y 4 ;
PSL* ETHziirichlrzzia — B0 | Holioway

RRRRRRRRRRRRRRRRRRRR inventeurs du monde numérique

Searchable Encryption, Leakage-Abuse Attacks,

and Statistical Learning Theory

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, Kenny Paterson

eprint 2019/011 and IEEE S&P 2019.
(also eprint 2018/965, CCS 2018.)

AriC crypto seminar, ENS Lyon, 2019



Outsourcing Data

Data upload
Ay,
Ay Data access
Client Server

Sensitive data — encryption needed.

An encrypted database is of little use if it cannot be searched.
— Searchable Encryption.

Examples: Private message server. Company/hospital outsourcing
client/patient info.



Searchable Encryption
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Adversary: honest-but-curious host server.
Security goal: confidentiality of data and queries.

Very active topic in research and industry.

[AKSX04], [BCLOO09], [PKV+14], [BLR+15], [INKW15], [KKNO16],
ILW16], [FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]...



Security Model

Data upload
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Generic solutions (FHE) are infeasible at scale — for efficiency
reasons, some leakage is allowed.

Security model: parametrized by a leakage function L.

Server learns nothing except for the output of the leakage function.
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Keyword Search

Symmetric Searchable Encryption (SSE) = keyword search:
* Data = collection of documents. e.g. messages.

* Serch query = find documents containing given keyword(s).

Efficient solutions for leakage = search pattern + access pattern.

Some active topics:
- Forward and backward privacy [B16][BMO17][CPPJ18][SYL+18]...
- Locality [CT14][ANSS16][DPP18]...



Beyond Keyword Search

Data upload
Pl -— >
m Search query
m __Matching records
Client Server

For an encrypted database management system:
* Data = collection of records. e.q. health records.

* Basic query examples:
- find records with given value. e.g. patients aged 57.
- find records within a given range. e.qg. patients aged 55-65.



Range Queries

In this talk: range queries.
» Fundamental for any encrypted DB system.
» Many constructions out there.
» Simplest type of query that can't “just” be handled by an index.

Initial solutions:
Order-Preserving, Order-Revealing Encryption.
- Plaintexts are ordered, ciphertexts are ordered.

- The encryption map preserves order.



Attacks Exploiting ORE

» “Sorting” attack: if every possible value appears in the DB...
Just sort the ciphertexts and you learn their value!

» “CDF-matching” attack: say the attacker has an approximation
of the Cumulative Distribution Function of DB values...
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L eakage-Abuse Attacks

“Leakage-abuse attacks” (coined by Cash et al. CCS'15):
» Do not contradict security proofs.

» Can be devastating in practice.

ORE: order information can be used to infer (approximate) values.
Leaking order is too revealing.

— “Second-generation” schemes enable range queries without
relying on OPE/ORE.
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Range Queries

/ Range = | ] R
TRy . 1 3
8
Client

SE schemes supporting range queries are proven secure w.r.t. a
leakage function including access pattern leakage.

What can the server learn from the above leakage?



Database Reconstruction

Let N = number of possible values for the target attribute.

Strongest goal: full database reconstruction = recovering the
exact value of every record.

More general: approximate database reconstruction =
recovering all values within eN.

e = 0.05 is recovery within 5%. € = 1/N is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)

[KKNO16]: full reconstruction in O(N4 log N) queries, assuming
I.1.d. uniform queries!
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Database Reconstruction

[KKNO16]: full reconstruction in O(N4 log N) queries!

recovers
This talk ((GLMP19], [LMP18])): Full. Rec. Lower Bound

O(N4 log N) Q(e4)
og €1) with very mild hypothesis. | O(N2 log N) ()(e2?)

> O(e 1 log €-1) for approx. order rec. O(N log N) | Q(e1 log €1)
Implies

» O(e4 log €-1) for approx. reconstruction.

Full reconstruction in O(N log N) for dense DBs.

Scale-free: does not depend on size of DB or number of possible
values.

— Recovering all values in DB within 5% costs O(1) queries!
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Database Reconstruction

[KKNO16]: full reconstruction in O(N4 log N) queries!

This talk ((GLMP19], subsuming [LMP18]): Full. Rec. Lower Bound

O(e4 log €-1) for approx. reconstruction.| O(N4 log N) Q)(e4)

» O(e2 log €1) with very mild hypothesis. O(N2 log N) ()(e2)
O(Nlog N) Q(e 1 log €1)

og €1) for approx. order rec.

This talk.
Main tool:
- connection with statistical learning theory;

- especially, VC theory.

|4



VC Theory




VC Theory

Foundational paper: Vapnik and Chervonenkis, 1971.

Uniform convergence result.

Now a foundation of learning theory, especially PAC (probably
approximately correct) learning.

Wide applicability.

Fairly easy to state/use.

(You don't have to read the original article in Russian.)
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Warm-up

Set X with probability distribution D.
Let C C X. Call it a concepit.

_ #points in C

Pr(C) ~
r(C) #points total

Sample complexity:
to measure Pr(C) within €,

you need O(1/€2) samples.

|7



Approximating a Concept Set

Now: set € of concepts.
Goal: approximate their probabilities simultaneously.

The set of samples drawn
from X is an e-sample |ff

forall C in €:
Pr(C) #po.mts in C <
#points total

|8



e-sample Theorem

How many samples do we need to get an e-sample whp?

Union bound: yields a
sample complexity that

depends on |€)|.

V &C 1971:
If € has VC dimension d,

then the number of points
to get an e-sample whp is

d d
O(— log —).

€ €

Does not depend on |€)|!
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VC Dimension

Remaining Q: what is the VC dimension?

A set of points is shattered by € |ff:
every subset of S is equal to CnS for some C in 6.

Example. Take 2 points in X=[0,1]. Concepts € = all ranges.

D
P
I |
— ]

C B A
Subsets: OK. Range A.
2 points = O OK. Range B.
s:X-IrnT:;ED O OK. Range C.

O O OK. Range D.



VC Dimension

Example. Take 3 points in X=[0,1]. Concepts € = all ranges.

Subset: O O Problem.
3 points = NOT SHATTERED

E.g. VC dimension of ranges is 2.

What typically matters is just that VC dim is finite.
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Database Reconstruction




KKNO16-like Attack

f
1 N
values | |
Less probable More probable

Assume a uniform distribution on range queries.
Induces a distribution f on the prob. that a given value is hit.

Idea: for each record...
1. Count frequency at which the record is hit.
— gives estimate of probabillity it’s hit by uniform query.
2. deduce estimate of its value by “inverting” f.
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KKNO16-like Attack

1 N
values --+--+-1-4+-+-++++4++-+-4--tl

Step 1: for all records, estimate prob of the record being hit.
This Is an e-sample!
X = ranges € ={{ranges > x}: x € [1,N]}

so we need O(e2 log £ 1) queries.

Step 2: because f is quadratic, “inverting” f adds a square.

After O(e-4 log £1) queries, the value of all records is
recovered within eN.
24



On the i.i.d. Assumption

We are assuming uniformly distributed queries.

In reality we are assuming:
» The advesary knows the query distribution.
> Queries are uniform.
> More fundamentally, queries are independent and

identically distributed (i.i.d.).

This is not realistic.

What can we learn without that hypothesis?
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Order Reconstruction




Problem Statement

Range = | ]
~ _—m
rr'/'\ﬁw. 1 3
Y =
Client

What can the server learn from the above leakage?

This time we don't assume i.i.d. queries, or knowledge of their
distribution.
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Range Query Leakage

Query A matches records 2, b, c.
Query B matches records b, c, d.

a b C d
I - I
[
A —
B

Then this is the only configuration (up to symmetry)!

— we learn that records b, c are between a and d.

We learn something about the order of records.
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Range Query Leakage

Query A matches records a, b, c.
Query B matches records b, c, d.
Query C matches records c, d.

a b C d
I - I
[
Aﬁ
B
— ]
C

Then the only possible order is a, b, ¢, d (or d, c, b, a)!
Challenges:

» How do we extract order information? (What algorithm?)

» How do we quantify and analyze how fast order is
learned as more queries are observed?

29



Challenge 1: the Algorithm

Short answer: there is already an algorithm!

Long answer: PQ-trees.

X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A PQ tree is a compact (linear in |X|) representation of the
set of all permutations of X that are compatible with S.

Can be updated in linear time.

Note: was used in [DR13], didn’t target reconstruction.
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PQ Trees

Order is completely unknown.
>~ any permutation of abc.

Order is completely known (up to reflection).

»abc’or ‘cbha’.

Combines in the natural way.

> ‘fabcede’, ‘abced’, ‘dabce’, ‘eabcd’,
‘deabc’, ‘edabc’, ‘cbade’ etc.

31



Full Order Reconstruction

A observe enough queries A
—>

No information Full reconstruction

We want to quantify order learning...
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Challenge 2a: Quantify Order Learning

No information Full reconstruction

e-Approximate order reconstruction.

Roughly: we learn the order between two records as soon as
their values are = eN apart. (€ = 1/N is full reconstruction)

33



Approximate Order Reconstruction

A — A
—>

No information Full reconstruction

#queﬁ;;;\\‘\\* ,/”/’/)'

NN N\

X 1 7

Diameter < eN

e-Approximate

reconstruction y



Challenge 2b: Analyze Query Complexity

a eN b c d
" | I
[
A

Intuition: if no query has an endpoint between a and b, then a
and b can't be separated.

— g-approximate reconstruction is impossible.

You want a query endpoint to hit every interval = eN.
Conversely with some other conditions it's enough.

Heavy sweeping of details under rug.
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VC Theory Saves the Day (again)

g-samples: the ratio of
points hitting each concept
IS close to its probability.

What we want now: if a
concept has high enough
probability, it is hit by at
least one point.

The set of samples drawn from X is an e-net iff for all C in €

Pr(C) > € = C contains a sample

d d
— Number of points to get an e-net whp: O (— log —)
€ €
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Approximate Order Reconstruction

A O(N log N) queries A
—>

No information Full reconstruction

O(e-' log &-1) qm /

e-Approximate
reconstruction

Conclusion: learn order very quickly. Alimost back to ORE...

Note: some (weak) assumptions are swept under the rug. 37
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Experiments

APPROXORDER experimental results
R = 1000, compared to theoretical e-net bound
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Volume Leakage




Problem Statement

Range = | ]
rfrl\rh -
Yoy, | Cmaches
5 .
Client

Attacker only sees volumes = number of records matching
each query.

What can the server learn from the above leakage?

40



Volumes

The attacker wants to learn exact counts.

-m_ B
mm@@@@

Value
—
Some volumes —

©

A volume = number of records matching some range.
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Elementary Volumes

mm@@@@

Value
o
+-—)
“Elementary”
ranges D —

= volumes of ranges [1,1], [1,2], [1,3]...
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Elementary Volumes

mm@@@@

Value

Fact:

vol([a,b]) = vol( ) - vol( )

SO...

> Every volume is = difference of two elementary volumes.

> Knowing set of elementary volumes < knowing counts.

Our goal: finding elementary volumes.
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The Attack

Assumption: the volumes of all queries are observed.

Draw an edge between volumes a and b iff |b-a| is a volume.
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Summary

Attack: form a clique in the volume
graph — clique-finding algorithm reveals them.

For structured queries, even just volume leakage can be
quite damaging. Attack requires strong assumption.

In the article:

> Pre-processing to avoid clique finding.

» Analysis of parameters + experiments.

» Other attacks.
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Closing Remarks




On Range Queries

Access pattern: severe attacks under minimal assumptions.

Please don't use OPE/ORE.

Also avoid current encrypted DBs if you don't trust the server

and care about privacy.

New solutions needed. E.g. efficient specialized ORAMSs.

Even then, need to hide volumes.

Many open problems...

47



Connection to Machine Learning

> |In this talk: VC theory.
> In the article: known query setting = PAC learning.
~ Some results for general query classes.

Machine learning in crypto: also used for side channel
attacks. Same general setting!

Natural connection between reconstructing secret

information from leakage and machine learning.

Seems to be a powerful tool to understand the security
implications of leakage. In side channels - use learning
algorithms; here - use learning theory.
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