: = 24
ek ISR
UNIVERSITE DE
D948¢ | HOLLOWAY

RENNES 1

Sophos and Diane

Searchable Symmetric Encryption
with (Very) Low Overhead

Raphael Bost, Brice Minaud

RHUL ISG seminar, November 24th 2016

1. Symmetric Searchable Encryption.
2. Leakage and Forward-Privacy.
3. Sophos and Diane schemes.

4. Proof Models.

Symmetric Searchable Encryption

Search queries

Adversary!
#
' ?
. Server with
A ?
Client dversary database

>Client stores encrypted database on server.
»Client can perform search queries.
>Privacy of data and queries is retained.

Example: private email storage.

»Dynamic SSE: also allows update queries.

Symmetric Searchable Encryption

Two databases:

> Document database.
Encrypted documents d; fori < D.

> (Reverse) Index database DB.

Pairs (w,i) for each keyword w and each
document index i such that d; contains w.

DB = {(w,i) : w € d}}

Symmetric Searchable Encryption

> Search(w) query:
Retrieve DB(w) = {i : w € di}.

> Update(w,i) query:
Add (w,i) to DB.

After getting DB(w) from a search query, the
client is likely to retrieve documents in DB(w)
from the document database.

> This leaks DB(w).

Is leakage necessary?

Leaking DB(w) for search queries is nearly unavoidable.

In a nutshell, ORAM approaches either leak it or are
very inefficient [Nav15].

Note: still feasible in some restricted settings.

How bad is leakage”

« Assume a priori knowledge of frequency and
correlation of keywords.

> [KK12 (NDSS'12) and CGPR15 (CSS'15) show
how to identify (most) keywords.

* Assume the adversary can inject arbitrary
documents.

> CGPR15 and ZKP16 (USENIX Sec'16) show
how to immediately identify searched keywords.

File injection

ldea of ZKP16: for W keywords, inject log(lV) files
containing W/2 keywords each as above.

When Search(w) is searched, DB(w) directly leaks w.

E.g. DB(w) contains A, B but not C, then w = wo.

Adaptive file injection

Proposed countermeasure: at most T keywords/file.
> Attacke requires (K/T) - log(T) injections.

Adaptive version: enhancement of frequency attack:

> Adaptive attack requires less injections, e.qg.
log(T), assuming some prior knowledge.

This last attack uses update leakage:

Most SE schemes leak if a newly inserted
document matches a previous search query.

> Need forward privacy: oblivious updates.

Forward Privacy

Forward privacy. Update queries leak nothing.

e The encrypted database can be securely built
online.

e Only one existing scheme SPS14 (NDSS'14):
ORAM-like construction.
Inefficient updates.

Large client storage.

Sophos (2odoc¢) and Diane

Sophos: introduced at CCS'16 [Bost16]:
 Dynamic, forward-private SSE scheme.
e Low overhead.

e Simple.

Diane: work-in-progress.

Sophos (2o0¢o¢)

Fix a keyword w.
Let ix be the k-th document containing w.

Y @ 9 - ¢

UTo UTH UT> UT«k

DB stores enc(ix) at position UTkx.

Sophos (2o0¢o¢)

Fix a keyword w.
Let ix be the k-th document containing w.

STo

UTo UTH UT> UT«k

DB stores enc(ix) at position UT.x.

Ef)
Z

Let 11 be a trapdoor permutation (e.g. K

Sophos (2o0¢o¢)

Fix a keyword w.
Let ix be the k-th document containing w.

TT TT TT TT
B L
0 1 2 K
18l T el
UTo kso UTy ksq UT2 kso UTk ksk

DB stores enclik) = ik ® ksk at position UTkx.

SA).

gl b

Let 11 be a trapdoor permutation (e.g. K

Sophos (2o0¢o¢)

Fix a keyword w.
Let ix be the k-th document containing w.

T T T T
0 1 2
T T T
UTo kso UT1 ksi UT2 Kkso UTk ksk

» Update(w,i): send (UTk, i ® ksk).

» Search(w): send STk.

Client Storage

Sophos assumes the client stores cw = |DB(w)| for
every keyword.

> Client-side storage: W - log(D), with:
W = #keywords D = #documents

This is enough!
Everything else is generated pseudo-randomly.

SA:
s d-d-d _ d®mod ¢(N) o4 N

i b

Nice feature of R

Makes computing ST faster.

Summary of Sophos

Computation Communication Client

Storage

Update Search Update Search

[CJJ+14] O(1) O(Cw) O(1)

[SPS14] O(log2N) O(cuw+log2N) O(logN) O(cw+logN) O(Na) v
v

Sophos O(1) O(Cw) O(1) O(Cw) O(Wlog(D))

optimal
Leakage:

o [Search(yy) = DB(w) and content of previous
search and update queries on w.

o fUpdate(yy) = @&. Forward-private!

Summary of Sophos

* Provable forward-privacy.
*\ery simple.
e Efficient search (IO bounded).

* Asymptotically efficient update (optimal).

In practice, very low update throughput
(20x slower than prior work).

UTo kso UT1 kst UT2 kso

STo ST+ STo SThm

@ : @

UTo kso UTy ksi UT2 kso UTm kSm

ST ST
UTo kso UT41 ksi1 UT2 kso UTm kSm

» Update(w,i): send (UTg, i ® ksc).

»Search(w): send covering set of ST, ..., STe.

STo

UTo kso UT41 ksi1 UT2 kso UTm kSm

» Update(w,i): send (UTg, i ® ksc).

»Search(w): send covering set of ST, ..., STe.

STo ST
UTo kso UT41 ksi1 UT2 kso UTm kSm

» Update(w,i): send (UTg, i ® ksc).

»Search(w): send covering set of ST, ..., STe.

STo ST STo

UTo kso UT41 ksi1 UT2 kso UTm kSm

» Update(w,i): send (UTg, i ® ksc).
»Search(w): send covering set of ST, ..., STe.

The size of the covering set is logarithmic in c.

Tweaking the Tree

The tree does not have to be balanced.
> e.g. If most keywords have < 5 matches:

- | S~o
el e
] O OO
| | |UT4kss UTs kss =+ UTmksm
| L] uTskss
- - UT2 kso

UTo kso UT: Ks. ...the first 5 covering sets have size 1.

Tweaking the Tree

The tree does not have to be balanced.
> e.g. If most keywords have < 5 matches:

- - ~..
—] %
]
| L |UTskss UTs kss =+ UTmksm

- - JT3 Kks3
- UT> kso

UTo kso UT1 kst

...the first 5 covering sets have size 1.

Tweaking the Tree

The tree does not have to be balanced.
> e.g. If most keywords have < 5 matches:

- | S~o
el e
] O OO
| | |UT4kss UTs kss =+ UTmksm
| UTs kss
- - UT2 kso

UTo kso UT: Ks. ...the first 5 covering sets have size 1.

Tweaking the Tree

The tree does not have to be balanced.
> e.g. If most keywords have < 5 matches:

- | Sea
el T
] O OO
| UTs kss UTs kss =+ UTmksm
| L uTs kss

L1 L uTs ks

UTo kso UT: Ks. ...the first 5 covering sets have size 1.

Tweaking the Tree

The tree does not have to be balanced.
> e.g. If most keywords have < 5 matches:

- | S~o
el e
1
] | |UTskss UTs kss =+ UTmksm
| L uTs kss
- - UT2 kso

UTo kso UT: Ks. ...the first 5 covering sets have size 1.

Tweaking the Tree

The tree does not have to be balanced.
> e.g. If most keywords have < 5 matches:

- | Sso
Py
0 B0 O
| | |UTskss UTs kss -+ UTmksm
| L UTs kss
- - UT2 kso

UTo kso UT: Ks. ...the first 5 covering sets have size 1.

The tree also does not have to be finite (no last leaf).

Communication Complexity

O(1)

Sophos Search: —
_
O(cw)
|Og Cw
Diane Search:

However...
O(1) for Sophos is 2000+ bits (RSA).
O(log cw) for Diane is 128 log cw bits.

Computational Complexity

Computation Communication Client

Update Search Update Search Storage
O(cw) O(1) O(cw) O(Wlog(D)) Vv

Asymptotically equivalent to Sophos.
Practically much faster: removes RSA bottleneck.

Overall, "crypto” overhead is negligible: IO and
memory accesses dominate.

Security model

Security is parametrized by a leakage function.
Search(w) leaks £Search(yy),

Update(w,i) leaks £Yrdate(yy j).

Intuition: the adversary should learn no more than
this leakage.

Simulation-based security

0 ©
4

ciient L 2g >ce

(challenger)

The adversary can:
»adaptively trigger Search(w) and Update(w,i) queries.
»observe all traffic and server storage.

The adversary attempts to distinguish a real and ideal world.

Simulation-based security
> © o
y

q * B2
ciient PIEEE 2Eg /v

Server

(e,
; J ‘ /:

In the real world, the server receives the actual queries and
implements the actual scheme.

Simulation-based security
saeot

0 ©
| .

Simulator
simulated output

In the ideal world, the server receives only the leakage of
queries and attempts to mimick a real server.

L-security: there exists a simulator s.t. no adversary can
distinguish the two worlds with significant probability.

Random oracle

Assume the adversary triggers:
Update(wo,0)
Update(W1, 1)
Update(w',2)
Search(w')

Depending on w' = wop or w' = w1, different tree,
UT's for w' will have to be in a tree with either wo
or wi.

...but the simulator has to commit before knowing.

> ROM required.

Indistinguishabillity security

0 ©
4

ciient L 2g >ce

(challenger)

The adversary (adaptively) triggers pairs of queries.

World 0 . World 1

Query(0) : Query(0)'

Query(1) . Query(1)’
D e

Same leakage
The challenger chooses b and runs World b.

Security of Diane

In the end:

* Diane is provable in the simulation setting
using ROM.

e |t is also provable in the indistinguishabllity
setting without ROM (with worse bounds).

Malicious Adversaries

The server could lie when answering Search
queries.

(Generic solution:

For each keyword, the client stores and updates a
set hash of matching documents.

Example of set hash: XOR of hashes of indices.
> Update(W,i): hw « hy @ H(i) |n|t|a”y hw = 0.

» Search(w): upon receiving io, ..., ic, check hy =) H(ik).

Allowing Deletions

Generic solution:
For Update queries, let op = add or del.
Send (UTe, enc(i || op)) instead of (UTc¢, enc(i)).

During a Search query, the server retrieves op and
can cancel out add's and del's.

Reducing Client Storage

Diane uses 1 round-trip for Search gueries and
W log(D) client storage.

If we allow 2 round-trips:

« honest-but-curious setting: O(1) storage is easy
(outsource the cu/'s).

« malicious setting: trade-offs are possible using
Merkle trees.

a W log(D) storage at the cost of log(1/a)
extra communication.

Locality

Diane's crypto is almost free w.r.t. computation and
communication.

Hidden cost: non-locality.

> |n an unencrypted database: DB(w) would be
stored contiguously.

> |n SE schemes it is spread across |DB(w)|
random |ocations.

This is cost is (mostly) inherent [CT14].

Summary of Diane

e Provable forward-privacy.
e Simple.

 Efficient search (IO bounded).

Asymptotically non-optimal outgoing
communication (but very good in practice).

 Efficient update.

Open problems: mitigating inherent issues.
> Leakage-abuse attacks.

> Non-locality.

Thank you!

