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Individual Service Curves for Bandwidth-Sharing
Policies using Network Calculus

Anne Bouillard

Abstract—Bandwidth-sharing policies guarantee a proportion
of the service offered by a server to each class of traffic. These
policies include GPS (Generalized Processor Sharing) and DRR
(Deficit Round Robin). In this paper, we compute service curves
for each class of traffic for such scheduling policies using network
calculus. These individual service curves take into account the
characteristics of the cross-traffic and thus improve the state-of-
the-art performance bounds like delay or backlog.

Index Terms—Network calculus, Deficit round robin, schedul-
ing, performance evaluation.

I. INTRODUCTION

RECENT communication networks, like 5G, have stronger
requirements in terms of end-to-end latency and relia-

bility. In order to have more control on the network, more
elaborate schedulers have been defined to guarantee delays of
critical classes of traffic. Among them, the bandwidth-sharing
policies have gained popularity. The idealized version of such
policies is GPS, where each class of traffic is guaranteed a
service rate. Several implementations have been proposed. One
can cite the Round-Robin policies where each class is served
in rounds. For example, in DRR, each class is allocated a
quantum, i.e. the maximum amount of data that can be served
in a round.

Network calculus [1], [5], [6] is a theory used to compute
deterministic performance bounds, by abstracting data flows
and servers by curves bounding the maximal or minimal
amount of data that can arrive or be served in each time
interval. It emerges as a pertinent tool to analyze networks with
strong latency and reliability requirements. GPS was among
the first policies to be analyzed in this framework [7], and
recent works concern the modeling DRR [3]. These works
only model the sharing part, and do not take into account the
characteristics of the incoming traffic. Indeed, when a class
has no data to transmit, its share of the bandwidth is shared
among the other flows. This phenomenon has recently been
considered for the GPS policy [4].

In this paper, we propose to generalize this result to
bandwidth-sharing policies. As a consequence, we both im-
prove the individual service curves for the DRR and similar
policies, and generalize the result of [4]. To this end, we
will follow the steps of the alternative proof for GPS in [1,
Theorem 7.8], that has some inaccuracies, thus correct it.

In Section II, we recall the network calculus model. In
Section III, we present and prove our main result. Finally,
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in Section IV, we apply the results to GPS and DRR, and
compare them with the state of the art.

II. MODEL OF BANDWIDTH-SHARING POLICIES

In this paper, we use the notations (𝑥)+ = max(0, 𝑥) and
1≥𝜏 : 𝑡 ↦→ 1 if 𝑡 ≥ 𝜏 and 0 otherwise.

Consider a server crossed by 𝑛 flows. We assume that the
system is empty at time 0. For all 𝑡 ≥ 0 and 𝑖 ∈ {1, . . . , 𝑛},
we denote by 𝐴𝑖 (𝑡) (resp. 𝐷𝑖 (𝑡)) the cumulative amount of
data of flow 𝑖 that arrived (resp. departed) in the time interval
[0, 𝑡). Then, for all flow 𝑖, 𝐴𝑖 (0) = 𝐷𝑖 (0) = 0.

We also denote by 𝐶 (𝑡) the cumulative amount of service
that is offered to the flows by the server.

For the sake of concision, we will use bivariate functions,
and 𝐴𝑖 (𝑠, 𝑡) represents the amount of data arrived during the
time interval (𝑠, 𝑡]: 𝐴𝑖 (𝑠, 𝑡) = 𝐴𝑖 (𝑡) − 𝐴𝑖 (𝑠), and similarly
for 𝐷𝑖 and 𝐶. Note that for all these processes are additive:
∀𝑡 ≥ 𝑢 ≥ 𝑠 ≥ 0, 𝐴𝑖 (𝑠, 𝑢) + 𝐴𝑖 (𝑢, 𝑡) = 𝐴𝑖 (𝑠, 𝑡) and similarly for
𝐷𝑖 and 𝐶.

Let 𝑀 be a subset of flows. The interval (𝑠, 𝑡] is called a
backlogged period for flows in 𝑀 if ∀𝑢 ∈ (𝑠, 𝑡], ∑𝑖∈𝑀 𝐴𝑖 (𝑢) >∑

𝑖∈𝑀 𝐷𝑖 (𝑢). The start of backlogged period of 𝑡 for flows in
𝑀 is 𝑠𝑡𝑎𝑟𝑡𝑀 (𝑡) = inf{𝑠 ≤ 𝑡 | ∑

𝑖∈𝑀 𝐴𝑖 (𝑠) =
∑

𝑖∈𝑀 𝐷𝑖 (𝑠)}.
Definition 1. The server has a bandwidth-sharing policy if
there exist positive numbers (𝜙𝑖)1≤𝑖≤𝑛 and non-negative num-
bers (𝐻𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 such that for all 𝑖 ≠ 𝑗 , for all backlogged
period (𝑠, 𝑡] of flow 𝑖, 𝜙 𝑗𝐷𝑖 (𝑠, 𝑡) ≥ 𝜙𝑖 (𝐷 𝑗 (𝑠, 𝑡) − 𝐻𝑖, 𝑗 )+.

Informally, 𝜙𝑖/(
∑𝑛

𝑗=1 𝜙 𝑗 ) represents the share of the band-
width guaranteed for flow 𝑖, and 𝐻𝑖, 𝑗 a tolerance regarding
this guarantee (e.g., due to packetization).

Network calculus [1], [5], [6] is a theory that models flows
and servers by curves that bound the number of arrivals or
service for each time interval. Note that these curves can
always be assumed to be non-decreasing and null at 0.

• 𝛼𝑖 is an arrival curve for flow 𝑖 if for all 𝑡 ≥ 𝑠 ≥ 0,
𝐴𝑖 (𝑠, 𝑡) ≤ 𝛼𝑖 (𝑡 − 𝑠);

• 𝛽 is a variable capacity node (VCN) for a server if for
all 𝑡 ≥ 𝑠 ≥ 0, 𝐶 (𝑠, 𝑡) ≥ 𝛽(𝑡 − 𝑠).

We also need to define strict service curves that are quasi-
equivalent to VCN.

Denote 𝐷 =
∑

𝑖 𝐷𝑖 the aggregate departure process of the
server. The server offers a strict service curve 𝛽 if, whenever
(𝑠, 𝑡] is a backlogged period, 𝐷 (𝑠, 𝑡) = 𝐶 (𝑠, 𝑡) ≥ 𝛽(𝑡 − 𝑠). It
has been proved in [2] that VCN and strict service curves are
equivalent if the asymptotic growth rate of 𝛽 is finite, which we
assume from now on. This is not restrictive since bandwidths
have physical limitations.
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We will also use the following classical results for strict
service curves: a) if 𝛽1 and 𝛽2 are two strict service curves
for a server, so is max(𝛽1, 𝛽2); b) suppose 𝛽1 ≥ 𝛽2. If 𝛽1 is a
strict service curve for a server, so is 𝛽2.

III. A NEW RESIDUAL STRICT SERVICE CURVE FOR
BANDWIDTH-SHARING POLICIES

In this section, we assume a server offering VCN 𝛽 and
having a bandwidth-sharing policy with parameters (𝜙𝑖)1≤𝑖≤𝑛
and (𝐻𝑖, 𝑗 )1≤,𝑖, 𝑗≤𝑛 crossed by 𝑛 flows with respective arrival
curves 𝛼𝑖 . Our aim is to prove the following theorem.

Theorem 1. If 𝛽 is convex and 𝛼𝑖 concave for all 𝑖, there exist
non-negative numbers 𝐻𝑀 , 𝑀 ⊆ {1, . . . , 𝑛 − 1} such that

𝛽𝑛 = sup
𝑀 ⊆{1,...,𝑛−1}

𝜙𝑛∑
𝑗∉𝑀 𝜙 𝑗

(
𝛽 −

∑︁
𝑖∈𝑀

𝛼𝑖 − 𝐻𝑀

)
+

(1)

is a strict service curve for flow 𝑛.

The proof is divided in several steps. First, we show how to
compute an individual strict service curve from a strict service
curve for a subset of flows: the bandwidth-sharing property
is inherited for subsets of flows. Second, we show how to
compute a residual strict service curve when removing one
flow from the aggregate flow. Last, these two steps will be used
inductively to prove the result and compute (𝐻𝑀 )𝑀 ⊆{1,...,𝑛−1}.

A. Individual service curves

Suppose that we are able to compute the residual strict
service curve 𝛽𝑀 for a subset 𝑀 of flows. Lemma 1 shows
how to derive a residual service curve for each flow 𝑖 ∈ 𝑀 .

Lemma 1. If 𝛽𝑀 is a strict service curve for flows in 𝑀 , then
for all 𝑖 ∈ 𝑀 ,

𝛽𝑀𝑖 =
𝜙𝑖∑

𝑗∈𝑀 𝜙 𝑗

(
𝛽𝑀 − 𝐻𝑖

)
+

(2)

is a strict service curve for flow 𝑖 and 𝐻𝑖 =
∑

𝑗∈𝑀 𝐻𝑖, 𝑗 .

Proof. For all 𝑠, 𝑡 ∈ R+ such that (𝑠, 𝑡] is a backlogged for flow
𝑖, for all 𝑗 ∈ 𝑀 , 𝜙 𝑗𝐷𝑖 (𝑠, 𝑡) ≥ 𝜙𝑖 (𝐷 𝑗 (𝑠, 𝑡) − 𝐻𝑖, 𝑗 ). Therefore,∑

𝑗∈𝑀 𝜙 𝑗𝐷𝑖 (𝑠, 𝑡) ≥ ∑
𝑗∈𝑀 𝜙𝑖 (𝐷 𝑗 (𝑠, 𝑡) − 𝐻𝑖, 𝑗 ), which can be

rewritten as

(
∑︁
𝑗∈𝑀

𝜙 𝑗 )𝐷𝑖 (𝑠, 𝑡) ≥ 𝜙𝑖 (
∑︁
𝑗∈𝑀

(𝐷 𝑗 (𝑠, 𝑡) − 𝐻𝑖, 𝑗 )). (3)

Since (𝑠, 𝑡] is also a backlogged period for the aggregate
flows in 𝑀 ,

∑
𝑗∈𝑀 𝐷 𝑗 (𝑠, 𝑡) ≥ 𝛽𝑀 (𝑡 − 𝑠) and then 𝐷𝑖 (𝑠, 𝑡) ≥

𝜙𝑖∑
𝑗∈𝑀 𝜙 𝑗

(𝛽𝑀 (𝑡 − 𝑠) − 𝐻𝑖). As 𝐷𝑖 is not decreasing, we also
know that 𝐷𝑖 (𝑠, 𝑡) ≥ 0, hence the result. �

B. Residual strict service curve when removing one flow

Let us first prove a preliminary lemma.

Lemma 2. Let 𝛽 be a convex and non-decreasing function
with 𝛽(0) = 0 and 𝛼 be a concave, non-negative function.
Then, there exists 𝜏 ∈ R+∪{∞} such that (𝛽−𝛼)1≥𝜏 is convex,
non-negative and non-decreasing. We denote by (𝛽 − 𝛼)−1 (0)
the minimal value of such 𝜏 .

Proof. 𝛽 − 𝛼 is the difference of a convex by a concave
function: it is convex. Since (𝛽 − 𝛼) (0) ≤ 0, three cases can
occur. Either (a) 𝛽−𝛼 is non-negative and non-decreasing, and
the results holds with 𝜏 = 0, or (b) ∀𝑡 ≥ 0, (𝛽 − 𝛼) (𝑡) ≤ 0,
and the results holds with 𝜏 = ∞, or (c) there exists 𝑡 > 0
such that 𝛽 − 𝛼 is increasing on [𝑡,∞), and (𝛽 − 𝛼) (𝑡) < 0.
Then there exists a unique 𝜏 > 0 such that (𝛽 − 𝛼) (𝜏) = 0.
Therefore, (𝛽 − 𝛼)1≥𝜏 = (𝛽 − 𝛼)+ is the maximum of two
convex functions, and the rest follows straightforwardly. �

Suppose that 𝛽 is convex, non-negative and non-decreasing
and set 𝑡1 = ( 𝜙1

Φ
(𝛽 − 𝐻1) − 𝛼1)−1 (0), where 𝐻1 ≥ ∑𝑛

𝑖=1 𝐻1,𝑖
and Φ =

∑𝑛
𝑖=1 𝜙𝑖 .

Lemma 3. If 𝛽1≥𝑡0 is a variable capacity node for flows
{1, . . . , 𝑛}, and 𝑡1 ≥ 𝑡0, then (𝛽 − 𝛼1 − 𝜙1

Φ
𝐻1)1≥𝑡1 is a strict

service curve for flows {2, . . . , 𝑛}.

Proof. Let 𝑠 and 𝑡 be such that (𝑠, 𝑡] is a backlogged period
for flows {2, . . . , 𝑛} and 𝑡 − 𝑠 ≥ 𝑡1. We have

𝐷 (𝑠, 𝑡) = 𝐶 (𝑠, 𝑡) ≥ 𝛽(𝑡 − 𝑠)1𝑡−𝑠≥𝑡0 = 𝛽(𝑡 − 𝑠). (4)

Let 𝑝 = 𝑠𝑡𝑎𝑟𝑡1 (𝑠) be the start of backlogged period of 𝑠 for
flow 1. On the one hand, from Lemma 1 applied to 𝑀 =

{1, . . . , 𝑛},

𝐷1 (𝑝, 𝑠) ≥ (𝜙1/Φ) (𝐶 (𝑝, 𝑠) − 𝐻1). (5)

On the other hand, 𝐷1 (𝑝, 𝑡) = 𝐷1 (𝑡) − 𝐷1 (𝑝) = 𝐷1 (𝑡) −
𝐴1 (𝑝) ≤ 𝐴1 (𝑡) − 𝐴1 (𝑝) = 𝐴1 (𝑝, 𝑡) ≤ 𝛼1 (𝑡 − 𝑝).

Set 𝐷−1 =
∑

𝑖≠1 𝐷𝑖 and Φ−1 =
∑

𝑖≠1 𝜙𝑖 . Combining the two
previous inequalities, we obtain

𝐷−1 (𝑠, 𝑡) = 𝐶 (𝑠, 𝑡) − 𝐷1 (𝑠, 𝑡)
= 𝐶 (𝑠, 𝑡) − 𝐷1 (𝑝, 𝑡) + 𝐷1 (𝑝, 𝑠)
≥ 𝐶 (𝑠, 𝑡) − 𝛼1 (𝑡 − 𝑝) + (𝜙1/Φ) (𝐶 (𝑝, 𝑠) − 𝐻1)

≥ Φ−1
Φ

𝐶 (𝑠, 𝑡) − 𝛼1 (𝑡 − 𝑝) + 𝜙1
Φ

(𝐶 (𝑝, 𝑡) − 𝐻1)

≥ Φ−1
Φ

𝛽(𝑡 − 𝑠) − 𝛼1 (𝑡 − 𝑝) + 𝜙1
Φ

(𝛽(𝑡 − 𝑝) − 𝐻1).
(6)

As 𝛽 is convex and non-decreasing and 𝛼 is concave and non-
negative, (𝜙1/Φ) (𝛽(·) −𝐻1) −𝛼1 (·) is non-decreasing from 𝑡1,
and [(𝜙1/Φ) (𝛽−𝐻1)−𝛼1] (𝑡−𝑝) ≥ [(𝜙1/Φ) (𝛽−𝐻1)−𝛼1] (𝑡−𝑠).
Therefore,

𝐷−1 (𝑠, 𝑡) ≥ (Φ−1/Φ)𝛽(𝑡 − 𝑠) + [(𝜙1/Φ) (𝛽 − 𝐻1) − 𝛼1] (𝑡 − 𝑠)
≥ 𝛽(𝑡 − 𝑠) − 𝛼1 (𝑡 − 𝑠) − (𝜙1/Φ)𝐻1. (7)

We conclude by noticing that ∀𝑠 ≤ 𝑡, 𝐷−1 (𝑠, 𝑡) ≥ 0. �

We can use Lemmas 1 and 3 to deduce residual service
curves for the individual flows, and the maximum of these is
still a strict service curve.

Example 1. Consider a server offering the strict service curve
𝛽(𝑡) = 8(𝑡 −1)+ to two classes of flows with respective arrival
curves 𝛼1 (𝑡) = 2 + 𝑡 and 𝛼2 (𝑡) = 6 + 3𝑡, and suppose that
𝜙1 = 𝜙2 = 1/2 and 𝐻1,2 = 𝐻2,1 = 1.

From Lemma 1, 𝛽2 (𝑡) = 1
2 (8(𝑡 − 1)+ − 1)+ = 4(𝑡 − 9

8 )+ is a
strict service curve for flow 2. To apply Lemma 3, we compute
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𝑡1 = ( 1
2 (𝛽− 1) −𝛼1)−1 (0) = 13

6 . Then 𝛽′2 (𝑡) = (8(𝑡 − 1)+ − (2 +
𝑡) − 1

2 )𝑡≥ 13
6
= 7(𝑡 − 3/2)𝑡≥ 13

6
is also a strict service curve for

flow 2, as well as max(𝛽2, 𝛽
′
2), depicted in Figure 1 (left).

da
ta

0 time

𝛽2

9
8

𝛽′2

13
6

𝛼2 da
ta

0 time

𝛽2

9
8

𝛽′′2

13
6

𝛼2

Fig. 1. (Left): Example of residual strict service curves computed with
Lemmas 1 and 3. The maximum of the curves is also a strict service curve. The
delay reads as the horizontal distance 𝛼2 and max(𝛽2, 𝛽

′
2) (Right): Relaxing

the 𝐻𝑖, 𝑗 parameters: the new service curve is smaller but continuous.

We remark on Figure 1 that the curves obtained are not
continuous, and could be difficult to compute when more
classes of traffic are involved. In order to deal with continuous
service curves only, we will later show how to relax the service
curves obtained by slightly increasing the values 𝐻𝑖, 𝑗 .

The next step of the proof is to apply the Lemmas 1 and 3
inductively. For this we have to carefully handle the order in
which the operations are performed.

C. A good order on the operations
Let 𝑀 be a subset of flows. Let us proceed by induction

to define a residual service curve for flows not in 𝑀 . Without
loss of generality, set 𝑀 = {1, . . . , 𝑘}.

Initially, we define 𝜏0 = 0, 𝛽0 = 𝛽, Φ≥0 = Φ≥1 =
∑𝑛

𝑗=1 𝜙 𝑗

and ∀ 𝑗 ∈ 𝑀 , 𝐻≥0
𝑗

= 0.
For the induction step, suppose that 𝜏𝑖 , Φ≥𝑖+1 and 𝐻≥𝑖

𝑗
have

been defined for 𝑖 < 𝑘 . One defines 𝛽𝑖+1, 𝜏𝑖+1, Φ≥𝑖+2 and 𝐻≥𝑖+1
𝑗

as follows:
• ∀ 𝑗 ∈ {𝑖+1, . . . , 𝑘}, 𝐻≥𝑖+1

𝑗
= max(∑𝑛

𝑘=𝑖+1 𝐻 𝑗 ,𝑘 ,
Φ≥𝑖+1
Φ≥𝑖

𝐻≥𝑖
𝑗
);

• ∀ 𝑗 ∈ {𝑖 + 1, . . . , 𝑘}, 𝑡𝑖+1
𝑗

= ( 𝜙 𝑗

Φ≥𝑖+1
(𝛽𝑖 −𝐻≥𝑖+1

𝑗
) − 𝛼 𝑗 )−1 (0),

and define 𝜏𝑖+1 = min 𝑗∈{𝑖+1,...,𝑘 } 𝑡 𝑗 . Suppose without loss
of generality, by renumbering the flows, that 𝜏𝑖+1 = 𝑡𝑖+1

𝑖+1;
• Φ≥𝑖+2 = Φ≥𝑖+1 −𝜙𝑖+1 (with the new numbering of flows);
• 𝛽𝑖+1 = 𝛽 −∑𝑖+1

𝑗=1 𝛼 𝑗 −
∑𝑖+1

𝑗=1
𝜙 𝑗

Φ≥ 𝑗
𝐻

≥ 𝑗

𝑗
(likewise).

Lemma 4. With the construction above, ∀𝑖 < 𝑘 , 𝜏𝑖+1 ≥ 𝜏𝑖 .

Proof. We proceed by contradiction and suppose that 𝜏𝑖+1 <

𝜏𝑖 . Let 𝑡 ∈ (𝜏𝑖+1, 𝜏𝑖). From Lemma 2,
• 𝑡 < 𝜏𝑖 ≤ 𝑡𝑖

𝑖+1, so that 𝜙𝑖+1
Φ≥𝑖

(𝛽𝑖−1 − 𝐻≥𝑖
𝑖+1) (𝑡) < 𝛼𝑖+1 (𝑡);

• 𝑡 > 𝜏𝑡+𝑖 = 𝑡𝑖+1
𝑖+1 , so that 𝜙𝑖+1

Φ≥𝑖+1
(𝛽𝑖 − 𝐻≥𝑖+1

𝑖+1 ) (𝑡) ≥ 𝛼𝑖+1 (𝑡);
• 𝑡 < 𝜏𝑖 = 𝑡𝑖

𝑖
, so that 𝜙𝑖

Φ≥𝑖
(𝛽𝑖−1 − 𝐻≥𝑖

𝑖
) (𝑡) < 𝛼𝑖 (𝑡).

Combining two first items leads to
𝜙𝑖+1
Φ≥𝑖

(𝛽𝑖−1 − 𝐻≥𝑖
𝑖+1) (𝑡) <

𝜙𝑖+1
Φ≥𝑖+1

(𝛽𝑖 − 𝐻≥𝑖+1
𝑖+1 ) (𝑡), (8)

which after rewriting is equivalent to

Φ≥𝑖+1 (𝛽𝑖−1 −𝐻≥𝑖
𝑖+1) (𝑡) < Φ≥𝑖 (𝛽𝑖−1 −𝛼𝑖 −

𝜙𝑖

Φ≥𝑖
𝐻≥𝑖

𝑖 −𝐻≥𝑖+1
𝑖+1 ) (𝑡)

(9)

and

Φ≥𝑖𝐻
≥𝑖+1
𝑖+1 −Φ≥𝑖+1𝐻

≥𝑖
𝑖+1 < 𝜙𝑖 (𝛽𝑖−1 (𝑡) −𝐻≥𝑖

𝑖 ) −Φ≥𝑖𝛼𝑖 (𝑡). (10)

By definition of 𝐻≥𝑖+1
𝑖+1 , the inequality Φ≥𝑖𝐻

≥𝑖+1
𝑖+1 −Φ≥𝑖+1𝐻

≥𝑖
𝑖+1 ≥

0 holds. Therefore,

𝜙𝑖 (𝛽𝑖−1 − 𝐻≥𝑖
𝑖 ) −Φ≥𝑖𝛼𝑖 > 0, (11)

which is in contradiction with the third inequality and proves
that 𝜏𝑖+1 ≥ 𝜏𝑖 . �

Lemma 5. For all 𝑖 ∈ {0, . . . , 𝑘}, 𝛽𝑖1≥𝜏𝑖 is a strict service
curve for flows 𝑖 + 1, . . . , 𝑛.

Proof. We prove the result by induction on 𝑖. We have 𝛽0 =

𝛽1𝑡≥0 = 𝛽, so the result holds for 𝑖 = 0.
Assume now that for 𝑖 < 𝑘 , 𝛽𝑖1≥𝜏𝑖 is a strict service curve

for flows 𝑖+1, . . . , 𝑛. From Lemma 4, 𝜏𝑖+1 ≥ 𝜏𝑖 , and Lemma 3
can be applied. As

∑
𝑘≥𝑖+1 𝐻𝑖+1,𝑘 ≤ 𝐻≥𝑖+1

𝑖+1 , the function (𝛽𝑖 −
𝛼𝑖+1 − 𝜙𝑖+1

Φ≥𝑖+1
𝐻≥𝑖+1

𝑖+1 )𝑡≥𝜏𝑖+1 = 𝛽𝑖+11≥𝜏𝑖+1 is a strict service curve
for flows 𝑖 + 2, . . . , 𝑛. �

From Lemmas 5 and 1, one can deduce that ∀𝑖 ∈ {0, . . . , 𝑘},
𝜙𝑛

Φ≥𝑖+1
(𝛽𝑖1≥𝜏𝑖 −

∑
𝑗≥𝑖+1 𝐻𝑛, 𝑗 )+ is a strict service curve for flow

𝑛. Therefore,

max
𝑖∈{0,...,𝑘 }

𝜙𝑛

Φ≥𝑖+1

(
𝛽𝑖1≥𝜏𝑖 −

∑︁
𝑗≥𝑖+1

𝐻𝑛, 𝑗

)
+
. (12)

is a strict service curve for flow 𝑛. We now show that the
formula can be simplified by removing the 1≥𝜏𝑖 parts. This is
done by relaxing

∑
𝑗≥𝑖+1 𝐻𝑛, 𝑗 and replacing it by 𝐻≥𝑖+1

𝑛 .

Lemma 6. For all 𝑗 ≥ 𝑖 + 1, for all 𝑡 ≤ 𝜏𝑖 ,
𝜙 𝑗

Φ≥𝑖+1
(𝛽𝑖 (𝑡) −

𝐻≥𝑖+1
𝑗

) ≤ 𝜙 𝑗

Φ≥𝑖
(𝛽𝑖−1 − 𝐻≥𝑖

𝑗
) (𝑡).

Proof. We prove the contraposition:

𝜙 𝑗

Φ≥𝑖+1
(𝛽𝑖 − 𝐻≥𝑖+1

𝑗 ) (𝑡) >
𝜙 𝑗

Φ≥𝑖
(𝛽𝑖−1 − 𝐻≥𝑖

𝑗 ) (𝑡) (13)

is equivalent to (by rewriting 𝛽𝑖 as 𝛽𝑖−1 − 𝛼𝑖 − 𝜙𝑖

Φ≥𝑖
𝐻≥𝑖

𝑖
)

Φ≥𝑖 (𝛽𝑖−1 −𝛼𝑖 −
𝜙𝑖

Φ≥𝑖
𝐻≥𝑖

𝑖 −𝐻≥𝑖+1
𝑗 ) (𝑡) > Φ≥𝑖+1 (𝛽𝑖−1 −𝐻≥𝑖

𝑗 ) (𝑡).
(14)

Re-arranging the terms, we equivalently get

𝜙𝑖𝛽𝑖−1 (𝑡) −Φ≥𝑖𝛼𝑖 (𝑡) + 𝜙𝑖𝐻
≥𝑖
𝑖 > Φ≥𝑖𝐻

≥𝑖+1
𝑗 −Φ≥𝑖+1𝐻

≥𝑖
𝑗 (≥ 0),

(15)
which implies 𝑡 > 𝜏𝑖 . �

Example 2. Let us continue Example 1. The individual service
curve for flow 2 is not continuous. Lemma 6 suggests replacing
𝛽′2 by 𝛽′′2 (𝑡) = (𝛽′2 (𝑡) −

1
2 )+ = 7(𝑡 − 11/7)1𝑡≥ 13

6
and the new

service curve obtained is depicted in Figure 1 (right).

Lemma 6 enables to assert that
𝜙𝑛∑

𝑖∉𝑀 𝜙𝑖

(
𝛽 −

∑︁
𝑖∈𝑀

(𝛼𝑖 −
𝜙𝑖

Φ≥𝑖
𝐻≥𝑖

𝑖 ) − 𝐻≥𝑘+1
𝑛

)
+

(16)

is a strict service curve for flow 𝑛. Taking the maximum for all
subsets 𝑀 not containing 𝑛 finishes the proof of Theorem 1.
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IV. APPLICATION TO BANDWIDTH-SHARING POLICIES

In this section, we specialize the results to two classical
bandwidth-sharing policies: we retrieve the state-of-the-art
optimal service curve of GPS and improve the state-of-the-
art DRR service curve.

A. Generalized processor sharing
A server is a GPS server if for all flows 𝑖, all 𝑠 ≤ 𝑡 such

that (𝑠, 𝑡] is backlogged period for flow 𝑖, for each flow 𝑗 ,
𝜙 𝑗𝐷𝑖 (𝑠, 𝑡) ≥ 𝜙𝑖𝐷 𝑗 (𝑠, 𝑡).
Theorem 2 (GPS service curve in [4, Theorem 1]). A strict
service curve offered to flow 𝑛 is

𝛽𝑛 = sup
𝑀 ⊆{1,...,𝑛−1}

𝜙𝑛∑
𝑗∉𝑀 𝜙 𝑗

(
𝛽 −

∑︁
𝑖∈𝑀

𝛼𝑖

)
+
. (17)

We are here in the particular case where 𝐻𝑖, 𝑗 = 0 for all
𝑖, 𝑗 , and then we also have 𝐻≥𝑖

𝑗
= 0. We then obtain exactly

the same residual strict service curve.
The proof presented in this paper corrects the proof of [1,

Theorem 7.8], where the good order to remove the flows so
that the sequence of 𝜏𝑖 is non-decreasing was not defined.

B. Deficit Round Robin
DRR is an implementation of GPS, where each flow 𝑖 is

assigned a quantum 𝑄𝑖 representing the maximum amount of
service that can be provided to flow 𝑖 at each round. The
head-of-line packet can be served in its round provided that
its length is at most the amount of data remaining for the
round. More details can be found in [3] and [1].

Theorem 3 (DRR service curve in [3]). A strict service curve
offered to flow 𝑛 is

𝛽𝑛 =
𝑄𝑖

𝐹

(
𝛽 − (𝐿 − ℓ𝑖) −

(𝐹 −𝑄𝑖) (𝑄𝑖 + ℓ𝑖)
𝑄𝑖

)
+
, (18)

where ℓ𝑖 is the maximum packet size of flow 𝑖 and 𝐹 =
∑𝑛

𝑖=1 𝑄𝑖

and 𝐿 =
∑𝑛

𝑖=1 ℓ𝑖 .

For DRR, if (𝑠, 𝑡] is a backlogged period for flow 𝑖, we
have for all 𝑖 ≠ 𝑗 ,

𝐷𝑖 (𝑠, 𝑡) + ℓ𝑖

𝑄𝑖

≥
𝐷 𝑗 (𝑠, 𝑡) − ℓ 𝑗 −𝑄 𝑗

𝑄 𝑗

, (19)

which satisfies Definition 1 with 𝜙𝑖 =
1
𝑄𝑖

, 𝐻𝑖,𝑖 = 0 and 𝑗 ≠ 𝑖,

𝐻𝑖, 𝑗 = 𝑄 𝑗 + ℓ 𝑗 +
𝑄 𝑗

𝑄𝑖
ℓ𝑖 . Straightforward computations show that

the service curve of [3] can be retrieved by applying Lemma 1
to 𝑀 = {1, . . . , 𝑛} (this corresponds to 𝛽2 in Example 1).

Consider a DRR server with four classes of traffic, described
in Table I. The server serves data at the constant rate 5 Gb/s:
𝛽(𝑡) = 5 109𝑡. The quanta offered to each class of traffic is
2 kB, and we have 𝑄𝑖 = 16000 b.

Table II shows the comparison of the delays obtained with
the service curve of [3] and with the service curve computed
in Theorem 1. Classes are given in the good order (according
to the proof). We can observe that the delay of the first class
is not improved. Indeed, as it is the first one to become empty,
it does not benefit from the improvement. In opposition, the
improvement for the other classes grows with the number of
the class, up to 50% for the last one.

TABLE I
CHARACTERISTICS OF THE FOUR CLASSES OF FLOWS

Class burst arrival rate packet size
Electric protection 42.56 kb 8.521 Mb/s 3040 b
Virtual reality game 2.16 Mb 180 Mb/s 12 kb
Video conference 3.24 Mb 162 Mb/s 12 kb
4K video 7.2 Mb 180 Mb/s 12 kb

TABLE II
DELAYS OBTAINED FOR THE FOUR CLASSES OF FLOWS AND COMPARISON

WITH THE STATE OF THE ART

Class Thm. 3, [3] Thm. 1 improvement
Electric protection 52 𝜇s 52 𝜇s 0 %
Virtual reality game 1.75 ms 1.33 ms 24 %
Video conference 2.61 ms 1.82 ms 30 %
4K video 5.78 ms 2.74 ms 53 %

V. CONCLUSION

In this paper, we presented a new residual service curve for
bandwidth-sharing policies in network calculus, and showed
how to apply it in two particular cases: GPS and DRR. This
result both generalizes the GPS result of [4] to all bandwidth-
sharing policies and improve the residual service curves of the
bandwidth-sharing policies that did not take into account the
arrival curves of the competing traffic.

If more information is available about the packet lengths
(such as the minimum length of a packet), the results can
be applied to more round-robin-like service policies: Round
Robin, Packet Round Robin or Weighted Round Robin...).

Future work will focus on finding optimal service curves.
Indeed, it is very doubtful that the service curve presented
here is optimal is general, due to the relaxation of 𝐻𝑖, 𝑗 , and it
might be interesting to see how to improve this aspect of the
proof.
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