Improved Reconstruction Attacks on
Encrypted Data Using Range Query Leakage

Marie-Sarah Lacharité, Brice Minaud, Kenny Paterson

. / N " . / N 2 - ."‘ N 4 . / N 2 " . / N - -e .‘/ N > . / N " y / N - - ."‘ TN 4 .
9 9 9 " 9 9 " " 9 9 ~
A . 4 - ) - L . J . A - J L . J L . 4 - y - “ J . Y . 4 “ A - J - o 4

ROYAL
HOLLOWAY
UNIVERSITY

OF LONDON

Information Security Group

[ ) 9 < ) 9 C _ 5 _ 3
Nt N - N it N Nt N - N Nt - o | N - “ - .
ol | LA x U | L x N ' L x N | LA x U | L x " ' L x N )’
) y - N, y ; b . . B N . ; 3 * . ‘ b - . y \ .

[EEE Symposium on Security and Privacy, May 21, 2018




Outsourcing Data with Search Capabillities

Client Server




Outsourcing Data with Search Capabillities

Data upload g

Client Server




Outsourcing Data with Search Capabillities

Data upload g

Search query

>

Matching records

<

Client Server




Outsourcing Data with Search Capabillities

Data upload g

Search query

>

Matching records

<

Client Server

For an encrypted database management system:
» Data = collection of records in a database. e.q. health records.

» Search query examples:
- find records with given value. e.q. patients aged 57/.
- find records within a given range. e.q. patients aged 55-65.




Security of Data Outsourcing Solutions
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Adversaries:

» Snapshot: breaks into server, gets snapshot of memory.
» Persistent: corrupts server, sees all communication transcripts.
Can be server itself.
Security goal = privacy,.
— Adversary learns as little as possible about the client’s data and queries.
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Solutions

* Structure-preserving encryption.
Vulnerable to snapshot attackers.

» Second-generation schemes:
Aim to protect against snapshot and persistent attackers.

* Very active research topic.

IAKSX04], [BCLO09], [PKV+14], [BLR+15], [NKW15], [KKNO16], [LW16],
[FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]...
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* Most schemes leak set of matching records = access pattern leakage.
OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FJ+15], ...

* Some schemes also leak #records below queried endpoints = rank leakage.
FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKY, ...
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Exploiting Leakage

* Most schemes prove that nothing more leaks than their leakage model allows.
For example, leakage = access pattern + rank.

What can we really learn from this leakage?

* Our goal: full reconstruction = recovering the exact value of every record.

+ [KKNO16]: O(N2log N) queries suffice for full reconstruction using only access
pattern leakage!

- where N is the number of possible values (e.g. 125 for age in years).




Assumptions for our Analysis

 Data is dense: all values appear Iin at least one record.

* Queries are uniformly distributed.

Our algorithms don’t actually care though — the assumption is for
computing data upper bounds.
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Full Reconstruction Algorithm

Set of all records

Assume N = 7 values, and 5 queries.

M; = set of records matched by i-th query.
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If there are N minimal subsets — each of them correspond to a single value.
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Full Reconstruction: Conclusion

* Generic setting: only access pattern leakage.

* Partiotioning, then sorting steps.

* Expectation of #queries sufficient for reconstruction:
N - (3 + log N for N = 26

* Expectation of #queries necessary for reconstruction:
1/2 - N-log N — O(N)

for any algorithm.

* Our algorithm is data-optimal.
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Auxiliary Data Attack with Rank Leakage

* Assume access pattern + rank leakage.

* Also assume an approximation to the distribution on values is known.
“*Auxiliary distribution™.
From aggregate data, or from another reference source.

* We show experimentally that, under these assumptions, far fewer queries
are needed.




Auxiliary Data Attack Algorithm

Set of all records

M;

Assume N = 125 values, and 2 queries.

M; = set of records matched by i-th query.
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Auxiliary Data Attack: Experimental Evaluation

* Ages, N=125.

* Health records from US hospitals (NIS HCUP 2009).
* Target: age of individual hospitals' records.

* Auxiliary data: aggregate of 200 hospitals' records.

* Measure of success: proportion of records with value guessed within &.




Results with Imperfect Auxiliary Data
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Reconstruction Attacks: Conclusions

M Other reqg'ts |Suff. # queries
AP O )

Density N2 log N
AP + rank Density N - (log N + 2)
AP Density N - (log N + 3)
e-approx. AP Density 5/4 N-(log 1/¢) + O(N)
Auxiliary AP + rank  Auxiliary dist. Experimental

» Full reconstruction = N log N queries with only access pattern!
Efficient, data-optimal algorithms + matching lower bound.

* For N=125:
800 queries — full reconstruction.
25 queries = majority of records within 5%, using
auxiliary distribution + rank.




Reconstruction Attacks: Conclusions

* Many clever schemes have been designed, enabling range queries on
encrypted data.

OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FUIKNRS15],
FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKY,...

» Second-generation schemes defeat the snapshot adversary (with caveats).

* But as our attacks show, no known scheme offers meaningful privacy vs. a
persistent adversary (including server itself).

* More research needed!




