
Sophos and Diane
Searchable Symmetric Encryption

with (Very) Low Overhead

Raphael Bost, Brice Minaud

RHUL ISG seminar, November 24th 2016

1. Symmetric Searchable Encryption.

2. Leakage and Forward-Privacy.

3. Sophos and Diane schemes.

4. Proof Models.

Plan

‣Client stores encrypted database on server.

‣Client can perform search queries.

‣Privacy of data and queries is retained.

Example: private email storage.

Symmetric Searchable Encryption

Client Server with
database

Search queries

Adversary?

‣Dynamic SSE: also allows update queries.

Adversary!

Symmetric Searchable Encryption

Two databases:

‣ Document database.

Encrypted documents di for i ≤ D.

‣ (Reverse) Index database DB.

Pairs (w,i) for each keyword w and each
document index i such that di contains w.

DB = {(w,i) : w ∈ di}

Symmetric Searchable Encryption

‣ Search(w) query:

Retrieve DB(w) = {i : w ∈ di}.

‣ Update(w,i) query:

Add (w,i) to DB.

After getting DB(w) from a search query, the
client is likely to retrieve documents in DB(w)
from the document database.

‣ This leaks DB(w).

Is leakage necessary?

Leaking DB(w) for search queries is nearly unavoidable.

In a nutshell, ORAM approaches either leak it or are
very inefficient [Nav15].

Note: still feasible in some restricted settings.

How bad is leakage?

•Assume a priori knowledge of frequency and
correlation of keywords.

▻ IKK12 (NDSS'12) and CGPR15 (CSS'15) show
how to identify (most) keywords.

•Assume the adversary can inject arbitrary
documents.

▻ CGPR15 and ZKP16 (USENIX Sec'16) show
how to immediately identify searched keywords.

File injection

w0 w1 w2 w3 w4 w5 w6 w7

File A ✔ ✔ ✔ ✔

File B ✔ ✔ ✔ ✔

File C ✔ ✔ ✔ ✔

Idea of ZKP16: for W keywords, inject log(W) files
containing W/2 keywords each as above.

When Search(w) is searched, DB(w) directly leaks w.

E.g. DB(w) contains A, B but not C, then w = w2.

w0 w1 w2 w3 w4 w5 w6 w7

File A ✔ ✔ ✔ ✔

File B ✔ ✔ ✔ ✔

File C ✔ ✔ ✔ ✔

Adaptive file injection

Proposed countermeasure: at most T keywords/file.

▻ Attacke requires (K/T)・log(T) injections.

Adaptive version: enhancement of frequency attack:

▻ Adaptive attack requires less injections, e.g.
log(T), assuming some prior knowledge.

This last attack uses update leakage:

Most SE schemes leak if a newly inserted
document matches a previous search query.

▻ Need forward privacy: oblivious updates.

Forward Privacy

Forward privacy: Update queries leak nothing.

•The encrypted database can be securely built
online.

•Only one existing scheme SPS14 (NDSS'14):

ORAM-like construction.
Inefficient updates.
Large client storage.

Sophos (Σoφoς) and Diane

Sophos: introduced at CCS'16 [Bost16]:

• Dynamic, forward-private SSE scheme.

• Low overhead.

• Simple.

Diane: work-in-progress.

Sophos (Σoφoς)
Fix a keyword w.

Let ik be the k-th document containing w.

UT0 UT1 UT2 UTk

DB stores enc(ik) at position UTk.

...

Sophos (Σoφoς)
Fix a keyword w.

Let ik be the k-th document containing w.

ST0

H

UT0

ST1

H

UT1

ST2

H

UT2

STk

H

UTk

DB stores enc(ik) at position UTk.

...

...

...π

π-1

π

π-1

π

π-1

π

π-1

Let π be a trapdoor permutation (e.g. RSA).

Sophos (Σoφoς)
Fix a keyword w.

Let ik be the k-th document containing w.

ST0

H

UT0

ST1

H

ST2

H

STk

H...

...

...π

π-1

π

π-1

π

π-1

π

π-1

ks0 UT1 ks1 UT2 ks2 UTk ksk

DB stores enc(ik) = ik ⊕ ksk at position UTk.

Let π be a trapdoor permutation (e.g. RSA).

Sophos (Σoφoς)
Fix a keyword w.

Let ik be the k-th document containing w.

ST0

H

UT0

ST1

H

ST2

H

STk

H...

...

...π

π-1

π

π-1

π

π-1

π

π-1

ks0 UT1 ks1 UT2 ks2 UTk ksk

‣Update(w,i): send (UTk, i ⊕ ksk).

‣Search(w): send STk.

UTk

STk

Client Storage
Sophos assumes the client stores cw = |DB(w)| for
every keyword.

▻ Client-side storage: W・log(D), with:

W = #keywords D = #documents

This is enough!

Everything else is generated pseudo-randomly.

Nice feature of RSA:

xd ·d ···d = xd

c mod �(N) mod N

Makes computing STc faster.

Summary of Sophos
Computation Communication Client

Storage FS
Update Search Update Search

[CJJ+14] O(1) O(cw) O(1) O(cw) O(1) ✘

[SPS14] O(log2N) O(cw+log2N) O(logN) O(cw+logN) O(Na) ✓

Sophos O(1) O(cw) O(1) O(cw) O(Wlog(D)) ✓

Leakage:

•LSearch(w) = DB(w) and content of previous
search and update queries on w.

•LUpdate(w,i) = ∅. Forward-private!

optimal

Summary of Sophos

•Provable forward-privacy.

•Very simple.

•Efficient search (IO bounded).

•Asymptotically efficient update (optimal).

In practice, very low update throughput
(20x slower than prior work).

Diane

ST0

H

UT0

ST1

H

ST2

H

STc

H

ks0 UT1 ks1 UT2 ks2 UTc ksc

......π

π-1

π

π-1

π

π-1

π

π-1

Diane

ST0

H

UT0

ST1

H

ST2

H

STm

H...

ks0 UT1 ks1 UT2 ks2 UTm ksm

H H H

H

Rw

...

Diane

ST0

UT0

ST1 ST2 STm

...ks0 UT1 ks1 UT2 ks2 UTm ksm

Rw

...

‣Update(w,i): send (UTc, i ⊕ ksc).

‣Search(w): send covering set of ST0, ..., STc.

Diane

ST0

UT0

ST1 ST2 STm

...ks0 UT1 ks1 UT2 ks2 UTm ksm

Rw

...

‣Update(w,i): send (UTc, i ⊕ ksc).

‣Search(w): send covering set of ST0, ..., STc.

e.g. k=0...

Diane

ST0

UT0

ST1 ST2 STm

...ks0 UT1 ks1 UT2 ks2 UTm ksm

Rw

...

‣Update(w,i): send (UTc, i ⊕ ksc).

‣Search(w): send covering set of ST0, ..., STc.

e.g. k=1...

Diane

ST0

UT0

ST1 ST2 STm

...ks0 UT1 ks1 UT2 ks2 UTm ksm

Rw

...

‣Update(w,i): send (UTc, i ⊕ ksc).

‣Search(w): send covering set of ST0, ..., STc.

e.g. k=3...

The size of the covering set is logarithmic in c.

UT5 ks5UT4 ks4

UT3 ks3

Tweaking the Tree
The tree does not have to be balanced.

▻ e.g. if most keywords have ≤ 5 matches:

...

UT1 ks1

UT2 ks2

UTm ksm

Rw...

UT0 ks0
...the first 5 covering sets have size 1.

UT5 ks5UT4 ks4

UT3 ks3

Tweaking the Tree
The tree does not have to be balanced.

▻ e.g. if most keywords have ≤ 5 matches:

...

UT1 ks1

UT2 ks2

UTm ksm

Rw...

UT0 ks0
...the first 5 covering sets have size 1.

UT5 ks5UT4 ks4

UT3 ks3

Tweaking the Tree
The tree does not have to be balanced.

▻ e.g. if most keywords have ≤ 5 matches:

...

UT1 ks1

UT2 ks2

UTm ksm

Rw...

UT0 ks0
...the first 5 covering sets have size 1.

UT5 ks5UT4 ks4

UT3 ks3

Tweaking the Tree
The tree does not have to be balanced.

▻ e.g. if most keywords have ≤ 5 matches:

...

UT1 ks1

UT2 ks2

UTm ksm

Rw...

UT0 ks0
...the first 5 covering sets have size 1.

UT5 ks5UT4 ks4

UT3 ks3

Tweaking the Tree
The tree does not have to be balanced.

▻ e.g. if most keywords have ≤ 5 matches:

...

UT1 ks1

UT2 ks2

UTm ksm

Rw...

UT0 ks0
...the first 5 covering sets have size 1.

UT5 ks5UT4 ks4

UT3 ks3

Tweaking the Tree
The tree does not have to be balanced.

▻ e.g. if most keywords have ≤ 5 matches:

...

UT1 ks1

UT2 ks2

UTm ksm

Rw...

UT0 ks0
...the first 5 covering sets have size 1.

The tree also does not have to be finite (no last leaf).

Communication Complexity
O(1)

O(cw)

O(log cw)

O(cw)

Sophos Search:

Diane Search:

However...

O(1) for Sophos is 2000+ bits (RSA).

O(log cw) for Diane is 128 log cw bits.

Computational Complexity
Computation Communication Client

Storage FS
Update Search Update Search

Sophos O(1) O(cw) O(1) O(cw) O(Wlog(D)) ✓
Diane O(1) O(cw) O(1) O(cw) O(Wlog(D)) ✓

Asymptotically equivalent to Sophos.

Practically much faster: removes RSA bottleneck.

Overall, "crypto" overhead is negligible: IO and
memory accesses dominate.

Security model

Security is parametrized by a leakage function.

Search(w) leaks LSearch(w).

Update(w,i) leaks LUpdate(w,i).

Intuition: the adversary should learn no more than
this leakage.

Simulation-based security

Adversary

Client Server
(challenger)

The adversary can:

‣adaptively trigger Search(w) and Update(w,i) queries.

‣observe all traffic and server storage.

The adversary attempts to distinguish a real and ideal world.

Simulation-based security

Adversary

Client Actual
Server

In the real world, the server receives the actual queries and
implements the actual scheme.

REAL✓

Simulation-based security

Adversary

Client Simulator

In the ideal world, the server receives only the leakage of
queries and attempts to mimick a real server.

Idea
l

L

simulated output

L-security: there exists a simulator s.t. no adversary can
distinguish the two worlds with significant probability.

Random oracle

Assume the adversary triggers:

Update(w0,0)

Update(w1,1)

Update(w',2)

Search(w')

Depending on w' = w0 or w' = w1, different tree,
UT's for w' will have to be in a tree with either w0
or w1.

...but the simulator has to commit before knowing.

▻ ROM required.

Indistinguishability security

Adversary

Client Server
(challenger)

The adversary (adaptively) triggers pairs of queries.
World 0 World 1
Query(0) Query(0)'
Query(1) Query(1)'

... ...Same leakage
The challenger chooses b and runs World b.

Security of Diane

In the end:

•Diane is provable in the simulation setting
using ROM.

• It is also provable in the indistinguishability
setting without ROM (with worse bounds).

Malicious Adversaries

The server could lie when answering Search
queries.

Generic solution:

For each keyword, the client stores and updates a
set hash of matching documents.

Example of set hash: XOR of hashes of indices.

‣Update(w,i): hw ← hw ⊕ H(i). Initially hw = 0.

‣Search(w): upon receiving i0, ..., ic, check hw = ∑H(ik).

Allowing Deletions

Generic solution:

For Update queries, let op = add or del.
Send (UTc, enc(i || op)) instead of (UTc, enc(i)).

During a Search query, the server retrieves op and
can cancel out add's and del's.

Reducing Client Storage

Diane uses 1 round-trip for Search queries and
W log(D) client storage.

If we allow 2 round-trips:

•honest-but-curious setting: O(1) storage is easy
(outsource the cw's).

•malicious setting: trade-offs are possible using
Merkle trees.

𝛼 W log(D) storage at the cost of log(1/𝛼)
extra communication.

Locality

Diane's crypto is almost free w.r.t. computation and
communication.

Hidden cost: non-locality.

▻ In an unencrypted database: DB(w) would be
stored contiguously.

▻ In SE schemes it is spread across |DB(w)|
random locations.

This is cost is (mostly) inherent [CT14].

Summary of Diane

•Provable forward-privacy.

•Simple.

•Efficient search (IO bounded).

Asymptotically non-optimal outgoing
communication (but very good in practice).

•Efficient update.

Open problems: mitigating inherent issues.

▻ Leakage-abuse attacks.

▻ Non-locality.

Thank you!

