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ABSTRACT
In order to assure Quality of Service (QoS) connectivity,
Network Service Providers (NSPs) negotiate Service Level
Agreements (SLAs). However, a committed SLA might fail
to respect its QoS promises. In such a case, the customer is
refunded. To maximize their revenues, the NSPs must deal
with risks of SLA violations, which are correlated to their
network capacities. Due to the complexity of the problem,
we first study a system with one NSP provider and give
a method to compute its risk-aware optimal strategy using
(max,+)-algebras. Using the same method, we study the
case where two NSPs collaborate and the case where they
compete, and we derive the Price of Anarchy. This method
provides optimal negotiation strategies but, when modeling
customers’ reaction to SLA failure, analytical results do not
hold. Hence, we propose a learning framework that chooses
the NSP risk-aware optimal strategy under failures captur-
ing the impact of reputation. Finally, by simulation, we
observe how the NSP can benefit from such a framework.
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with Alcatel-Lucent Bell Labs France.
‡Anne Bouillard has carried out the work presented in this
paper at LINCS (www.lincs.fr).

Keywords
SLA negotiation, Quality of Service, Reputation, (max,+)-
algebras, Markov chains, Learning Algorithms.

1. INTRODUCTION
Internet actors, and in particular Network Service Providers
(NSPs), are facing an increasingly network resource demand
from Content Service Providers (CSPs) and end-users. Cur-
rent Internet applications (e.g. video streaming, gaming,
telepresence, etc.) impose more and more constraints on the
networks, such as high bandwidth, low delay and packet-loss,
etc. Guarantees on such parameters are defined as Qual-
ity of Service (QoS) guarantees. Service Level Agreements
(SLAs) comprise such guarantees (bandwidth, delay, etc.)
and charging conditions (price, penalties, etc.). They are
bilaterally negotiated between a customer (which can be a
company, a CSP or another NSP) and a provider (an NSP).

Upon the reception of a customer’s request, an NSP faces
then several issues: first, it must identify whether its net-
work resources can sustain or not the required QoS. And
second, it has to provide a price that will allow it to be se-
lected by the customer. Solving these issues is particularly
challenging since: i) the NSP has no information on the pro-
posal of its competitors, ii) the customer might demand a
QoS that places too many constraints on its resources, for-
bidding further resources with higher willingness to pay, iii)
the NSP has no information on the customer behavior: his
willingness-to-pay, his QoS sensitivity (some customer might
prefer to be upgraded if the cost difference is not so high),
his possible preferences among providers (i.e customer’s sen-
sitivity to the NSP reputation) and his request arrival law.
Furthermore, the NSP proposal (and how its commitment
on the SLA is achieved if it is chosen) will impact both its
network resources and the customer behavior.

A committed and provisioned SLA can fail, i.e., its QoS
guarantees are violated. Such a violation leads to a loss of



revenues and negatively impacts the reputation of the NSP.
Each NSP having a limited capacity, the more its capacity
is used, the higher is the failure probability. Thus, when
provisioning the resources for an SLA, the NSP should be
aware of the impact of the provisioned capacity on the failure
probability. As the SLAs are provisioned for a given time
period, the service duration affects the network capacity.
The goal of an NSP is thus to find the optimal trade-off
(also called negotiation strategy) between selling too few
SLAs (and thus keeping a good reputation but gathering
little revenues) and selling too many SLAs (and thus gath-
ering more immediate rewards but decreasing its reputation
– which leads to decreasing its long term revenues). Having
a system that computes optimal negotiation strategies can
thus bring a highly competitive advantage to NSPs. Consid-
ering the analysis of the SLA negotiation, several works ([1,
2, 3, 4]) focused on the same parameters influencing the cus-
tomer’s choice: sensitivity to the QoS parameters and price,
proposals from competitor NSPs. Very few works consid-
ered the influence of the failure and the reputation on the
customer’s choice. In a previous work [5], we introduced a
simple model of reputation and argued how the NSPs should
take into account the customer’s reputation sensitivity.

In [5], the introduced model did not capture the impact of
the time-period during which an SLA is provisioned. Such
time constraints add a complexity dimension to the risk-
aware SLA negotiation problem. In this paper, to illustrate
the complexity of the problem, we first study a system of one
customer and one NSP. We give a method to compute the
optimal strategy of the NSP using (max,+)-algebra tools.
We then study a system of one customer and two NSPs
without reputation (as illustrated by Fig. 1) and provide a
method to compute the optimal strategy when the NSPs col-
laborate and when they are selfish, and we discuss the Price
of Anarchy in such a system. When introducing the repu-
tation, the system becomes too complex to be analytically
studied. Furthermore, the failure probability and its impact
on the reputation of the NSP are not known in practice.
Thus, we opt for a framework of learning algorithms ap-
plied to the SLA negotiation problem with reputation and
time-period reservation and perform simulations to assess
the ability of these algorithms to learn risk-aware strategies.

The paper is organized as follows: Section 2 presents the
SLA negotiation problem and summarizes some related works.
Section 3 describes the model of the system. Section 4 de-
scribes a method to compute the optimal strategy of one
NSP when facing the requests of one customer. Section 5
studies a system comprising one customer and two NSPs (if
they collaborate and if they are selfish). Section 6 intro-
duces a reputation mechanism and describes how it impacts
the NSP optimal strategy. Section 7 describes the learn-
ing framework extended to support reputation and service
duration. Finally, section 8 presents the simulation results
obtained with the learning algorithms.

2. LONG TERM PROVISIONING AND RE-
LATED WORK

In the studied scenario, depicted by Fig. 1, the NSPs com-
pete for the customer’s selection through SLA offers.

Figure 1: Competition between two NSPs to be selected by
a customer

2.1 SLA negotiation
As in several frameworks [6, 2], the customer first sends
a request specifying required QoS parameters (e.g. band-
width > 10Gbps and delay < 10ms) to its neighbor NSPs.
Each NSP then sends an offer to the customer. This offer
can satisfy or exceed the QoS parameters requited by the
customer. Each NSP also sends a price corresponding to
its offer. Finally the customer selects one offer which will
be instantiated by the provider NSP. The NSPs compete on
QoS parameters and prices in order to be selected by the
customer. We assume in this paper that the SLAs have the
same duration, and that each NSP receives a single request
at each time. However, since the SLA duration exceeds one
time unit, the provisioned SLAs of the same NSP can over-
lap. Fig. 1 illustrates two NSPs (each one having 3 SLAs)
in competition to be selected by a customer.

The NSP is facing two important challenges: i) which SLA
the NSP would offer in order to be selected by the customer,
ii) how to minimize the failure probability and keep a good
reputation. Achieving these challenges is difficult for several
reasons: the NSP has no information on the customer’s pro-
file (customer’s sensitivity to the QoS, to the price, to the
reputation, etc.). The NSP has no information on the offers
of the other NSPs, neither their SLA violation probability.
It is not able to anticipate the future requests and its future
network state (future used capacity, reputation, etc.). The
purpose of our approach is to provide an algorithm that,
avoiding the use of forecasting method, will embed obser-
vation from both customer behavior and network state to
recommend an SLA offer to propose.

2.2 Related work
The SLA negotiation problem and risk-aware provisioning
are generally separately considered. In [2], the authors pro-
pose a Reinforcement Learning framework to perform SLA
negotiation and insure end-to-end QoS guarantees. The au-
thors of [7] analyze the SLA negotiation problem in a game
theoretic perspective. They specify the strategies that allow
to reach an equilibrium. In a previous work [3], we pre-
sented a framework of Reinforcement Learning algorithms
applied to the SLA negotiation problem and compared their
performances in simulation results.

Considering the risk-aware provisioning problem, the au-
thors of [8] propose a provisioning scheme which minimizes
the SLA violation risk and allows a minimum risk path selec-



tion in WDM1 networks. The authors argue that taking into
account the statistical availability of a path is not sufficient
to minimize the violation risk. They propose to take into
account more accurate parameters (such as failure profile,
availability target, etc.) in the path computation scheme.
Other works [9, 10] focus on management risk mechanisms
to assure QoS guarantees in Grid Systems.

These works do not make a relation between the SLA nego-
tiation (competing to be selected by the customer) and long
term and risk-aware provisioning (which provisioning strat-
egy adopt in order to keep a low failure probability). A way
to connect these two problems is to introduce a reputation
mechanism (over the NSPs) which is dependent upon the
NSP failure rate (i.e., SLA violation rate) and to consider
that the customer is sensitive to the reputation. In a previ-
ous work [5], we provide such a mechanism and present sim-
ulation results showing that Reinforcement Learning algo-
rithms can learn strategies that keep good reputation. How-
ever, the temporal aspects of the SLA negotiation (SLA du-
ration, SLA overlapping and its impact on the future avail-
able resources, etc.) were not considered. These aspects
complicate the problem of long-term provisioning.

In this work, we first study the case where the SLAs have
the same (fixed) duration and arrive at regular intervals.
We provide a method to compute the NSP optimal strategy
when there is one NSP, and then when there are two NSPs.
In the latter case, we also compute the optimal strategy
when the NSPs are selfish and derive the Price of Anarchy.
In the second part of this work, we introduce a reputation
mechanism and a learning framework to perform SLA nego-
tiations with reputation.

3. RISK-AWARE SLA NEGOTIATION
MODEL

3.1 NSP characteristics
Each NSP has a fixed maximum capacity denoted by cmax.
Let ct be the NSP capacity used between decision epoch
t− 1 and decision epoch t. We define the used capacity rate
at decision epoch t as ρt = ct/cmax and the average used

capacity rate (during some period T ) as ρ̃ = (
∑T
t=1 ρt)/T .

An SLA proposed by NSP i is denoted by qji . It is a 3-tuple

(bji , d
j
i , `

j
i ) where bji is the bandwidth, dji the delay and `ji

the packet-loss. All the SLAs have the same duration ∆.
The set of SLAs of NSP i is denoted by Qi.

3.1.1 SLA unit price
Each NSP set a unit price pu. Thus, the price of an SLA qji
per unit of time is pu · bji and the total price of an SLA is

pu · bji ·∆ .

3.1.2 The Failure function
The probability of failure of an SLA depends on the used
capacity rate of the NSP. As a function of the used capacity
rate, it is denoted by f(ρt). The failure probability can be
for example f(ρt) = ρt, f(ρt) = ρ2

t or f(ρt) = 1− exp(−ρt).

1Wavelength Division Multiplexing.

3.1.3 NSP reward
An NSP get a reward at each decision epoch. The reward
obtained at decision epoch t is denoted by vt. If ct is NSP
used capacity at decision epoch t then:

vt =

 pu · ct = pu · cmax · ρt if there is no failure
at decision epoch t

0 otherwise

Thus, the expected reward at decision epoch t is E(vt) =
pu · cmax · ρt · (1− f(ρt)) .

3.2 Customer’s characteristics
In order to compare the customer’s sensitivity to the QoS
parameters and to the price, the QoS parameters are re-
grouped within a normalized measure in [0, 1).

3.2.1 Quality of Service measure
A measure || · || on the QoS provided by an SLA is computed
according to its parameters. It is defined as:

||qji || = 1− 1

3

(
`ji
`req

+
dji
dreq

+
breq

bji

)
,

where breq is the minimum bandwidth requested by the cus-
tomer, dreq the maximum delay and `req the maximum packet-
loss. When qji complies with the QoS requirements, then
||qi|| ∈ [0, 1). The function ||.|| tends to 1 when the val-
ues of QoS parameters of the SLA surpass the customer’s
requirements. The SLAs that do not comply with the cus-
tomer’s requirements are not considered.

3.2.2 Customer’s utility according to an SLA
We opted for the classical customer’s utility (Quality of Ser-
vice − price):

U(qji ) = ||qji || − η
pji
pmax

where η is a fixed parameter, pji is the price of qji , and pmax

is the maximum price the customer is willing to pay.

4. ONE NSP WITHOUT COMPETITION
Here we study the problem where there is only one NSP
(called NSP 1) and one customer. The SLAs are simply
denoted by qj and their parameters by bj , dj and `j .

4.1 The NSP states
In order to select the SLA that maximizes its average reward,
NSP 1 needs a complete information on its current and fu-
ture available capacity. At each decision epoch t, NSP 1
knows which SLAs it provisioned until decision epoch t.
While the SLAs provisioned before decision epoch t−∆ are
already released, those provisioned between decision epochs
t − ∆ and t are still using the NSP capacity. Thus, these
SLAs allow to know how much capacity will be released at
each decision epoch between t and t+ ∆.

Thus, we define the state of NSP1 at decision epoch t as
the ordered list of SLAs That will be released between t and
t + ∆. In fact, the NSP only needs to know their band-
width. Thus, we define more formally the state of NSP1 at
decision epoch t as a vector st = (b1, . . . , b∆) where bj is
the bandwidth of the SLA that will be released at decision



Figure 2: A digram showing the different states of NSP 1.

epoch t + j. Thus, the used capacity at decision epoch t is
ct =

∑∆
i=1 b

j .

It is clear that if NSP 1 total capacity cmax is unbounded
then the total number of possible states of NSP 1 is (|Q|+
1)∆. However, since ∀t, ct ≤ cmax, the states s′ = (b′1, . . . , b′∆)

for which
∑∆
j=1 b

j > cmax are not valid (we mean by not
valid that these states require to use a capacity greater than
the total capacity of NSP 1. Thus, they cannot be reached).
Let S1 be the set of valid states of NSP 1. Then:

(|Q|+ 1)min(∆,K) ≤ |S1| ≤ (|Q|+ 1)min(∆,K′),

where K = bcmax/ max
qj∈Q1

bjc and K′ = bcmax/ min
qj∈Q1

bjc .

Example 1.1 This example shows how the states of an NSP
are defined with respect to its SLAs. Let the maximum ca-
pacity of NSP 1 be cmax = 100Gbps. It has two SLAs: q1

with bandwidth b1 = 30Gbps= 30%.cmax and q2 with band-
width b2 = 50Gbps= 50%.cmax. Thus, its set of strategies
is {q1, q2}. The duration of both SLAs is ∆ = 2 time units.
The diagram on Fig. 2 shows the different possible states of
NSP 1. Each possible combination and overlapping of the
SLAs define a state. For instance, s5 = (b1, b2) is a state
where q1 will be released at t+ 1 and q2 will be released at
t + 2. In this example, |S1| = (|Q1| + 1)∆ = (2 + 1)2 = 9.
All the states are reachable.

Remark 2. Example 1.1, as the other examples in this
paper, are obviously not realistic. Their purpose is to illus-
trates the approaches and the methods used in this paper
rather than to provide realistic data. In a concrete case,
the SLAs are more fine-grained (mainly less than 5% of the
NSP capacity) and have a longer duration. Such examples
are not convenient to explain the methods described here
because the number of states may be huge and can not be
described clearly and concisely in a paper format. In Sec-
tion 8, we use more realistic data to perform simulations.

4.2 Maximizing the average reward
At each decision epoch t, NSP 1 receives a request from the
customer, then selects an SLA and offers it to the customer.
NSP 1 may also offer nothing. The customer accepts the
offer (because it is the only one). In this case the offered
SLA is provisioned. If NSP 1 does not make an offer, it only
releases the SLA provisioned at t−∆ (if it exists).

As a consequence, the transition from the state st to the
state st+1 is done by releasing the SLA provisioned at t−∆
(if it exists) and provisioning the SLA offered at time t (if it
exists). The expected reward for NSP 1 is then vt+1 · (1 −
f(ρt+1)).

Define the transition function T1 : S1×S1 → R as T1(si, sj) =
vj · (1− f(ρj)) for any possible transtion from si to sj and
T1(si, sj) = −∞ if the transition from si to sj is not possi-
ble.

Let Xt(s
i) be the optimal reward after t steps starting from

state si. It can be computed by induction, using the linearity
of the expectation, as: X0(si) = 0 for all si ∈ S1 and

Xt+1(si) = max
sj∈S1

T1(si, sj) +Xt(s
j). (1)

Equation (1) is linear in term of (max,+)-algebras: see T1

as a square matrix and Xt as a column vector of size |S1|.
Then we can write:

Xt+1 = T1 ⊗Xt

and more generally,

Xt+1 = T t+1
1 ⊗X0,

where for any matrices A and B, any vector X,

A⊗X(si) = max
sk∈S1

A(si, sk) +X(sk)

A⊗B(si, sj) = max
sk∈S1

A(si, sk) +B(sk, sj)

A1 = A and An+1 = A⊗An.

More details about (max,+)-algebras can be found in [11].

Now, the mean optimal reward is:

E(vmax) = lim
t→∞

(T t1 ⊗X0)(s0)

t
.

This value exists and can easily be computed using the spec-
tral theorem of (max,+) matrices [11]. In our setting, T1 is
an irreducible (its graph is strongly connected) and aperi-
odic (T1(s0, s0) 6= −∞) matrix, so there exist λ ∈ R and
T ∈ R+ such that for all t ≥ T , T t+1

1 = λ + T t1 . Then λ
is the desired value E(vmax), which can be computed as the
average weight of a cycle of maximum average weight:

E(vmax) = max
k=1..|S1|

maxs∈S1(T k1 )(s, s)

k
(2)

Formula (2) suggests a naive algorithm to compute E(vmax)
in time O(|S1|4). However, using Karp’s algorithm [12] re-
duces the time complexity to O(|S1|3) in the worst case.

As a consequence, NSP 1 will follow one of the cycle with
maximum average weight in order to maximize its rewards.

Example 1.2 This example shows the graph of states and
transitions of an NSP and the maximum average weight cy-
cle which maximizes the NSP rewards. Let NSP 1 has the
same SLAs as in Example 1.1. Thus, its set of strategies is
{q1, q2}. Let the failure function be f(ρ) = ρ, ρ ∈ [0, 1] (the
failure probability is linear w.r.t. the used capacity rate).
And let the unit price be pu = 1 monetary unit (m. u.)



Figure 3: The graph of states and transitions associated to
NSP 1. Each bj is an SLA bandwidth. The cycle in bold is
the cycle of maximum average weight.

per Gbps. Fig. 3 shows the set of states and the transitions
associated to the NSP. The transitions are valuated by the
expected reward when reaching the new state. The maxi-
mum average cycle is given by s3, s4, s3 . . . The maximum
average reward is 25 and the optimal used capacity rate is
ρopt = 50%.

4.3 Another approach to compute the maxi-
mum average reward

Suppose that NSP 1 can set its average used capacity rate
ρ̃ = c̃/cmax (where c̃ is the average used capacity) to any
value in [0, 1]. And suppose that it knows the value of the
failure function f(ρ̃) for all ρ̃ ∈ [0, 1]. The NSP reward, as
defined in Section 3.1.3, depends on the bandwidth of the
provisioned SLAs.

v = pu · cmax · ρ̃

Thus, the average reward per time unit is given by v(1−f(ρ̃))
and NSP 1 goal is to compute the optimal average reward,
which is ρopt = arg maxρ̃∈[0,1]v(1− f(ρ̃)).

If NSP 1 knows the values of f(ρ̃) and v for all ρ̃ ∈ [0, 1],
then it is easy to compute the optimal average used capacity
that maximizes the average reward. This approach is useful
if the SLAs are fine-grained, which allows to closely approx-
imate ρopt by (

∑∆
t=1 ct)/∆

Example 1.3. Let, as in the previous examples, the maxi-
mum capacity of NSP 1 be cmax = 100Gbps, the unit price
be pu = 1 m.u. and the failure function f(ρ̃) = ρ̃. The maxi-
mum average reward E(vmax) is obtained by maximizing the
function v(1− f(ρ)). The maximum value is obtained when
ρ = 0.5. The maximum average reward is E(vmax) = 25
m.u. and the optimal average used capacity is ρopt = 50%.
It exactly corresponds to the maximum weight of a cycle
obtained in Example 1.2.

5. TWO NSPS AND ONE CUSTOMER

In this section we focus on the SLA negotiation problem
when there are two NSPs (called NSP 1 and NSP 2) and one
customer. We assume that the customer sends a request at
each decision epoch and that both NSPs propose an SLA (or
nothing). If there is only one proposition, then the customer
selects this proposition. If there are two offers then the
customer chooses among these propositions. Thus, only one
offer can be selected at each decision epoch. If NSP 1 is
selected then NSP 2 does not provision any new SLA, and
vice versa. If both offered SLAs are equivalent (regarding
the customer’s utility), the customer randomly selects one
of them with uniform probabilities.

5.1 Optimal strategy when the NSPs collabo-
rate

Here both NSPs are considered as a single one and the goal
is to maximize the sum of their rewards. The approach to
compute the optimal reward and the optimal strategies is
the same as in Section 4.2.

Let S1 (resp. S2) be the set of reachable states of NSP 1
(resp. NSP 2) as defined in Section 4.1. And let T1 (resp.
T2) be the transition function of NSP 1 (resp. NSP 2) as
defined in Section 4.2. For each state sji = (b1i , . . . , b

∆
i ) ∈

Si (where i ∈ {1, 2}), we define suc∅(s
j
i ) as suc∅(s

j
i ) =

(b2i , b
3
i , . . . , b

∆
i , 0). The state suc∅(s

j
i ) is the successor of

the state sji when NSP i does not provision any SLA at

the current decision epoch. It is clear that if sji ∈ Si then

suc∅(s
j
i ) ∈ Si (because the used capacity corresponding to

suc∅(s
j
i ) is less than the used capacity corresponding to sji ).

The set of states S of the whole system is included the
Cartesian product S1 × S2. If s = (s1, s2) ∈ S1 × S2 and
s′ = (s′1, s

′
2) ∈ S1 × S2 then there is a transition from s to

s′ iff at least one of those three cases occurs:

1. There is a transition from s1 to s′1 and s′2 = suc∅(s2)

2. there is a transition from s2 to s′2 and s′1 = suc∅(s1)

3. s′1 = suc∅(s1) and s′2 = suc∅(s2).

Note that case 3. is redundant, as (si, suc∅(si)) is always
a transition of Ti. The state space S is exactly the states
in the strongly connected component to whom belongs the
state ((0, . . . , 0), (0, . . . , 0)) in the transition function T .

Moreover, the transition function T over S is defined as:

T (s, s′) = T1(s1, s
′
1) + T2(s2, s

′
2). (3)

Similarly to what has been done in Section 4.2, the maxi-
mum average reward of the whole system is given by:

E(vmax) = max
k=1..|S|

max
s∈S

(T k)(s, s)

k
.

Proposition 1. Let E(v1
max) (resp. E(v2

max)) be the max-
imum average reward of NSP 1 (resp. NSP 2) in case of one
NSP, one customer. Then:

max(E(v1
max),E(v2

max)) ≤ E(vmax) ≤ E(v1
max) + E(v2

max).



Sketch of proof. For i ∈ {1, 2}, set s0
i = (0, . . . , 0).

The inequality E(v1
max) ≤ E(vmax) comes from the fact that

S1×{s0
2} ⊆ S and that if T1(sk1 , s

j
1) 6= −∞, then by construc-

tion T ((sk1 , s
0
2), (sj1, s

0
2)) = T1(sk1 , s

j
1)+T2(s0

2, s
0
2) = T1(sk1 , s

j
1).

As a consequence, for each cycle of T1, there is a cycle of
same length and same weight in T and E(v1

max) ≤ E(vmax).
By symmetry argument, exchanging the roles of E(v1

max) and
E(v2

max) is enough to prove that E(v2
max) ≤ E(vmax) and the

left inequality.

The right inequality is a direct consequence of the fact that
S ⊆ S1×S2 and Equation (3): from each cycle of T one can
find two cycles (a) with the same length respectively in T1

and T2, (b) whose weight is the sum of the weights of those
two cycles. As a consequence, the mean weight of this cycle
in T is the sum of the mean weight of a cycle in T1 and of a
cycle in T2.

5.2 Optimal strategy when the NSPs are self-
ish

There are two possible cases when the NSPs are selfish.
First, each NSP has a dominant strategy, i.e., for each NSP,
there is an SLA that maximizes its expected average reward,
regardless of the NSP used capacity rate or the NSP state.
Second, one NSP (or both NSPs) has no dominant strategy.
These two cases lead to a slightly different models but do
not impact the results.

5.2.1 Dominant Strategy
We assume here that each NSP has a dominant strategy
corresponding to offer one SLA. If such an SLA exists, then
it is clearly the one that maximizes the customer’s utility.
Thus, offering this SLA at each decision epoch is a dominant
strategy for both NSPs. Let q∗1 (resp. q∗2) be this SLA for
NSP 1 (resp. NSP 2). The configuration where each NSP i
offers q∗i is a Nash equilibrium of the game [13]2.

If the utility of the customer when accepting q∗1 (resp. q∗2)
is greater than its utility when accepting q∗2 (resp q∗1), the
customer will always select the offer of NSP 1 (resp. NSP 2).
In this case, the dominant NSP will monopolize the market.

If the customer’s utility is the same for q∗1 and q∗2, we assume
that the customer selects randomly (with probability 1/2)
between q∗1 and q∗2. The different states of the system and
the transitions between them can be modeled as a Markov
chain. A state of the Markov chain is a pair [s1, s2] where
s1 ∈ S1 and s2 ∈ S2. Let suc∅(si) be the successor of si as
defined in Section 5.1. For each si = (b1i , . . . , b

∆
i ), we define

sucq(si) as sucq(si) = (b2i , . . . , b
∆
i , b
∗
i ), where b∗i is the band-

width of q∗i . In other words, suc∅(si) is the successor of si
when NSP i does not provision any SLA at the current time
and sucq(si) is the successor of si when NSP i provisions q∗i
at the current time.

All the recurrent states in the Markov chain are in the form
[(b11, . . . , b

∆
1 ), (b12, . . . , b

∆
2 )] where bk1 = b∗1 and bk2 = 0 or bk1 =

0 and bk2 = b∗2, because each NSP offers its best (dominant
strategy) SLA. Thus, at each decision epoch, the customer

2A configuration where each player plays its dominant strat-
egy is always a Nash equilibrium [14].

selects surely one of them. It follows that the number of
recurrent states of the Markov chain is 2∆.

There is a transition (with probability 1/2) from state s =
[s1, s2] to s′ = [s′1, s

′
2] iff: s′1 = suc∅(s1) and s′2 = sucq(s2)

or
s′1 = sucq(s1) and s′2 = suc∅(s2)

note that the Price of Anarchy can be arbitrary large de-
pending on the price difference between the Nash equilib-
rium strategy SLA (q∗i ) and the optimal SLAs that maxi-
mize the NSP reward if there is only one NSP. Example 2
provides an instance where the Price of Anarchy is larger
than 1.

Example 2. In this example, we assume that NSP 1 and
NSP 2 have the same maximal capacity cmax = 100Gbps
and the same set of SLAs: q1 with bandwidth b1 = 30Gbps=
30% ·cmax and q2 with bandwidth b2 = 50Gbps= 50% ·cmax.
The duration of all SLAs is ∆ = 2 units of time and the
failure function is f(ρ) = ρ. Suppose that the request of the
customer is such that the customer’s utility is maximized
by q1. Thus, offering q1 is a dominant strategy for both
NSPs and the situation where both NSP 1 and NSP 2 offer
q1 is a Nash equilibrium. If the used capacity of an NSP
is either ct = 0 or ct = 30% · cmax, offering q1 instead of
nothing increases its expected reward (the NSP expected
reward when its used capacity is at ct = 60% · cmax are
greater than its expected reward when its used capacity is
at ct = 30% · cmax). We assume that when both NSPs offer
the same SLA, then the customer selects randomly one of
them with probability 1/2.

It is clear that the optimal strategy for both NSPs is to offer
alternatively q2 and nothing (NSP 1 offers q2 at decision
epoch t = 0 then NSP 2 offers q2 at t = 2, etc.). The
expected average reward for each NSP is then E(vmax) = 25
m.u. per decision epoch.

Computing the expected average reward in the situation of
Nash equilibrium described above can be done as follows:
Since both NSPs offer q1 at each decision epoch, and since
the customer selects randomly one of them at each decision
epoch, the states of the system can be modeled as a Markov
chain. Fig. 4 shows the Markov chain associated to the
system when both NSPs play their Nash equilibrium strat-
egy. The states are combinations of two single NSP states
and the arrows represent the transitions between the states.
Each transition is shown with its probability. The recur-
rent states are those in the dotted rectangle. The transition
matrix of the reduced Markov chain is given by:


s3 s4 s5 s6

s3 1/2 0 1/2 0
s4 0 1/2 0 1/2
s5 0 1/2 0 1/2
s6 1/2 0 1/2 0


And the stationary distribution is (1/4, 1/4, 1/4, 1/4). Thus,



Figure 4: The Markov chain associated to the NSPs in Ex-
ample 2. The recurrent states are in the dotted rectangle.

the expected average reward of each NSP is:

E(vmax) =
1

4
60(1− f(0.6)) +

2

4
30(1− f(0.3)) = 16.5

Thus, the Price of Anarchy in this case is 25/16.5 ≈ 1.51.

Proposition 2. The Price of Anarchy can be arbitrary
large depending on the SLAs of the NSPs.

Sketch of proof. As shown in Example 2, the Nash
equilibrium strategy of the NSPs can differ from the opti-
mal strategy if they collaborate. It is easy to design a game
where the revenues gathered by the optimal strategy are ar-
bitrary larger than the revenues gathered by the Nash equi-
librium strategy. For instance, it is sufficient to consider the
same parameters as in Example 2 and to set the bandwidth
of q1 as small as wanted. This gives a Price of anarchy as
large as wanted.

5.2.2 Absence of dominant strategy
Depending on its state, an NSP may proposes nothing in-
stead of the closest SLA to the customer’s request (for exam-
ple, when the NSP has a too high used capacity). This case
slightly impacts the structure of the Markov chain as de-
scribed in Section 5.2.1 because it allows that both NSPs of-
fer nothing to the customer. This leads to having transitions
from a state s = [s1, s2] to s′ = [s′1, s

′
2] where s′1 = suc∅(s1)

and s′2 = suc∅(s2). However, the approach to compute the
equilibrium expected reward remains the same. In this case
too, it is possible to have instances where the Price of An-
archy is unbounded.

6. COMPETITION WITH REPUTATION
MECHANISM

All the results stated in the previous sections are based on
the assumption that the customers are only sensitive to the
QoS parameters and the price of the SLAs. However, the
customer is also sensitive to past failures he experimented
with the NSP, modeled as its NSP reputation. Unfortu-
nately, with a dynamic reputation (evolving during time),
the Markov chain defined in section 5 is non-homogeneous.
Section 6.2 explains this non-homogeneity thus motivating
an evaluation by simulation.

We assume that all the customers are aware of the NSP
reputation. We do not address the reputation propagation
mechanism among the customers. The interested reader can
refer to chapters 23 and 27 of [15] for an overview of repu-
tation systems.

6.1 Computing the reputation value
We simply consider the reputation of an NSP as the (statis-
tical) probability of success of its provisioned SLAs:

rt(i) = 1− #fail(i)

#select(i)

where #fail(i) is the number of SLAs provisioned by NSP i
that were violated and #select(i) is the total number of
SLAs provisioned3 by NSP i.

6.2 Customer’s choice regarding the NSP rep-
utation

The reputation of an NSP can be seen as a probability of
success of the SLA it offers. Thus, the utility of the cus-
tomer according to an offer can be weighted by its reputa-
tion. More formally:

Pr[select q∗1] =
rt(1)U(q∗1)

rt(1)U(q∗1) + rt(2)U(q∗2)

where q∗1 (resp. q∗2) is the SLA proposed by NSP 1 (resp.
NSP 2). The same formula applies for NSP 2 (by replacing
q∗1 by q∗2).

Thus, the transition probabilities between the states of the
system are dependent upon the NSP reputation, which evolves
at each decision epoch. This implies that the Markov chain
associated to the system (as described in Section 5.2) is non-
homogeneous. Thus, it is difficult to obtain analytical re-
sults and to compute the optimal strategies that maximize
the rewards of the NSPs. This motivates the use of learning
algorithms as described in the following section.

7. LEARNING FRAMEWORK
This second part of this paper evaluates if learning algo-
rithms can learn a strategy capturing both the network ca-
pacity state and the NSP reputation, and if they find a
trade-off between gathering high revenues and keeping good
reputation. In this section, we provide an extension of the
learning framework of [3, 5] to support the time durations of
SLAs which plays a key role on the network capacity state.

7.1 Learning algorithms
In this section, we propose an adaptation of two learning
algorithms: the Linear Reward Inaction (LRI) and the Q-
Learning. Learning algorithms follow a scheme of 3 prim-
itives : select, observe, update. The select primitive
applies the learning algorithm policy to determine an opti-
mal strategy. The observe primitive is a phase where the
algorithm waits and observes the environment response (de-
fined by the reward) to its proposed strategy. The update
primitive modifies the knowledge used to select the strategy
according to the observed reward.

3Recall that only the offers accepted by the customer are
provisioned.



7.1.1 Linear Reward Inaction Algorithm
The LRI maintains a probability vector πt where each πt(j)
is the probability to offer qji at decision epoch t to the cus-
tomer. If the action succeeds (i.e., the offered SLA is selected
by the customer), then the probability vector is updated as
follows:

πt+1(j) = πt(j)

(
1− β vt

vmax

)
+ β

vt
vmax

πt+1(k) = πt(k)

(
1− β · vt

vmax

)
∀k 6= j

where qji is the selected SLA, qki denotes all the other SLAs,

vt is the reward at time t (the price of qji ) and β is a learning
parameter s.t. 0 < β < 1. Note that the LRI algorithm
is stateless, it does not take into account the NSP state
(remaining capacity, etc.) in the decision process.

7.2 Q-Learning Algorithm
7.2.1 Markov Decision Process

The Q-Learning algorithm performs on a Markov Decision
Process (MDP) model. An MDP is formalized as a 4-tuple
{S,A, P,R} where:

• S is the set of states of the MDP. The structure of a
state is explained in the following section,

• A is the set of actions. It corresponds to the set of
SLAs of the NSP,

• P (σ, j, σ′) is the probability to reach the state σ′ when
being in the state σ and offering the SLA qji ,

• R(σ, j, σ′) is the reward when reaching the state σ′

after being in the state σ and offering the SLA qji . It

corresponds to the price of qji if qji is selected by the
customer, 0 otherwise.

7.2.2 Capacity grade and MDP states
The used capacity rate should be in the MDP states so that
the Q-Learning algorithm can learn strategies taking into
account the remaining capacity of the NSP. However, the
used capacity rate should be discretized in order to avoid
combinatorial explosion of the number of states. Thus, it is
converted into capacity grade (denoted by G). An example
of discretization can be seen in Table 1. Recall that the
failure probability of an SLA is correlated with the used
capacity rate of the NSP. Table 1 shows the capacity grade
corresponding to each interval of used capacity rate, and the
associated failure probability. These values are those used
to perform simulations in Section 8.

A state σ of the MDP is a pair (req, G) where req is a request
profile and G the capacity grade of the NSP. If there is a
single customer, then the request does not matter since we
assume that a customer always sends the same requests.
However, if there are more than one customer, then putting
the request profile in the state allows the NSP to adapt its
strategy depending on the customer profile.

Capacity Used Capacity Failure
grade G Rate probability f(ρ)

0 ρ = 1 1
1 0.95 ≤ ρ < 1 0.99
2 0.90 ≤ ρ < 0.95 0.90
3 0.80 ≤ ρ < 0.90 0.80
4 0.60 ≤ ρ < 0.80 0.50
5 0.30 ≤ ρ < 0.60 0.20
6 ρ < 0.30 0.05

Table 1: Relation between capacity grade, used capacity
rate and SLA violation probability.

7.2.3 The Q-Learning algorithm
The Q-Learning [16] is a model-free algorithm, i.e., it does
not need to know the transition probabilities of the MDP to
perform. It is a useful propriety since the transition prob-
abilities are dependent upon the customer’s response, the
failure probability and the other NSP offers. These values
are not known by the NSP.

The Q-Learning algorithms compute the optimal Q-values
of each pair (state, action) of the MDP at each decision
epoch t. The Q-value of a pair (σ, a) at decision epoch t is
defined as Qt(σ, a) = E[Rt | σt = σ, at = a] where Rt =∑∞
k=0 γ

kvt+k, with vt is the expected reward at decision
epoch t and γ ∈ (0, 1] is a discount factor. Thus, Qt(σ, a) is
the expected discounted reward when being in state σ and
performing action a at decision epoch t.

The Q-Learning algorithm first initializes all the variable
values, then, at each decision epoch, selects an SLA to offer
according to some Q-based policy. The most common policy
is the ε-greedy one. It consists, when being in state σ, to
select the action a having the highest Q-value Qt(σ, a) with
probability 1 − ε, and selecting another action at random
with probability ε for some positive ε� 1. After observing
the customer’s response (and thus getting vt and the new
state σt+1), the Q-Learning algorithm updates the Q-values
according to formula (4), where αt is a learning rate initial-
ized with a value in (0, 1), then decreased.

Qt+1(σ, a)← (1− αt)Qt(σ, a) + αt(vt + γmax
a′∈A

Qt(σt+1, a
′)) (4)

Algorithm 1 Q-Learning algorithm

Initialization
loop

At each decision epoch t
Select an SLA at = qji according to ε-greedy policy
Observe reward vtand new state σt+1

Update the Q-values according to formula (4)
end loop

7.3 Risk-aware Learning framework
The learning framework select, observe, update is par-
ticularly impacted when taking into account the fact that
SLA violations might occur during a long time-period. This
forces to shift the reward observation until the end of the
SLA duration.



Algorithm 2 Temporal learning framework

while Request at decision epoch t do
Select SLA w.r.t. customer request
Propose SLA to customer and Observe response
if customer response is positive then

provision the SLA
end if
for each SLA still provisioned at t do

if there is a failure at t then
Refund customer: Observe a negative reward

else
Observe a positive reward

end if
end for
Update learning data
for each SLA ending at t do

Update network capacity grade (release resources)
end for

end while

Algorithm 2 shows the temporal learning framework as it is
impacted by the temporal constraints. At a request arrival,
the NSP selects an SLA according to some policy and ob-
serves the customer’s choice. It provisions the SLA if it is
chosen by the customer. Then it observes if a failure occurs
(which is dependent upon its current resource state). In case
of failure (i.e., SLA violation), it refunds all the customers
whose SLAs are still provisioned. Otherwise it collects the
SLA prices for decision epoch t. Finally, the SLAs provi-
sioned at decision epoch t−∆ (if any) are released and the
learning data are updated.

8. SIMULATION RESULTS
In order to evaluate the behavior of learning algorithms (LRI
and Q-Learning) and their ability to learn reputation-aware
and risk-aware strategies, we perform simulations with two
NSPs and one customer, then with two NSPs and two cus-
tomers.

8.1 Simulated algorithms
The Q-Learning and LRI algorithms are compared to two
“trivial” strategies:

• Min strategy: This strategy consists in offering al-
ways the cheapest SLA that satisfies the customer’s
requirements.

• Uniform strategy: It consists in offering at random
and with uniform probability one of the SLAs that
satisfy the customer’s requirements.

8.2 Simulations with 1 customer and 2 NSPs
8.2.1 Simulation settings

We present the simulation results performed on the topol-
ogy presented in Fig. 1. Each NSP has a set of 4 SLAs as
described in Table 2. On table 2, SLAs are presented in an
increasing price order.

The SLA duration ∆ = 40 time units and each NSP has
a capacity of 10, 000Mbps. The customer request has the
same QoS parameters as q1

i , except for the delay which is

SLA Bandwidth Delay Packet-loss

q1
i 100Mbps 20ms 0.1%

q1
i 200Mbps 20ms 0.1%

q2
i 250Mbps 30ms 0.1%

q3
i 2500Mbps 5ms 0.001%

Table 2: Set of SLAs of NSP i (i = 1, 2).

30ms. Thus, all the SLAs satisfy the customer’s require-
ments. Considering the learning parameters, we set β = 0.02
for the LRI algorithm and α0 = 0.5 and γ = 0.8 for the Q-
Learning algorithm.

Each NSP uses a particular algorithm or strategy, denoted
“Algo1 vs Algo2” on the figures; Algo1 is used by the NSP
for which the results are exhibited by the curves, and Algo2
is the opponent NSP’s strategy. QL stands for Q-Learning,
Min for the Min strategy and Uniform for the Uniform strat-
egy. When both NSPs use the same algorithm, it is simply
denoted by“Algo” instead of “Algo1 vs Algo2”.

Simulations were performed during 10000 rounds, where each
round is repeated 100 times. All the results have been aver-
aged according to the 100 repetitions.

8.2.2 Results
Fig. 5 shows the average reward per request of the first
NSP when using different algorithms. . The results show
that, after a short learning phase, the rewards stabilize, ex-
cept those of the LRI algorithm which continue to slowly
increase. The highest rewards are obtained when NSP 1
uses the LRI algorithm against the opponent NSP using the
uniform strategy, followed by NSP 1 using Q-Learning algo-
rithm against the opponent NSP using the uniform strategy.
It seems that the min strategy performs bad against all other
strategies, which means that the customer prefers to be up-
graded with the current simulation parameters. The LRI
algorithm perform slightly better than the Q-Learning algo-
rithm, and the learning algorithms perform better than the
trivial strategies.

Figure 5: NSP rewards

Fig. 6 shows the average reputation of NSP 1. Obviously,
the min strategy keeps the highest reputation against all
other strategies. Since the min strategy offers always the



cheapest SLA (which is also the SLA with the lowest QoS
parameters), it minimizes the NSP used capacity and thus
minimizes also the SLA failure probability, which leads to a
high reputation. All other strategies stabilize between a rep-
utation of 0.8 and 0.9, which seems a good trade-off between
a high reputation and high immediate rewards.

Figure 6: NSP reputation

Fig. 7 shows the average used capacity of NSP 1. The more
the capacity is used, the higher are the rewards. However,
all the strategies maintain the used capacity between 20%
and 45%, except the min strategy that maintains the used
capacity less than 20%.

Figure 7: NSP used capacity (%)

8.3 Simulations with 2 customers and 2 NSPs
This section exhibits the simulation results with 2 customers
and 2 NSPs. The setting parameters are the same as in
Section 8.2.1, except that there are two customers sending
their requests to both NSPs at the same time.

Fig. 8 shows the per request average rewards of NSP 1.
The highest rewards are obtained when NSP 1 uses the
LRI algorithm against the opponent NSP using the uni-
form strategy, as in the case of a single customer. It seems
that the LRI algorithm outperforms the Q-Learning algo-
rithm when facing simultaneous requests of 2 customers.
The Q-Learning algorithm suffers from this configuration
as it presents worse results than with 1 customer. The min
strategy presents the worst results facing any of the other
strategies.

Figure 8: NSP average rewards

The evolution of the reputation value in this case is not pre-
sented because it follows the same trend as in the case of 1
customer. Fig. 9 shows the evolution of the NSP used ca-
pacity. The correlation between the used capacity and the
rewards can be seen in the same way that in the case of 1
customer. It seems that the Q-Learning algorithm performs

Figure 9: NSP used capacity

worse than the LRI algorithm. In both cases of 1 and 2
customers, the LRI algorithm performs well. These results
are inconsistent with those of [3] (where the Q-Learning al-
gorithm performs better than the LRI algorithm). But, the
problem addressed in [3] did not capture the NSP reputa-
tion, nor the multiple SLA overlapping and had a different
customer preference function.

9. CONCLUSION
Assuring QoS connectivity is a major challenge for current
and future networks. We investigated the optimal strategy
of an NSP in the SLA negotiation taking into account the
risk of SLA violations and we presented a method to com-
pute such a strategy for 1 or 2 NSPs and one customer.
Then, we defined a model for the NSP reputation embed-
ding the SLA duration. As the previous results do not hold
when introducing the reputation, we proposed a learning
framework tackling this more complex problem. Simulations
showed that learning algorithms outperform the strategies
of offering the cheapest SLA or an SLA at random. Sur-
prisingly, the LRI algorithm surpasses the Q-Learning algo-
rithm. This may be due to the faster convergence of the LRI



algorithm. As a future work, we plan to study algorithm per-
formance under various arrival laws, and how these different
laws impact the NSP optimal strategy.
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