Improved Reconstruction Attacks on
Encrypted Data Using Range Query Leakage

Marie-Sarah Lacharité, Brice Minaud, Kenny Paterson

. / N " . / N 2 - ."‘ N 4 . / N 2 " . / N - -e .‘/ N > . / N " y / N - - ."‘ TN 4 .
9 9 9 " 9 9 " " 9 9 ~
A . 4 -) - L . J . A - J L . J L . 4 - y - “ J . Y . 4 “ A - J - o 4

ROYAL
HOLLOWAY
UNIVERSITY

OF LONDON

Information Security Group

[) 9 <) 9 C _ 5 _ 3
Nt N - N it N Nt N - N Nt - o | N - “ - .
ol | LA x U | L x N ' L x N | LA x U | L x " ' L x N)’
) y - N, y ; b . . B N . ; 3 * . ‘ b - . y \ .

[EEE Symposium on Security and Privacy, May 21, 2018

Outsourcing Data with Search Capabillities

Client Server

Outsourcing Data with Search Capabillities

Data upload g

Client Server

Outsourcing Data with Search Capabillities

Data upload g

Search query

>

Matching records

<

Client Server

Outsourcing Data with Search Capabillities

Data upload g

Search query

>

Matching records

<

Client Server

For an encrypted database management system:
» Data = collection of records in a database. e.q. health records.

» Search query examples:
- find records with given value. e.q. patients aged 57/.
- find records within a given range. e.q. patients aged 55-65.

Security of Data Outsourcing Solutions

Search query

>

Matching records

<

Client Adversarial

. server
Adversaries:

» Snapshot: breaks into server, gets snapshot of memory.
» Persistent: corrupts server, sees all communication transcripts.
Can be server itself.
Security goal = privacy,.
— Adversary learns as little as possible about the client’s data and queries.

Solutions

* Structure-preserving encryption.
Vulnerable to snapshot attackers.

Solutions

* Structure-preserving encryption.
Vulnerable to snapshot attackers.

» Second-generation schemes:
Aim to protect against snapshot and persistent attackers.

Solutions

* Structure-preserving encryption.
Vulnerable to snapshot attackers.

» Second-generation schemes:
Aim to protect against snapshot and persistent attackers.

* Very active research topic.

IAKSX04], [BCLO09], [PKV+14], [BLR+15], [NKW15], [KKNO16], [LW16],
[FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]...

Schemes Supporting Range Queries

Client

Range = [40,100] »

45

2

Server

6

3

83

28

Schemes Supporting Range Queries

Range = [40,100] »
1 3
45 || 83

Client Server
1 2 3 4

45 6 83 28

Schemes Supporting Range Queries

Client Server
1 2 3 4

Schemes Supporting Range Queries

Client Server
1 2 3 4

* Most schemes leak set of matching records = access pattern leakage.
OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FJ+15], ...

Schemes Supporting Range Queries

Client Server
1 2 3 4

* Most schemes leak set of matching records = access pattern leakage.
OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FJ+15], ...

* Some schemes also leak #records below queried endpoints = rank leakage.
FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKY, ...

Exploiting Leakage

* Most schemes prove that nothing more leaks than their leakage model allows.
For example, leakage = access pattern + rank.

What can we really learn from this leakage?

Exploiting Leakage

* Most schemes prove that nothing more leaks than their leakage model allows.
For example, leakage = access pattern + rank.

What can we really learn from this leakage?

* Our goal: full reconstruction = recovering the exact value of every record.

Exploiting Leakage

* Most schemes prove that nothing more leaks than their leakage model allows.
For example, leakage = access pattern + rank.

What can we really learn from this leakage?

* Our goal: full reconstruction = recovering the exact value of every record.

+ [KKNO16]: O(N2log N) queries suffice for full reconstruction using only access
pattern leakage!

- where N is the number of possible values (e.g. 125 for age in years).

Assumptions for our Analysis

 Data is dense: all values appear Iin at least one record.

* Queries are uniformly distributed.

Our algorithms don’t actually care though — the assumption is for
computing data upper bounds.

Our Main Results

* Full reconstruction with O(N-logN) queries from access patiern leakage
—infact, N- (3 + log N).

Our Main Results

* Full reconstruction with O(N-logN) queries from access patiern leakage
—infact, N- (3 + log N).

« Approximate reconstruction with relative accuracy € with O(N - (log 1/¢))
queries.

Our Main Results

* Full reconstruction with O(N-logN) queries from access patiern leakage
—infact, N- (3 + log N).

« Approximate reconstruction with relative accuracy € with O(N - (log 1/¢))
queries.

* Approximate reconstruction using an auxiliary distribution and access
pattern + rank leakage.

Our Main Results

* Full reconstruction with O(N-logN) queries from access patiern leakage
—infact, N- (3 + log N).

* Approximate reconstruction using an auxiliary distribution and access
pattern + rank leakage.

Full reconstruction

@ - " 1@ ~1® 1@ 1@ <
“(| “(| | | | W | < |
,‘\ A A A A A A A A A A A A |

Full Reconstruction Algorithm

Set of all records

Assume N = 7 values, and 5 queries.

M; = set of records matched by i-th query.

Step 1: Partitioning

Step 1: Partitioning

My \ (MU M; 0 M3\
M3 U M,) (M3 U M,)

Step 1: Partitioning

M2
M
i 3 i f
v Y
My \ (MU M; 0 M3\
M3 U M,) (M3 U M,y)

If there are N minimal subsets — each of them correspond to a single value.

Step 2a: Finding an Endpoint

-
M1 u M3 cover all but 1 minimal set

Step 2a: Finding an Endpoint

N _ ' Y
~

M1 u M3 cover all but 1 minimal set Endpoint!

Step 2a: Finding an Endpoint

N _ ' Y
~

M1 u M3 cover all but 1 minimal set Endpoint!

Step 2b: Propagating

 Intersect

Step 2b: Propagating

 Intersect

* Trim

Step 2b: Propagating

 Intersect

* Trim

Step 2b: Propagating

Y

Next point!

 Intersect

* Trim

Step 2b: Propagating

Y

Next point!

 Intersect

* Trim

Step 2b: Propagating

 Intersect

* Trim

Step 2b: Propagating

 Intersect

* Trim

Step 2b: Propagating

 Intersect

* Trim

Step 2b: Propagating

 Intersect

* Trim

 Intersect

* Trim

Full Reconstruction: Conclusion

* Generic setting: only access pattern leakage.

* Partiotioning, then sorting steps.

* Expectation of #queries sufficient for reconstruction:
N - (3 + log N for N = 26

* Expectation of #queries necessary for reconstruction:
1/2 - N-log N — O(N)

for any algorithm.

* Our algorithm is data-optimal.

Reconstruction with Auxiliary Data +
~Rank Leakage

Auxiliary Data Attack with Rank Leakage

* Assume access pattern + rank leakage.

* Also assume an approximation to the distribution on values is known.
“*Auxiliary distribution™.
From aggregate data, or from another reference source.

* We show experimentally that, under these assumptions, far fewer queries
are needed.

Auxiliary Data Attack Algorithm

Set of all records

M;

Assume N = 125 values, and 2 queries.

M; = set of records matched by i-th query.

Partitioning and Matching

Partitioning and Matching

Partitioning and Matching

% records

below 10%

Partitioning and Matching

% records

elow 10% 32%

Partitioning and Matching

% records

below 10% 32% 77%

Partitioning and Matching

% records

elow 10% 32% 77% 85%

Partitioning and Matching

% records
below 10% 32% 77% 85%

Matching with
aux. distribution

Age 12

Partitioning and Matching

M;
M
% records
below 10% 32% 77% 85%
Matching with
aux. distribution

Age 12 43

Partitioning and Matching

M;
M
% records
below 10% 32% 77% 85%
Matching with
aux. distribution

Age 12 43 60

Partitioning and Matching

% records
below 10% 32% 77% 85%

Matching with
aux. distribution

Age 12 43 60 /2

Partitioning and Matching

M;
M
% records
below 10% 32% 77% 85%
Matching with
aux. distribution
Age 12 43 60 /2

Expectation 19

Partitioning and Matching

M;
M
% records
below 10% 32% 77% 85%
Matching with
aux. distribution
Age 12 43 60 /2

Expectation 19 50

Partitioning and Matching

M;
M
% records
below 10% 32% 77% 85%
Matching with
aux. distribution
Age 12 43 60 /2

Expectation 19 50 65

Auxiliary Data Attack: Experimental Evaluation

* Ages, N=125.

* Health records from US hospitals (NIS HCUP 2009).
* Target: age of individual hospitals' records.

* Auxiliary data: aggregate of 200 hospitals' records.

* Measure of success: proportion of records with value guessed within &.

Results with Imperfect Auxiliary Data

1.0
Num. queries
5
0.8 10
1 15
% 1 25
j< 1 50
S 0.6
o [75
= 1 100
e - I . N R, e
s | g) 4 | | | | L
0 04
©
LL
0.2
0.0

0.00 0.04 0.08 0.12 0.16 0.20 0.24
Relative error €

Conclusions

- - " " - " . <
< | N < | - | < | ‘ < |
b A A A A P A A A A A A |

Reconstruction Attacks: Conclusions

M Other reqg'ts |Suff. # queries
AP O)

Density N2 log N
AP + rank Density N - (log N + 2)
AP Density N - (log N + 3)
e-approx. AP Density 5/4 N-(log 1/¢) + O(N)
Auxiliary AP + rank Auxiliary dist. Experimental

» Full reconstruction = N log N queries with only access pattern!
Efficient, data-optimal algorithms + matching lower bound.

* For N=125:
800 queries — full reconstruction.
25 queries = majority of records within 5%, using
auxiliary distribution + rank.

Reconstruction Attacks: Conclusions

* Many clever schemes have been designed, enabling range queries on
encrypted data.

OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FUIKNRS15],
FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKY,...

» Second-generation schemes defeat the snapshot adversary (with caveats).

* But as our attacks show, no known scheme offers meaningful privacy vs. a
persistent adversary (including server itself).

* More research needed!

