2, and

the network can be analyzed as a single-server network.

3.2.2 Delay violation probability

Let us now focus on the computation of the v.p. of the delay, again with the network

of Figure 1(a). Recall that we have, from Theorems 1 and 3,

d(t3−T+1) ≥ T ⇒ ∃t1 ≤ t3 − T, A1(t1, t3−T+1) > inf
t1≤t2≤t3

S1(t1, t2) + S2(t2, t3)

⇒ ∃t2 ≤ t3, sup
t1≤t2∧t3−T

A1(t1, t3−T+1)− S1(t1, t2) > S2(t2, t3).

One can then write, using the union bound,

P(d(t3−T+1) ≥ T ) ≤
∑
t2≤t3

P
(

sup
t1≤t2∧t3−T

A1(t1, t3−T+1)− S1(t1, t2) > S2(t2, t3)
)

=
∑

t2≤t3−T

P
(
sup
t1≤t2

A1(t1, t3−T+1)− S1(t1, t2) > S2(t2, t3)
)

+
∑

t3−T<t2≤t3

P
(

sup
t1≤t3−T

A1(t1, t3−T+1)− S1(t1, t2) > S2(t2, t3)
)
.
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In the last equality, we distinguish two cases, depending on how t2 and t3 − T

compare. We will deal with them separately.

In the first sum sign, that we denote P1, one can apply Theorem 5 with Y =

S2(t2, t3), u0 = u1 = v0 = t2 and v1 = t3 − T + 1. For all θ1 ∈ [0, θ∗1 ] ∩ [0, θ∗2),

P1 ≤
∑

t2≤t3−T

ξA1,S1
(θ1)e

θ1σS2
(θ1)e−θ1(ρS2

(θ1)(t3−t2)−ρA1
(θ1)(t3−T+1−t2))

(GS) ≤
ξA1,S1

(θ1)e
θ1(σS2

(θ1)+ρA1
(θ1)−ρS2

(θ1)T )

1− e−θ1(ρS2
(θ1)−ρA1

(θ1))
.

With slightly modified constant terms, one can recognize the delay v.p. for the network

made only of server 2 and flow 1.

In the second sum sign, that we denote P2, let us apply Theorem 5 with u0 = u1 =

t3 − T , v1 = t3 − T + 1 and v0 = t2. We then obtain for all θ2 ∈ [0, θ∗1 ] ∩ [0, θ∗2),

P2 ≤
∑

t3−T<t2≤t3

ξA1,S1
(θ2)e

θ2σS2
(θ2)e−θ2(ρS1

(θ2)(t2−t3+T )−ρA1
(θ2)+ρS2

(θ2)(t3−t2))

≤ ξA1,S1
(θ2)e

θ2(σS2
(θ2)+ρA1

(θ2)−ρS1
(θ2))

T−1∑
u=0

e−θ2(ρS1
(θ2)(T−1−u)+ρS2

(θ2)(u))

≤ [zT−1]
ξA1,S1(θ2)e

θ(σS2
(θ2)+ρA1

(θ2)−ρS1
(θ2))(

1− e−θ2ρS1
(θ2)z

)(
1− e−θ2ρS2

(θ2)z
) .

We recognize the T − 1-th term of the Cauchy product in Eq. (4), and with slightly

modified constant term, this is the T − 1-th term of the service bgf of the end-to-end

server for flow 1. Finally, the delay v.p. can be bounded by

P(d(t3 − T ) ≥ T ) ≤ ξA1,S1
(θ1)e

θ1(σS2
(θ1)+ρA1

(θ1)−ρS2
(θ1)T )

1− e−θ1(ρS2
(θ1)−ρA1

(θ1))

+ [zT−1]
ξA1,S1(θ2)e

θ2(σS2
(θ2)+ρA1

(θ2)−ρS1
(θ2))(

1− e−θ2ρS1
(θ2)z

)(
1− e−θ2ρS2

(θ2)z
) ,

and to minimize this bound, θ1 and θ2 can be optimized independently.
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This computation suffers from the same limitation as for the backlog: it has not

been possible yet to apply Theorem 5 to the second server directly, unless assuming

that the first server is a constant-rate server.

3.3 Main Theorem for Tandem Networks

In this section, we generalize the computations presented for the two-server tandem.

Following this approach, we apply the martingale analysis (and the Doob’s inequality)

locally at one server, and the union and Chernoff bounds for the other servers. From

the discussion when computing the backlog in the two-server tandem, the martingale

analysis cannot be applied to any server h, and some assumptions have to be fulfilled

by server h.

Assumption 3 (Conditions for martingale analysis at server h). Server h must satisfy

(H6) for all j < h, server j is a constant-rate server, i.e., there exists Cj such that

Sj(u, t) = Cj(t− u);

(H7) for all flow i ∈ Nm, fi ≤ h =⇒ ℓi ≥ h. In other words, no flow arriving before

server h departs before server h.

Assumption (H6) is a direct consequence of the discussion for the two-server back-

log: the martingale part of the analysis can be applied to the second server only if the

first server is constant-rate. Here, (H6) assumes that the all upsteam servers of server

h are constant-rate.

Assumption (H7) also relates to this. Assume for example that flow 2 crosses

server 1 only (as in Figure 2 with only flows 1 and 2). For the viewpoint of flow 1,

server 1 offers the service S1 − A2, which is not constant-rate anymore (unless A2 is

deterministic). Thus, the martingale part of the analysis cannot be applied to server 2.

Now, if flow 2 also crosses server 2, flow 2 can be incorporated in the partial analysis.
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Transforming a network by removing one server

In Section 3.2, the v.p. bound looks like the v.p. bound of a network reduced to the

second server only. This holds more generally: we can separate the part where the

usual MGF-SNF analysis with union bound is used (tandem minus one server) and

where the Doob’s inequality is applied (one server). The tandem network described

next represents the part of the network we analyze with the usual MGF-SNC method.

Consider a tandem network described by the notations in (H1) and (H2). The

tandem network obtained by removing server h is constructed as follows:

� it is made of servers 1, . . . , h− 1, h+ 1 . . . , n;

� for all flow i, its path of flow i is unchanged unless it crosses server h, in case it goes

directly from server h− 1 to server h+ 1;

� flows originally crossing server h only are removed;

� arrival processes and service processes of the remaining flows and servers are

unchanged.

1 31
2

3

Fig. 2 Network obtained from the network in Figure 1(b) after removal of server 2.

For example, the network obtained from Figure 1(b) by removing server 2 is

depicted in Figure 2. The notation S
(−h)
e2e refers to the end-to-end server where server

h has been removed.

We can now state our main result, proved in Section 6.

Theorem 6. Consider a tandem network satisfying notations and assumptions given

in (H1)–(H7), and Θ = [0, θ∗h] ∩ [0, infj ̸=h θ
∗
j ). For all θ, θ1 ∈ Θ and θ2 ∈ [0, θ∗h],
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1. the violation probability of the backlog for flow 1 satisfies

P(q(t) ≥ b) ≤
ξ(Ai)i∈Fl(h),Sh

(θ)e−θσA1
(θ)

eθ(
∑

i∈Fl(h)−H σAi
(θ))

F
S

(−h)
e2e

(θ, eθρA1
(θ))e−θb,

2. a delay bounding generating series for the delay of flow 1 is

ξ(Ai)i∈Fl(h),Sh
(θ1)

eθ1
∑

i∈Fl(h)\H σAi
(θ1)

Fd,Se2e(−h)(θ1, z)

+
ξ(Ai)i∈Fl(h),S(θ2)e

−θ2(ρSh
(θ2)−

∑
i∈Fl(h) ρAi

(θ2))

eθ2(σSh
(θ2)+

∑
i∈Fl(h)\{1} σAi

(θ2))
zFSe2e

(θ2, z),

where H is the set of flows crossing only server h, and the bounding generating

functions are computed as in Theorems 1 and 4.

The v.p. of the backlog is similar to the one with MGF-based SNC obtained by

combining Theorems 1 and 4 when server h is removed. This can be explained as fol-

lows: the end-to-end service bgf FSe2e
(θ, z) in Theorem 4 is the product of n geometric

functions, each representing one server. The product of generating function represents

the Cauchy product of series, and in our case, corresponds to the union bound at

each server. When martingale analysis is used locally at one server, then there is no

union bound for that server, but the union bound is still used for the other servers

and F
(−h)
Se2e

(θ, z) naturally appears. The prefactor is some reorganization of the terms,

and compensating the eθσAi
(θ) that are already taken into account in a different way

in ξ(Ai)i∈Fl(h),Sh
(θ). The pre-factor

ξ(Ai)i∈Fl(h),Sh
(θ)e

−θσA1
(θ)

e
θ(

∑
i∈Fl(h)−H σAi

(θ)) ≤ eθ(σSh
(θ)+

∑
i∈H σAi

(θ)),

which are terms that would appear in the MGF-SNC analysis of the complete

end-to-end tandem, but not when server h is removed.

The v.p. of the delay has two parts. The interpretation of the first term is similar

to the one of the v.p. of the backlog. The second term comes from the case distinction

that was done. In the second case, the sum has a finite number of terms, and the factor
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e−θρA1
(θ) does not appear with a power of some time variables. This means that this

term will be similar to the end-to-end service.

4 An Alternative Analysis with Martingales

Another way of using martingales was attempted in the literature, first in Angrishi and

Killat (2011), and recently used in Yu et al (2022). In this section we briefly explain

why this approach is not sound. More details can be found in Bouillard (2024).

The authors study a tandem network in the absence of cross traffic (m = 1 and

flow 1 crosses all the servers), and where each server j is a work-conserving server with

i.i.d. increments.

To simplify the notations, we adapt Angrishi and Killat (2011) and Yu et al (2022)

to the computation of the backlog v.p. instead of the delay. The first step of the

analysis is:

P(q(tn+1) ≥ b) ≤ P
(
[ sup
t1≤tn+1

A(t1, tn+1)− ρA(θ
∗)(tn+1 − t1)]

+

n−1∑
j=1

[ sup
tj≤tj+1≤tn+1

ρSj
(θ∗)(tj+1 − tj)− Sj(tj , tj+1)]

+ [ sup
tn≤tn+1

ρSn
(θ∗)(tn+1 − tn)− Sj(tj , tj+1)] ≥ b

)
. (12)

The second step is bounding tightly, for all j < n,

Pj = P
(

sup
tj≤tj+1≤tn+1

ρSj (θ
∗)(tj+1 − tj)− Sj(tj , tj+1) ≥ x

)
.

With M̃j(tj+1) = sup0≤tj≤tj+1
e−θ∗(ρSj

(θ∗)(tj+1−tj)−Sj(tj ,tj+1)), the authors then

claim that Pj ≤ ee−θ∗x, and use the inequality E[M̃j(tn+1)] ≤ eE[Mj(0, tn+1)], refer-

ing to Theorem 3.7 by Rao Rao (2007) stating that if (Xt)t∈N is a demi-submartingale,

then for all r > 0, E[ermax0≤u≤t Xu ] ≤ eE[erXt ].
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However, to obtain E[sup0≤tj≤tn+1
Mj(θ

∗, tj , tn+1)] ≤ eE[Mj(θ
∗, 0, tn+1)], one

would require that (sup0≤tj≤tn+1
θ∗(ρSj (θ

∗)(tn+1 − tj) − Sj(tj , tn+1)))tn+1≥0 is a

sub-martingale.

Let us define N(t) = sup0≤u≤t ρSj
(θ∗)(t−u)−Sj(u, t). First, with st = S(t, t+1),

we haveE[N(t+1)|N(t)] = E[N(t)+ρSj
(θ)−st∨0 |N(t)]. But from Jensen’s inequality,

since f : x 7→ e−θ∗x is convex, E[e−θ∗st ] = e−θ∗ρsj
(θ∗) ≥ e−θ∗E[st] and E[st] ≥ ρsj (θ

∗).

So we cannot conclude that N(t) is a sub-martingale (without the maximum with 0,

one could easily conclude that (N(t))t≥0 is on the contrary a super-martingale).

Figure 3 illustrates the incorrect bound, with i.i.d. Poisson distribution with param-

eter 1 and θ∗ = 0.5. The bound ee−θ∗x is depicted in dashed line. In solid lines, the v.p.

Pj in function of x strongly depends on the values of tn+1 is obtained by simulation.

The bounds is less respected as tn+1 increases.

Fig. 3 Illustration of the erroneous bound for Pj in Angrishi and Killat (2011).

5 Numerical Evaluation

In this section, we compare our bounds against simulation and the state of the art. It

has been demonstrated in Bouillard et al (2022) that the PMOO analysis outperforms

by far the other SNC methods from the state-of-the-art. We then only compare against

this method, with two types of experiment: 1) compare the v.p. for different values

of target delays. For this type of experiments, we run 10 independent simulations
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with 108 time steps; 2) use a free parameter (transmission probability or capacity of

a server) and observe the quality of the bound for a v.p. of 10−4. For this type of

experiment, we run one simulation with 107 time steps.

We also chose to only compare the end-to-end delays for the networks. The results

for the backlog bounds show similar comparisons.

5.1 Two-server case

Let us first consider the network of Figure 1(a). Arrivals follow a MMOO process,

With POff,On = 0.7, POn,Off = 0.1, and a Poisson distribution with intensity 2 in the

On state. Services are i.i.d.: server 1 serves 5 packets with probability p, and server 2,

6 packets with probability q (and no service otherwise).

Figure 4(left) compares the v.p. in function of a target delay obtained by simula-

tion, PMOO and with our martingale bound, when p = q = 0.5. Our new methods

improves the PMOO analysis. For example, with a v.p. of 10−4, the simulation delay

is 27, with PMOO 54 and with our method 37. The gap is then reduced by 63%.

In Figure. 4(right), we fix q = 0.5, the v.p. 10−4 and vary p. When p is large,

server 2 is the bottleneck, and the improvement of the martingale analysis is limited

On the contrary, when server 1 is the bottleneck (small values of p), the improvement

becomes large.

Fig. 4 Two-server tandem network with Bernoulli service process. (left) v.p. in function of the target
delay; (right) delay bound in in function of the service probability of server 1.
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Fig. 5 Interleaved tandem network with constant-rate service. (left) v.p. in function of the target
delay; (right) delay bound in function of the capacity of server 2.

1 2 31
2

3

Fig. 6 Example of sink-tree tandem network.

5.2 Interleaved tandem network

Let us now focus on the network of Figure 1(b) and assume servers are constant-rate.

Theorem 6 can be applied for h ∈ {1, 2}. In Figure 5(left), we set the rates of the server

as C1 = 5, C2 = 7 and C3 = 6. The bottleneck is the server 2. The figure compares

simulation, PMOO and the bound obtained by Theorem 6 applied respectively to

server 1 and 2. As expected, the gain is more important when applying the martingale

analysis to server 2.

In Figure 5(right), C2 is varying from 5.5 to 9, so depending on its value, server 1

or server 2 is the bottleneck. When server 2 is the bottleneck (C2 ≤ 7.5), it is better to

to apply the martingale analysis at server 2 and at server 1 when it is the bottleneck

(C2 ≥ 7.5). The reduction of the pessimism gap compared to PMOO ranges from 33%

to 75%. The reduction is the smallest for C = 7.5, when servers 1 and 2 are bottlenecks.
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Fig. 7 Sink-tree tandem network. Violation probability in function of the target delay when server
3 (left) or server 1 (right) is the bottleneck.

5.3 Sink-trees tandem network

A sink-tree tandem network is a tandem network for which all flows end at the last

server, as in Figure 6 use here. Assumption (H6) and (H7) are then always satis-

fied for constant-rate servers. The arrival processes are the same as previously. In

Figure 7(left), the service rates are Ci = 3+ i, i ∈ {1, 2, 3}. In that case, θ∗3 < θ∗2 < θ∗1

and server 3 is the bottleneck, and it is best to to apply the martingale analysis to

server 3 (pessimism gap reduced by more than 50%). Applying it on server 1 or 2 only

marginally improves the bounds.

In Figure 7(right), the service rates are Ci = 3i−1, i ∈ {1, 2, 3}, and θ∗1 < θ∗2 < θ∗3 .

Server 1 is then the bottleneck, and the results are reversed: applying the martingale

at server 1 reduces the pessimism gap the most.

6 Proof of Theorem 6

From Theorem 3, an end-to-end dynamic server for flow 1 is

Se2e(t1, tn+1) =
[

inf
∀j, tj≤tj+1

n∑
j=1

Sj(tj , tj+1)−
n∑

i=2

Ai(tfi , tℓi+1)
]
+
.
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From Theorem 1, one can express the violation of the backlog bound b and the

delay bound T as

q(tn+1) ≥ b⇒ sup
t1≤tn+1

A1(t1, tn+1)− S2e2(t1, tn+1) ≥ b

⇒ sup
1≤j≤n
tj≤tj+1

m∑
i=1

Ai(tfi , tℓi+1)−
n∑

j=1

Sj(tj , tj+1) ≥ b, and

d(tn+1 − T + 1) ≥ T ⇒ ∃t1 ≤ tt+1 − T, A1(t1, tn+1 − T + 1) > Se2e(t1, tn+1)

⇒ ∃t1 ≤ tn+1 − T, ∃t1 ≤ t2 ≤ · · · ≤ tn+1, (13)

A1(t1, tn+1 − T + 1) >

n∑
j=1

Sj(tj , tj+1)−
m∑
i=2

Ai(tfi , tℓi+1).

Let us assume that (H6) and (H7) hold for server h. For fixed values of t1 ≤ · · · ≤ tn+1,

let us define the new notations k1, . . . , kh−1, τ as:

� kj = tj+1 − tj for all j < h;

� τ = th+1 − th.

Using this transformation between variables, we have the equiva-

lence between the two sets {(t1, . . . , tn+1) | t1 ≤ · · · ≤ tn+1} and

{(k1, . . . , kh−1, τ, th+1, . . . , tn+1) | k1, . . . , kh−1, τ ∈ N, th+1 ≤ · · · ≤ tn+1} (see

Figure 8).

t1 t2 t3 th−1 th th+1 th+2 tn+1

k1 k2 kh−1 τ

Fig. 8 Variable change.

33



We use the notation kj
′

j = kj + · · ·+ kj′ , with the convention kj
′

j = 0 if j′ < j. For

example, for a flow i crossing server h, we have

tfi = th+1 −
h∑

j=fi

(tj+1 − tj) = th+1 −
h−1∑
j=fi

kj − τ = th+1 − kh−1
fi

− τ.

Let us also define the setsK = {(k1, . . . , kh−1, th+1, tn+1) ∈ Nn | th+1 ≤ · · · ≤ tn+1}

and Θ = [0, θ∗h] ∩ [0, infj ̸=h θ
∗
j ).

Each computation in the next paragraphs has the main three steps: 1) application

of Theorem 5 for each element of K; 2) summing the terms (union bound); 3) rewriting

and simplifying the formula.

To simplify the formulas for the end of the proof, we introduce the following

notations to group together the quantities related to servers:

� A[h] = (Ai)i∈Fl(h), σA[−h] =
∑

i/∈Fl(h) σAi
, σS>h

=
∑

j>h σSj
;

� for each server j, ρj = ρSj
−
∑

i∈Fl(j) σAi
, ρ′j = ρSj

−
∑

i∈Fl(j)\{1} ρAi
.

For the sake of concision, we will also omit the dependence in θ of the parameters ρ,

σ and ξ.

6.1 Backlog

Step 1: Application of Theorem 5.

For all K = (k1, . . . , kh−1, th+1, . . . tn+1) ∈ K, let us define

WK
τ =

∑
i∈Fl(h)

Ai(tfi , tℓi+1)− Sh(th, th+1)

=
∑

i∈Fl(h)

Ai(th+1 − kh−1
fi

− τ, tℓi+1)− Sh(th+1 − τ, th+1),
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and the random variable

Y K = b+
∑
j ̸=h

Sj(tj , tj+1)−
∑

i/∈Fl(h)

Ai(tfi , tℓi+1)

= b+
∑
j<h

kjCj +
∑
j>h

Sj(tj , tj+1)−
∑

i/∈Fl(h)

Ai(tfi , tℓi+1).

As (H7) holds, for all flow i /∈ Fl(h), fi > h. Moreover processes (Ai)i and (Sj)j

are mutually independent. Therefore, Y K is independent of WK
τ and Theorem 5 can

be applied: for all θ such that ρh(θ) = ρSh
(θ) −

∑
i∈Fl(h) ρAi

(θ) ≥ 0, there exists

ξA[h],Sh
(θ) such that

P(sup
τ≥0

WK
τ ≥ Y K) ≤ ξA[h],Sh

E[e−θY K

]e
θ
∑

i∈Fl(h) ρAi
(tℓi+1−th+1+kh−1

fi
)

≤ ξA[h],Sh
e−θbe

θ
∑

i∈Fl(h) ρAi
(tℓi+1−th+1+kh−1

fi
)
h−1∏
j=1

e−θCjkj

·
n∏

j=h+1

eθ(σSj
−ρSj

(tj+1−tj))
∏

i/∈Fl(h)

eθ(σAi
+ρAi

(tℓi+1−tfi ))

= ξA[h],Sh
e
θ(σS>h

+σA[−h]
)
e−θb

h−1∏
j=1

e−θCjkj

·
∏

i∈Fl(h)

e
θρAi

kh−1
fi

n∏
j=h+1

e−θ(ρSj
(tj+1−tj))

m∏
i=1

eθρAi
(tℓi+1−tfi∨(h+1))

= ξA[h],Sh
e
θ(σS>h

+σA[−h]
)
e−θb

h−1∏
j=1

e−θρjkj

n∏
j=h+1

e−θρj(tj+1−tj)).

To obtain the last equality, we combine all the contributions that include tj+1 − tj or

kj , for each server j. They consists of factors related to the service server j itself and

the arrivals of the flows crossing that server.
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Step 2: Union bound.

Using the right equality of Eq. (4), we obtain the v.p., for all θ ∈ Θ,

P(q(t) ≥ b) ≤ P(∃K ∈ K, sup
τ≥0

WK
τ ≥ Y K)

(UB)

≤
∑
K∈K

P(sup
τ≥0

WK
τ ≥ Y K)

Eq. (4)

≤ ξA[h],Sh
e
θ(σS>h

+σA[−h]
)
e−θb ·

∏
j ̸=h

1

1− e−θρj
.

Step 3: Rewriting terms.

The end-to-end service bgf of flow 1 (cf. Theorem 4) for the tandem network where

server h has been removed is:

FS
e2e(−h)

(θ, z) = eθ(
∑

i/∈H∪{1} σAi
+
∑

j ̸=h σSj
)
∏
j ̸=h

1

1− e−θρ′
jz
,

where H is the set of flows crossing server h only. As a consequence,

F
S

(−h)
e2e

(θ, eθρA1 ) = eθ(
∑

i/∈H∪{1} σAi
+
∑

j ̸=h σSj
)
∏
j ̸=h

1

1− e−θρj
.

Finally, including F
S

(−h)
e2e

(θ, eθρA1 ) in the formulation leads to the desired result:

P(q(t) ≥ b) ≤
ξA[h],Sh

e−θσA1

eθ(
∑

i∈Fl(h)\H σAi
)
F
S

(−h)
e2e

(θ, eθρA1 )e−θb.

6.2 Delay

From Eq. (13), the inequality t1 ≤ tn+1−T is equivalent to τ ≥ th+1−tn+1−kh−1
1 +T

and one can write

d(tn+1 − T + 1) ≥ ⇒ ∃k1, . . . , kh−1 ≥ 0, th+1 ≤ · · · ≤ tn+1,
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sup
τ≥[th+1−tn+1+T−kh−1

1 ]+

(
A1(th+1 − kh−1

1 − τ, tn+1 − T + 1)+

∑
i∈Fl(h),i̸=1

Ai(th+1 − kh−1
fi

− τ, tℓi+1)− Sh(th+1 − τ, th+1)
)
≥

∑
j<h−1

Cjkj +
∑

j>h+1

Sj(tj , tj+1)−
∑

i/∈Fl(h)

Ai(tfi , tℓi+1).

Step 1: Application of Theorem 5.

With t′ = [th+1 − tn+1 + T − kh−1
1 ]+ and τ replaced by τ ′ + t′, let us define for

K = (k1, . . . , kh−1, th+1, . . . , tn+1) ∈ K and τ ′ ≥ 0,

WK
τ ′ = A1(th+1 − kh−1

1 − t′ − τ ′, tn+1 − T + 1)

+
∑

i∈Fl(h)\{1}

Ai(th+1 − kh−1
fi

− t′ − τ ′, tℓi+1)− Sh(th+1 − t′ − τ ′, th+1),

and Y K =
∑

j<h−1 Cjkj +
∑

j>h+1 Sj(tj , tj+1)−
∑

i/∈Fl(h)Ai(tfi , tℓi+1).

The random variable Y K and the process (WK
τ ′ )τ ′≥0 are independent, so by apply-

ing Theorem 5, for all θ such that ρh(θ) = ρSh
(θ)−

∑
i∈Fl(h) ρAi

(θ) ≥ 0, there exists

ξA[h],Sh
(θ) such that

P( sup
τ ′≥0

WK
τ ′ ≥ Y K) ≤ ξA[h],Sh

E[e−θY K

]

e
θ(ρA1

(tn+1−th+1+kh−1
1 +t′−T+1)+

∑
i∈Fl(h)\{1} ρAi

(tℓi+1
−th+1+kh−1

fi
+t′)−ρSh

t′)
.

If t′ = 0, this gives

P( sup
τ ′≥0

WK
τ ′ ≥ Y K) ≤ ξA[h],Sh

(θ)E[e−θY K

]

e
θ(ρA1

(tn+1−th+1+kh−1
1 −T+1)+

∑
i∈Fl(h)\{1} ρAi

(tℓi+1
−th+1+kh−1

fi
))
,
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and if t′ = th+1 − tn+1 + T − kh−1
1 , then

P( sup
τ ′≥0

WK
τ ′ ≥ Y K) ≤ ξA[h],Sh

(θ)E[e−θY K

]eθρA1
(θ)

eθ(
∑

i∈Fl(h)\{1} ρAi
(tℓi+1

−tn+1+T−k
fi−1
1 )−ρSh

(th+1−tn+1+T−kh−1
1 )).

Now, one can express the v.p. of the delay and separate the terms of the union

bound into two groups:

P(d(tn+1 − T + 1) ≥ T ) ≤ P(∃K ∈ K, sup
τ ′≥0

WK
τ ′ ≥ Y K) ≤

∑
K∈K

P( sup
τ ′≥0

WK
τ ′ ≥ Y K)

≤
∑

K∈K,t′=0

P( sup
τ ′≥0

WK
τ ′ ≥ Y K) +

∑
K∈K,t′>0

P( sup
τ ′≥0

WK
τ ′ ≥ Y K). (14)

Step 2a: Union bound [t′ = 0].

Let us first give a bound on the left-hand sum term of Eq. (14). Having t′ = 0 is

equivalent to tn+1−th+1+k
h−1
1 −T ≥ 0. In line (15), we sum over all possible values u;

in line (16), we regroup the terms per servers and use kj = tj+1 − tj ; and in line (17),

we recognize the term of the end-to-end service bgf using Eq. (4). For all θ1 ∈ Θ,

P1(θ1) =
∑

K∈K,tn+1−th+1+kh−1
1 −T≥0

P(WK
τ ≥ Y K)

≤
∑
u≥0

ξA[h],Sh
e
θ1(ρA1

(u+1)+σA[−h]
+σS>h

)
(15)

·
∑

K∈K,tn+1−th+1+kh−1
1 −T=u

e
θ1(

∑m
i=2 ρAi

(tℓi+1−tfi∨h+1−kh−1
fi

)−
∑n

j<h−1 Cjkj−
∑

j>h ρSj
(tj+1−tj))

=
∑
u≥0

ξA[h],Sh
e
θ1(ρA1

(u+1)+σA[−h]
+σS>h

) ·
∑

∑
j ̸=h kj=u+T

∏
j ̸=h

eθ1ρ
′
jkj (16)

≤
∑
u≥0

ξA[h],Sh
eθ1(ρA1

(u+1)−
∑

i∈Fl(h)\(H∪{1}) σAi
)[zu+T ]F

(−h)
Se2e

(θ1, z). (17)
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Step 3a: Rewriting terms [t′ = 0].

One can now notice that

eθ1
∑

i∈Fl(h)\H σAi

ξA[h],Sh

P1(θ1) ≤
∑
u≥0

eθ1(σA1
+ρA1

(u+1))[zu+T ]F
(−h)
Se2e

(θ1, z),

and we recognize the right-hand side as the T -th term of the delay bgf for the arrival

process A1 and dynamic S
(−h)
e2e -server according to (Bouillard et al, 2022, Eq.(11)), so

∀θ1 ∈ Θ, P1(θ1) ≤
ξA[h],Sh

(θ1)

eθ1
∑

i∈Fl(h)\H σAi
(θ1)

[zT ]F
d,S

(−h)
e2e

(θ1, z).

Step 2b: Union bound [t′ > 0].

In the right-hand sum term of Eq. (14), if t′ > 0, then tn+1 − th+1 + kh−1
1 < T , and

the only possible values for t′ are {1, . . . , T}. Rewriting the third line with kh = t′ and

kj = tj+1 − tj for j > h, and Cj = ρj(θ), we recognize the expression of the product

of geometric series of Eq. (4) and for all θ2 ∈ [0, θ∗h],

P2(θ2) =
∑

K∈K,t′>0

P(sup
τ≥0

WK
τ ≥ Y K)

≤
∑

tn+1−th+1+kh−1
1 +t′=T

(k1,...,tn+1)∈K

ξA[h],Sh
e
θ2(

∑
i∈Fl(h)\{1} ρAi

(tℓi+1−th+1+kh−1
fi

+t′)−ρSh
t′)

e
θ2(ρA1

+σA[−h]
+σS>h

)
eθ2(

∑
i/∈Fl(h) ρAi

(tℓi+1−tfi )−
∑

j<h Cjkj−
∑

j>h ρSj
(tj+1−tj))

= ξA[h],Sh
e
θ2(ρA1

+σA−[h]
+σS>h

)
∑

kj≥0,kh>0∑
j kj=T

e−θ2(
∑n

j=1 ρ′
jkj)

≤ ξA[h],Sh
e
θ2(ρA1

+σA[−h]
+σS>h

)
[zT−1]

n∏
j=1

e−θ2ρ
′
h

1− eθ2ρ
′
jz
.
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Step 3b: Rewriting terms [t′ > 0].

The bounding generating function for the end-to-end service curve for flow 1 is

FSe2e
(θ2, z) = eθ2(

∑n
i=2 σAi

+
∑

j≥h σSj
)

n∏
j=1

1

1− eθ2ρ
′
jz
,

so P2(θ2) ≤
ξA[h],S

e
−θ2(ρSh

−
∑

i∈Fl(h) ρAi
)

e
θ2(σSh

+
∑

i∈Fl(h)\{1} σAi
) [zT−1]FSe2e

(θ2, z). Noticing that [zT−1]f(z) =

[zT ]zf(z) and summing the two bounds concludes the proof.

7 Conclusion

In this paper, we have presented a method to compute probabilistic end-to-end perfor-

mance bounds in networks that combines two types of analysis from SNC: we locally

use the martingale analysis at one server and use the more classical MGF-based SNC

results. In particular, this can avoid the use of the union bound at the bottleneck

of the network and simulations show that, for small networks, the gap between sim-

ulation and best results from the state of the art is drastically reduced. Of course,

the improvement may vanish when considering larger networks, and further investi-

gations are needed to achieve tight bounds. The challenge is to bound the maximum

of random variables that cannot be, or have not yet been, expressed as a martingale.

Another research direction is to investigate other service policies. Indeed, the MGF-

based SNC has until now mainly focused on blind multiplexing, which encompasses

all the possible service policies, hence the more pessimistic for the flow of interest.
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