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RSA
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• Select a pair of random primes p, q. Set N = pq. 
• Select integers d, e such that de = 1 mod (p-1)(q-1).


‣ The public key is pk = (e,N).

‣ The secret key is sk = d.


Encryption: for a message m ∈ [1,N-1], the ciphertext is:

c = me mod N.


Decryption: for a ciphertext c, the message is:

m = cd mod N.

You can think of e = 3.

Hard problem: computing third root modulo N.

Trapdoor: knowledge of prime decomposition N = p ∙ q.



Post-quantum hard problems
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There is nothing wrong with the general outline of building 
encryption or signatures from a hard problem + trapdoor.


‣ Ultimately, post-quantum cryptography is "just" about changing 
the underlying hard problems.

...and ensuring post-quantum resistance.


...and selecting concrete parameters.


...and ensuring side-channel resistance.


...and changing proof models (quantum random oracles, post-post 
quantum cryptography...).

...and optimising classical efficiency.

......and actually deploying the result.



Code-based Cryptography



(Linear) error-correcting codes
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We operate on      , where       is a finite field with q elements.

Think q = 2.

Fnq Fq

The Hamming distance between two elements of       is the number 
of bit positions where they differ.

Fnq

dist(00101,00011) = 2

A (linear) code of length n, rank k, and distance d is a linear 
subspace of       of dimension k, such that the minimum distance 
between distinct elements is d.

Fnq

The (Hamming) weight of               is the number of non-zero 
coordinates.

x 2 Fnq

hw(010011) = 3



(Linear) error-correcting codes

 7

If the distance of a code C is d = 2t + 1, then C can correct up to t 
errors.

‣ That is, for              , if dist(x-c) ≤ t for some            ,

then c is unique. 

x 2 Fnq c 2 C

c 2 C

t

t c 0 2 C

c 00 2 Cx
≤ t



Decoding
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Recall a code C is a linear subspace. Concretely, C may be 
represented by some basis. A matrix G whose row vectors span 
the code is called a generator matrix.

c 2 C c 0 2 C
x

≤ t

Problem: given a generator matrix G (i.e. a basis of C) and some x 
such that x-c ≤ t for some c in C, find c.

‣ For a random linear code, this is a hard problem!



Trapdoor
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In practice, codes are generally not random, but structured.

E.g. Goppa codes.

The structure ensures that decoding is efficient.

E.g. Patterson's algorithm.

‣ Knowledge of the structure enables efficient decoding. Otherwise 
it is a hard problem...



McEliece
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Robert McEliece, 1978.

Pick a binary t-correcting Goppa code with generator matrix G.

Public key: G' = S ∙ G ∙ P, where S is a random invertible matrix, 
and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message m into the code C' (generated by G'), 
pick a random error vector e of weight t. The ciphertext c is:


c = m + e

Decrypt: given a ciphertext c, decode c using knowledge of the 
equivalence between C and C' (via S, P).



McEliece
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Underlying hard problem(s):

• It is hard to distinguish C' from a random linear code.

• It is hard to decode a random linear code.

Sometimes described as "reducing" to random linear decoding...

Warning: whether the first problem is actually hard is highly 
dependent on the type of linear code used.



History
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The original McEliece, using binary Goppa codes, is essentially 
unbroken since 1978.


Best attack is generic linear decoding using Information Set 
Decoding. Very stable complexity.

Various later efficiency enhancements using other types of codes 
were broken.

Also enables signatures via Niederreiter variant.



Code-based crypto: conclusion
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Somewhat ignored in practice until post-quantum cryptography 
came along.

+
High security confidence for original McEliece.

Well-studied.

Cheap encryption.

- Public key = G' → large key sizes (several Mb).

Heuristic security reduction.

Current schemes mainly try to reduce public key size, using e.g. 
cyclic codes.



Multivariate Cryptography



Multivariate Cryptography
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Hard problem: solving a system of random, say, 
quadratic, equations over some finite field (MQ).


The MQ problem is NP-hard.


This is good for post-quantum security!

With some caveats (asymptotic notion, average-
case hardness...).



Multivariate Cryptography
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Hard problem: solving a system of random 
quadratic equations over some finite field (MQ).


→ How to get an encryption scheme               : 


Public key: encryption function F given as sequence 
of n quadratic polynomials in n variables.


Private key:  hidden structure (decomposition) of F 
that makes it easy to invert.

Fnq ! Fnq

+: small message space, fast with private key.

-: slow public-key operations, large public key.



Quadratic polynomials
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Homogeneous degree-two polynomials (over a field of 
odd characteristic) may be represented as a 
symmetric matrix:

x2 + 4xy + 3z2 =
�
x y z

�
⎛
⎝
1 2 0
2 0 0
0 0 3

⎞
⎠

⎛
⎝
x
y
z

⎞
⎠

= XT ·M ·X for X =
�
x y z

�



Trapdoor
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Say the bottom right quadrant of the matrix is zeros...

w2 + 4wx + 3x2 + 2wy � 4wz + 2wz + 6xz

=
�
w x y z

�
⎛
⎜⎜⎝
1 2 1 1
2 3 3 �2
1 3 0 0
1 �2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
w
x
y
z

⎞
⎟⎟⎠

And say we magically know the value of variables in 
the top left quadrant, e.g. w = 1, x = 1, then the 
equation becomes linear:

1 + 4 + 3 + 2y � 4z + 2z + 6z



In pictures
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0

General matrix Trapdoored 
matrix

vinegar oil



Quadratic polynomials
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So a quadratic function                may be represented 
by a sequence of n square m×m matrices:

Fmq ! Fnq

F = ...

n matrices



Trapdoor
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F = ...

n matrices

n n

Additional trick: 2n input variables, n output 
variables. → vinegar variables can be picked freely.

Hard problem: given F(x) for uniform x, find x.



Hiding the trapdoor
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F = ...

M1 M2 Mn

Just do a change of basis!

M 0i  STMiS
for a random invertible matrix S.

...

M'1 M'2 M'n

F' =  STFS = 



A multivariate signature scheme
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‣ The secret key is F = (M1,M2,...,Mn). 


‣ The public key is F' = (M'1,M'2,...,M'n) for M'i = ST ∙ M'i ∙ S.


Signature: hash the message m into h = hash(m):

s = sign(m) = F'-1(h)


Verification: for signature s for message m with h = hash(m), check:

F'(s) = h

So signing = inverting F'.

What is the underlying hard problem(s)?



Underlying hard problem
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Underlying hard problem(s):

• It is hard to distinguish F' from a random system of quadratic 
equations.

• It is hard to invert a system of random quadratic equations 
(MQ).

Sometimes described as "reducing" to MQ...

Warning: whether the first problem is hard is highly dependent on 
how F' is generated.



Some history
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Oil-and-Vinegar as described was broken by Kipnis and 
Shamir.

...F = Oil and Vinegar

...F = Unbalanced Oil 
and Vinegar

...F = Rainbow

Several fixes :



Multivariate crypto: conclusion
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Was considered mostly dead until post-quantum cryptography 
came along.

+
Fast secret key operations.

Small signatures/ciphertexts.

Cheap encryption.

-
Public key = F' → large public key sizes (up to 1 Mb).

Heuristic security reduction.

Not a high level of confidence in security.

Now trying to gain credibility in terms of security.



Hash-based Signatures



Hash-based signatures
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For signing, a hash function is needed.

We need to assume the hash function is hard to invert: it is 
preimage-resistant.

In fact, this is enough to build a signature scheme!

hash : {0, 1}⇤ ! {0, 1}n

+ Minimalist assumption. High level of confidence in 
security.



How?
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Challenge: given a one-way function, build a signature 
scheme.

We start with a one-time signature (OTS).

A one-time-signature is secure as long as you use it to sign a 
single message.

Note: the message is chosen after the signature key is 
published.



Lamport signature
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One-time-signature for a single bit from a hash function h.

Pick two random values x0 and x1.


‣ The secret key is sk = (x0,x1). 


‣ The public key is pk = (y0,y1) with y0 = h(x0), y1 = h(x1).


Signature: to sign the bit b, reveal xb:

s = xb


Verification: simply check h(xb) = yb.



Lamport signature
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This can be extended to multiple bits by using multiple copies 
of the scheme.

There are more efficient schemes for multiple bits (Winternitz 
signatures), but we shall skip them here.

Next challenge: how to go from one-time signature to many-
time signature?



Solution 1: Merkle trees
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OTS1 OTS2 OTS3 OTSN... ... ...

pk

h1 h2 hN/2

hN/2+1

Each node in the Merkle tree is a hash of its children.



Solution 1: Merkle trees
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OTSN...

pk

‣ The secret key is sk = (OTS1,OTS2,...,OTSN). 

‣ The public key is the root of the tree pk.


Signature: to sign the i-th message, reveal hash values in the tree 
forming a path from OTSi to the root pk, and use OTSi to sign:


s = hi1, ..., hik, OTSi, OTSi(m)

Verification: check the OTSi signature, and all hashes.

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

revealed hash values
computable hash values



Solution 1: Merkle trees
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OTSN...

pk

‣ Can sign up to N messages.


‣ Signatures are length O(log(N)).


‣ Needs a state to store which OTSi is next to be used.

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

revealed hash values
computable hash values

‣ Problem: need O(N) precomputation to get pk!



Solution 2: Goldreich scheme
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OTS1 OTS2 OTS3 OTSN... ... ...

pk = OTSlog(N)

OTS1,1 OTS1,2 OTS1,N/2

OTS2,1

Each node in the Goldreich tree is a separate OTS scheme.



Solution 2: Goldreich scheme
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‣ The secret key is a random seed used to generate all OTSi's. 

‣ The public key is the (hash of the) OTS at the root of the tree.


Signature: to sign the i-th message, use the i-th OTSi scheme at a 
leaf, then use each OTS along the path from OTSi to the root to sign 
the hash of both children.

Verification: check the final and all intermediate OTS signatures, 
and that the hash of the root matches pk.

OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

sign hash of children



Solution 2: Goldreich scheme
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OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

sign hash of children

‣ Can sign up to N messages.


‣ Signatures are length O(log(N)).


‣ Needs a state to store which OTSi is next to be used.

‣ O(1) precomputation to get pk!

‣ Longer signatures.



SPHINCS
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XMSS: Merkle trees are used as nodes within a Goldreich 
scheme.

SPHINCS: add some other tricks to get rid of the state.

Other hash-based signature schemes: from Zero Knowledge 
and Multi-Party Computation.



Hash-based crypto: conclusion
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Interest from industry due to high security level.

+ Minimalist assumption.

High level of confidence in security.

-
Large signatures (10s of Kb!).

Slow signatures (10000s hashes!).

Only signatures.



Conclusion
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Different trade-offs.

Lattices are the mainstream solution. Well-studied and good 
parameters in general. Main candidate.

Other solutions offer different trade-offs. Code-based and hash-
based schemes are the most credible alternatives.

Interesting side-effect: has given new purpose to old schemes that 
were otherwise outpaced in a classical setting.


