
Code-based, Multivariate and Hash-
based Cryptography

Brice Minaud

Quantum Communications Hub Training Workshop, 27th May 2018

Information Security Group

Introduction.

1. Code-based Cryptography.

2. Multivariate Cryptography.

3. Hash-based Signatures.

Conclusion.

Post-quantum schemes
(that are not lattices).

Plan

RSA

 3

• Select a pair of random primes p, q. Set N = pq.
• Select integers d, e such that de = 1 mod (p-1)(q-1).

‣ The public key is pk = (e,N).

‣ The secret key is sk = d.

Encryption: for a message m ∈ [1,N-1], the ciphertext is:

c = me mod N.

Decryption: for a ciphertext c, the message is:

m = cd mod N.

You can think of e = 3.

Hard problem: computing third root modulo N.

Trapdoor: knowledge of prime decomposition N = p ∙ q.

Post-quantum hard problems

 4

There is nothing wrong with the general outline of building
encryption or signatures from a hard problem + trapdoor.

‣ Ultimately, post-quantum cryptography is "just" about changing
the underlying hard problems.

...and ensuring post-quantum resistance.

...and selecting concrete parameters.

...and ensuring side-channel resistance.

...and changing proof models (quantum random oracles, post-post
quantum cryptography...).

...and optimising classical efficiency.

......and actually deploying the result.

Code-based Cryptography

(Linear) error-correcting codes

 6

We operate on , where is a finite field with q elements.

Think q = 2.

Fnq Fq

The Hamming distance between two elements of is the number
of bit positions where they differ.

Fnq

dist(00101,00011) = 2

A (linear) code of length n, rank k, and distance d is a linear
subspace of of dimension k, such that the minimum distance
between distinct elements is d.

Fnq

The (Hamming) weight of is the number of non-zero
coordinates.

x 2 Fnq

hw(010011) = 3

(Linear) error-correcting codes

 7

If the distance of a code C is d = 2t + 1, then C can correct up to t
errors.

‣ That is, for , if dist(x-c) ≤ t for some ,

then c is unique.

x 2 Fnq c 2 C

c 2 C

t

t c 0 2 C

c 00 2 Cx
≤ t

Decoding

 8

Recall a code C is a linear subspace. Concretely, C may be
represented by some basis. A matrix G whose row vectors span
the code is called a generator matrix.

c 2 C c 0 2 C
x

≤ t

Problem: given a generator matrix G (i.e. a basis of C) and some x
such that x-c ≤ t for some c in C, find c.

‣ For a random linear code, this is a hard problem!

Trapdoor

 9

In practice, codes are generally not random, but structured.

E.g. Goppa codes.

The structure ensures that decoding is efficient.

E.g. Patterson's algorithm.

‣ Knowledge of the structure enables efficient decoding. Otherwise
it is a hard problem...

McEliece

 10

Robert McEliece, 1978.

Pick a binary t-correcting Goppa code with generator matrix G.

Public key: G' = S ∙ G ∙ P, where S is a random invertible matrix,
and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message m into the code C' (generated by G'),
pick a random error vector e of weight t. The ciphertext c is:

c = m + e

Decrypt: given a ciphertext c, decode c using knowledge of the
equivalence between C and C' (via S, P).

McEliece

 11

Underlying hard problem(s):

• It is hard to distinguish C' from a random linear code.

• It is hard to decode a random linear code.

Sometimes described as "reducing" to random linear decoding...

Warning: whether the first problem is actually hard is highly
dependent on the type of linear code used.

History

 12

The original McEliece, using binary Goppa codes, is essentially
unbroken since 1978.

Best attack is generic linear decoding using Information Set
Decoding. Very stable complexity.

Various later efficiency enhancements using other types of codes
were broken.

Also enables signatures via Niederreiter variant.

Code-based crypto: conclusion

 13

Somewhat ignored in practice until post-quantum cryptography
came along.

+
High security confidence for original McEliece.

Well-studied.

Cheap encryption.

- Public key = G' → large key sizes (several Mb).

Heuristic security reduction.

Current schemes mainly try to reduce public key size, using e.g.
cyclic codes.

Multivariate Cryptography

Multivariate Cryptography

 15

Hard problem: solving a system of random, say,
quadratic, equations over some finite field (MQ).

The MQ problem is NP-hard.

This is good for post-quantum security!

With some caveats (asymptotic notion, average-
case hardness...).

Multivariate Cryptography

 16

Hard problem: solving a system of random
quadratic equations over some finite field (MQ).

→ How to get an encryption scheme :

Public key: encryption function F given as sequence
of n quadratic polynomials in n variables.

Private key: hidden structure (decomposition) of F
that makes it easy to invert.

Fnq ! Fnq

+: small message space, fast with private key.

-: slow public-key operations, large public key.

Quadratic polynomials

 17

Homogeneous degree-two polynomials (over a field of
odd characteristic) may be represented as a
symmetric matrix:

x2 + 4xy + 3z2 =
�
x y z

�
⎛
⎝
1 2 0
2 0 0
0 0 3

⎞
⎠

⎛
⎝
x
y
z

⎞
⎠

= XT ·M ·X for X =
�
x y z

�

Trapdoor

 18

Say the bottom right quadrant of the matrix is zeros...

w2 + 4wx + 3x2 + 2wy � 4wz + 2wz + 6xz

=
�
w x y z

�
⎛
⎜⎜⎝
1 2 1 1
2 3 3 �2
1 3 0 0
1 �2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
w
x
y
z

⎞
⎟⎟⎠

And say we magically know the value of variables in
the top left quadrant, e.g. w = 1, x = 1, then the
equation becomes linear:

1 + 4 + 3 + 2y � 4z + 2z + 6z

In pictures

 19

0

General matrix Trapdoored
matrix

vinegar oil

Quadratic polynomials

 20

So a quadratic function may be represented
by a sequence of n square m×m matrices:

Fmq ! Fnq

F = ...

n matrices

Trapdoor

 21

F = ...

n matrices

n n

Additional trick: 2n input variables, n output
variables. → vinegar variables can be picked freely.

Hard problem: given F(x) for uniform x, find x.

Hiding the trapdoor

 22

F = ...

M1 M2 Mn

Just do a change of basis!

M 0i STMiS
for a random invertible matrix S.

...

M'1 M'2 M'n

F' = STFS =

A multivariate signature scheme

 23

‣ The secret key is F = (M1,M2,...,Mn).

‣ The public key is F' = (M'1,M'2,...,M'n) for M'i = ST ∙ M'i ∙ S.

Signature: hash the message m into h = hash(m):

s = sign(m) = F'-1(h)

Verification: for signature s for message m with h = hash(m), check:

F'(s) = h

So signing = inverting F'.

What is the underlying hard problem(s)?

Underlying hard problem

 24

Underlying hard problem(s):

• It is hard to distinguish F' from a random system of quadratic
equations.

• It is hard to invert a system of random quadratic equations
(MQ).

Sometimes described as "reducing" to MQ...

Warning: whether the first problem is hard is highly dependent on
how F' is generated.

Some history

 25

Oil-and-Vinegar as described was broken by Kipnis and
Shamir.

...F = Oil and Vinegar

...F = Unbalanced Oil
and Vinegar

...F = Rainbow

Several fixes :

Multivariate crypto: conclusion

 26

Was considered mostly dead until post-quantum cryptography
came along.

+
Fast secret key operations.

Small signatures/ciphertexts.

Cheap encryption.

-
Public key = F' → large public key sizes (up to 1 Mb).

Heuristic security reduction.

Not a high level of confidence in security.

Now trying to gain credibility in terms of security.

Hash-based Signatures

Hash-based signatures

 28

For signing, a hash function is needed.

We need to assume the hash function is hard to invert: it is
preimage-resistant.

In fact, this is enough to build a signature scheme!

hash : {0, 1}⇤ ! {0, 1}n

+ Minimalist assumption. High level of confidence in
security.

How?

 29

Challenge: given a one-way function, build a signature
scheme.

We start with a one-time signature (OTS).

A one-time-signature is secure as long as you use it to sign a
single message.

Note: the message is chosen after the signature key is
published.

Lamport signature

 30

One-time-signature for a single bit from a hash function h.

Pick two random values x0 and x1.

‣ The secret key is sk = (x0,x1).

‣ The public key is pk = (y0,y1) with y0 = h(x0), y1 = h(x1).

Signature: to sign the bit b, reveal xb:

s = xb

Verification: simply check h(xb) = yb.

Lamport signature

 31

This can be extended to multiple bits by using multiple copies
of the scheme.

There are more efficient schemes for multiple bits (Winternitz
signatures), but we shall skip them here.

Next challenge: how to go from one-time signature to many-
time signature?

Solution 1: Merkle trees

 32

OTS1 OTS2 OTS3 OTSN...

pk

h1 h2 hN/2

hN/2+1

Each node in the Merkle tree is a hash of its children.

Solution 1: Merkle trees

 33

OTSN...

pk

‣ The secret key is sk = (OTS1,OTS2,...,OTSN).

‣ The public key is the root of the tree pk.

Signature: to sign the i-th message, reveal hash values in the tree
forming a path from OTSi to the root pk, and use OTSi to sign:

s = hi1, ..., hik, OTSi, OTSi(m)

Verification: check the OTSi signature, and all hashes.

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

revealed hash values
computable hash values

Solution 1: Merkle trees

 34

OTSN...

pk

‣ Can sign up to N messages.

‣ Signatures are length O(log(N)).

‣ Needs a state to store which OTSi is next to be used.

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

revealed hash values
computable hash values

‣ Problem: need O(N) precomputation to get pk!

Solution 2: Goldreich scheme

 35

OTS1 OTS2 OTS3 OTSN...

pk = OTSlog(N)

OTS1,1 OTS1,2 OTS1,N/2

OTS2,1

Each node in the Goldreich tree is a separate OTS scheme.

Solution 2: Goldreich scheme

 36

‣ The secret key is a random seed used to generate all OTSi's.

‣ The public key is the (hash of the) OTS at the root of the tree.

Signature: to sign the i-th message, use the i-th OTSi scheme at a
leaf, then use each OTS along the path from OTSi to the root to sign
the hash of both children.

Verification: check the final and all intermediate OTS signatures,
and that the hash of the root matches pk.

OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

sign hash of children

Solution 2: Goldreich scheme

 37

OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

sign hash of children

‣ Can sign up to N messages.

‣ Signatures are length O(log(N)).

‣ Needs a state to store which OTSi is next to be used.

‣ O(1) precomputation to get pk!

‣ Longer signatures.

SPHINCS

 38

XMSS: Merkle trees are used as nodes within a Goldreich
scheme.

SPHINCS: add some other tricks to get rid of the state.

Other hash-based signature schemes: from Zero Knowledge
and Multi-Party Computation.

Hash-based crypto: conclusion

 39

Interest from industry due to high security level.

+ Minimalist assumption.

High level of confidence in security.

-
Large signatures (10s of Kb!).

Slow signatures (10000s hashes!).

Only signatures.

Conclusion

 40

Different trade-offs.

Lattices are the mainstream solution. Well-studied and good
parameters in general. Main candidate.

Other solutions offer different trade-offs. Code-based and hash-
based schemes are the most credible alternatives.

Interesting side-effect: has given new purpose to old schemes that
were otherwise outpaced in a classical setting.

