
Reconstructing Encrypted Data Using
Range Query Leakage

Information Security Group

Marie-Sarah Lacharité, Brice Minaud, Kenny Paterson
ePrint 2017/701, to appear S&P 2018.

Workshop IoT+Cloud, Bochum, 7 Nov 2017.

Outsourcing Data to the Cloud

2

Data upload

Search query

Matching records

Client Server

• For encrypted database management systems:

• Data = collection of records in a database (e.g. health records).
• Query examples =

- Find records with a given value (e.g. patients aged 57).
- Find records within a given range (e.g. patients aged 55 to 65).
- …

Update query

Security of Data Outsourcing Solutions

3

Query

Matching records

Client Adversarial server

• Adversaries:

• Snapshot adversary = breaks into server, gets snapshot of memory.
• Persistent adversary = corrupts the server for a period of time. Sees

all communication transcripts. Can be server itself.

• Security goal = privacy:

Adversary learns as little as possible about the client’s data and queries.

State of the Art

4

• No perfect solution.

Every solution is a trade-off between functionality and security.

• Huge amount of literature.

[AKSX04], [BCLO09], [PKV+14] , [BLR+15], [NKW15], [K15],
[CLWW16], [KKNO16] , [RACY16], [LW16] …

• A few “complete” solutions:

Mylar (for web apps)

CryptDB (handles most of SQL)

➔Cipherbase (Microsoft), Encrypted BigQuery (Google), …

• Very active area of research.

⚠ Controversial!

Setting for this Talk: Schemes Supporting Range Queries

5

Range = [40,100]

Client Server

• All known schemes leak set of matching records = Access Pattern.

OPE, ORE schemes, POPE, [HK16], Blind seer, [Lu12], [FJKNRS15],…

• Some schemes also leak # records below queried range endpoints = rank.

FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,…

45 6 83 28

1 2 43

45

1

83

3

Exploiting leakage

6

• Most schemes prove that nothing more leaks than their leakage model
allows.

• For example, leakage = access pattern, or access pattern + rank.

• What can we really learn from this leakage?

• Our goal: full reconstruction = recover the exact value for every record.

• [KKNO16]: O(N2 log N) queries suffice for full reconstruction using only
access pattern leakage!

- where N is the number of possible values (e.g. 125 for age in years).

Assumptions for our Analysis

1. Data is dense: all values appear in at least one record.

2. Queries are uniformly distributed.

Our algorithms don’t actually care though – the assumption
is for computing data upper bounds.

7

Our Main Results

• Full reconstruction with O(N·logN) queries from access pattern

– in fact, N · (3 + log N).
s

• Approximate reconstruction with relative accuracy ε with						
O(N · (log 1/ε)) queries.

s

• Approximate reconstruction using an auxiliary distribution and
rank leakage.

– more efficient in practice, evaluation via simulation.

8

Attack 1: Full Reconstruction

Full Reconstruction with Rank Leakage

• Adversary is observing query leakage…

10

(Reordered for
convenience)

Hidden Leaked

Query [x,y] a = rank(x-1) b = rank(y) Matching IDs

[1,18] 0 1200 M1

[2,10] 500 800 M2

[7,98] 600 3000 M3

[55,125] 2000 4000 M4

M1

M2

M3

0 500 #Records = 4000

…

Rank

M4

1200…

Full Reconstruction with Rank Leakage

11

M1

M2

M3

1 … #Records

…

Rank

M4

f𝑀" ∖ (𝑀% ∪
𝑀' ∪𝑀()

… f𝑀" ∩𝑀' ∖
(𝑀% ∪ 𝑀()

…

• Partition records into smallest possible sets using access
pattern leakage.

• If this partitions records into N sets, win! Just match minimal
sets with values.

Full Reconstruction with Rank Leakage

• Expected number of queries sufficient for full reconstruction is
at most:

N · (2 + log N) for N ≥ 27.

Essentially a coupon collector’s problem.

• Expected number of necessary queries is at least:
1/2 · N · log N – O(N)

for any algorithm.

• This algorithm is “data-optimal”, i.e. it fails iff full reconstruction
is impossible for any algorithm given the input data.

12

Full Reconstruction without Rank Leakage

• Very generic setting: use only access pattern leakage.

• Partition (as before), then sort.

• Expected number of sufficient queries is at most:
N · (3 + log N) for N ≥ 26

- i.e. sorting step is very cheap in terms of data.

• Expected number of necessary queries is at least:
1/2 · N · log N – O(N)

for any algorithm.

• Still data-optimal!

13

Attack 2: Reconstruction with Auxiliary Data

Reconstruction with Auxiliary Data and Rank Leakage

• As before, queries have ranges chosen uniformly at random.

• Assume access pattern and rank are leaked.

• We now also assume that an approximation to the
distribution on values is known.

“Auxiliary distribution”.

From aggregate data, or from another reference source.

• We show experimentally that, under these assumptions, far
fewer queries are needed.

15

16

Auxiliary Data Attack: Estimating Step

Ordered
records

1

4000

a

b

Match

Values

0

125

x

y

Expected value
restricted to [x,y]

Point guess v
(or confidence

interval)

20% 20%

Inverse CDF
of auxiliary
distribution

Auxiliary Data Attack: Experimental Evaluation

• Ages, N = 125 (0 to 124).

• Health records from US hospitals (NIS HCUP 2009).

• Target: age of individual hospitals' records.

• Auxiliary data: aggregate of 200 hospitals' records.

• Measure of success: proportion of records with value guessed
within ε.

17

Auxiliary Data Attack:
Results for Typical Target Hospital

18

Auxiliary Data Attack:
Results with Perfect Auxiliary Distribution

19

Summary and Conclusions

Summary of the attacks

21

• Our results : full reconstruction in ≈N log N queries with only access pattern!

Efficient, data-optimal algorithms + matching lower bound.

Attack Req'd leakage Other req'ts Suff. # queries

KKNO16 AP Density O(N2 log N)

Full AP + rank Density N · (log N + 2)

AP Density N · (log N + 3)

ε-approximate AP Density 5/4 N · (log 1/ε) + O(N)

Auxiliary AP + rank Auxiliary dist. Experimental

• For N = 125, about 800 queries suffice for full reconstruction!
• If an auxiliary distribution + rank leakage is available, after only 25 queries,

55% of records can be reconstructed to within 5 years!

Conclusions

22

• Many clever schemes have been designed, enabling range
queries on encrypted data.

OPE, ORE schemes, POPE, [HK16], Blind seer, [Lu12], [FJKNRS15],
FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,…

• Second-generation schemes defeat the snapshot adversary
(with caveats).

• But as our attacks show, no known scheme offers meaningful
privacy vs. a persistent adversary (including server itself).

In realistic settings, N log(N) queries suffice; even less if auxiliary
distribution + rank leakage is known.

• More research needed!

