
A Review of Database Reconstruction

Brice Minaud (Inria/ENS)

joint work with:
Paul Grubbs (Cornell), Marie-Sarah Lacharité (RHUL), Kenny Paterson (ETH)

[LMP18] (S&P 2018), [GLMP18] (CCS 2018), [GLMP19] (S&P 2019)

ICERM workshop, Brown University, 2019

Outsourcing Data

 2

Data upload

Data access

Client Server

Searchable Encryption: encrypted database allowing search
queries. In the static case: no updates.

Adversary: honest-but-curious host server.

Security goal: confidentiality of data and queries.

Security Model

 3

Generic solutions (FHE) are infeasible at scale → for efficiency
reasons, some leakage is allowed.

Client Adversarial
Server

Data upload

Data access

Security model: parametrized by a leakage function L.

Server learns nothing except for the output of the leakage function.

Server
learns

L(query, DB)

Keyword Search

 4

Data upload

Search query
Matching records

Client Server

Symmetric Searchable Encryption (SSE) = keyword search:

• Data = collection of documents. e.g. messages.

• Serch query = find documents containing given keyword(s).

Beyond Keyword Search

 5

Data upload

Search query
Matching records

Client Server

For an encrypted database management system:

• Data = collection of records. e.g. health records.

• Basic query examples:

	 - find records with given value. e.g. patients aged 57.

	 - find records within a given range. e.g. patients aged 55-65.

Range Queries

 6

In this talk: range queries.

‣Fundamental for any encrypted DB system.

‣Many constructions out there.

‣Simplest type of query that can't “just” be handled by an index.

Natural solutions:

Order-Preserving, Order-Revealing Encryption.

- Plaintexts are ordered, ciphertexts are ordered.

- The encryption map preserves order.

0

30

60

90

0% 25% 50% 75% 100%
Records
below age

Age

15

Attacks Exploiting ORE*

 7

‣“Sorting” attack: if every possible value appears in the DB...

Just sort the ciphertexts and you learn their value!

‣“CDF-matching” attack: say the attacker has an approximation
of the Cumulative Distribution Function of DB values...

3 11 5 1 8 7 10 6 2 4 91 2 3 4 5 6 7 8 9 10 11

*not L/R ORE.

Leakage-Abuse Attacks

 8

→ “Second-generation” schemes enable range queries without
relying on OPE/ORE.

“Leakage-abuse attacks” (coined by Cash et al. CCS'15):

‣ Do not contradict security proofs.

‣ Can be devastating in practice.

ORE: order information can be used to infer (approximate) values.
Leaking order is too revealing.

Cryptanalysis and Leakage Abuse

 9

What is the point of these attacks?

- Understand concrete security implications of leakage.

- “Impossibility results” → help guide design.

Approach: consider general settings. Pioneered by [KKNO16].

Here:

‣ Range queries.

‣ Passive, persistent adversary. No injections, no chosen queries.

Roadmap

 10

1. Access pattern leakage.

3. Volume leakage.

Access Pattern Leakage

1 3

Range Queries

 12

Range = [40,100]

Client Server

45
1

83
3

45
1

6
2

83
3

28
4

What can the server learn from the above leakage?

SE schemes supporting range queries are proven secure w.r.t. a
leakage function including access pattern leakage.

Let N = number of possible values.

KKNO16 Attack

 13

1 N

Less probable More probable
Assume a uniform distribution on range queries.

Idea: for each record...

1. Count frequency at which the record is hit.

 → gives estimate of probability it’s hit by uniform query.
2. deduce estimate of its value by “inverting” f.

values

f

Induces a distribution f on the prob. that a given value is hit.

KKNO16 Attack

 14

1 N

Step 1: for every record, estimate prob of the record being hit.

Step 2: “invert” f.

f

values

After O(N4 log N) uniform queries, previous alg. recovers
the exact value of all records.

Step 3: break the symmetry, i.e. reconcile which values are on
the same side of N/2.

KKNO16 Attack

 15

After O(N4 log N) uniform queries, previous alg. recovers
the exact value of all records.

Remarks:

- Requires uniform distribution.

- Expensive. In fact, uses up all possible leakage information!

- Lower bound of Ω(N4).

Revisiting the Analysis, Part I [GLMP19]

 16

1 N

Step 1: for every record, estimate distance to anchor.

Step 2: “invert” f.

f

values

Step 3: break the symmetry, i.e. reconcile which values are on
the same side of N/2.

costs a square factor!

Step 0: find suitable “anchor” record.

⚓
f

costs a constant factor!

After O(N4 log N) uniform queries, previous alg. recovers
the exact value of all records.

After O(N2 log N) uniform queries, previous alg. recovers
the exact value of all records.

Cheaper KKNO16 attack

 17

After O(N2 log N) uniform queries, previous alg. recovers
the exact value of all records.

Remarks:

- Requires uniform distribution.

- Requires existence of a favorably placed record.

- Still fairly expensive.

- Lower bound of Ω(N2). Can't hope to get below.

Approximate Reconstruction

 18

Strongest goal: full database reconstruction = recovering the
exact value of every record.

More general: approximate database reconstruction =
recovering all values within εN.

ε = 0.05 is recovery within 5%. ε = 1/N is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)

Database Reconstruction

 19

[KKNO16]: full reconstruction in O(N 4 log N) queries.

[GLMP19]:

‣ O(ε-4 log ε-1) for approx. reconstruction.

‣ O(ε-2 log ε-1) with mild hypothesis.

Full. Rec.

O(N4 log N)
O(N2 log N)

Lower Bound
Ω(ε-4)
Ω(ε-2)

recovers

Scale-free: does not depend on size of DB or number of possible
values.

→ Recovering all values in DB within 5% costs O(1) queries!

Analysis: uses VC theory + draws connection to machine learning.
See Paul's talk!

Intuition for Scale-Freeness

 20

1 N

Step 1: for every record, estimate prob of the record being hit.

Step 2: “invert” f.

f

values

Instead of support = integers 1 to N, take reals [0,1].

...so “N = ∞” !

0 1

The previous algorithm still works!

On the i.i.d. Assumption

 21

+ Scale-freeness. N and DB size irrelevant for query complexity.

- We are assuming uniformly distributed queries.

In reality we are assuming:

‣Queries are uniform.

‣ The adversary knows the query distribution.

‣Queries are independent and identically distributed.

This is not realistic.

What can we learn without that hypothesis?

Order Reconstruction

P

Q...

...

Problem Statement

 23

Range = [40,100]

Client Server

45
1

83
3

45
1

6
2

83
3

28
4

This time we don't assume i.i.d. queries, or knowledge of their
distribution.

What can the server learn from the above leakage?

Range Query Leakage

 24

Query A matches records a, b, c.

Query B matches records b, c, d.

→ we learn that records b, c are between a and d.

We learn something about the order of records.

Then this is the only configuration (up to symmetry)!

0 N
A

a b c d

B

Range Query Leakage

 25

Query A matches records a, b, c.

Query B matches records b, c, d.

Query C matches records c, d.

Then the only possible order is a, b, c, d (or d, c, b, a)!

0 N
A

a b c d

B
C

Challenges:

‣How do we extract order information? (What algorithm?)

‣How do we quantify and analyze how fast order is

learned as more queries are observed?

Challenge 1: the Algorithm

 26

Short answer: there is already an algorithm!

X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A PQ tree is a compact (linear in |X|) representation of the
set of all permutations of X that are compatible with S.

Long answer: PQ-trees.

Note: was used in [DR13], didn’t target reconstruction.

Can be updated in linear time.

PQ Trees

 27

P

a b c

Order is completely unknown.

‣ any permutation of abc.

a b c

Q Order is completely known (up to reflection).

‣ abc’or ‘cba’.

P

d e

a b c

Q
Combines in the natural way.

‣ ‘abcde’, ‘abced’, ‘dabce’, ‘eabcd’,
‘deabc’, ‘edabc’, ‘cbade’ etc.

Full Order Reconstruction

 28

P

No information
r1 r2 r3 …… ……

Q

r1 r2 r3

Full reconstruction

observe enough queries

We want to quantify order learning...

……

Challenge 2a: Quantify Order Learning

 29

P Q

No information
r1 r2 r3 …… r1 r2 r3

Full reconstruction

ε-Approximate order reconstruction.

Roughly: we learn the order between two records as soon as
their values are ≥ εN apart. (ε = 1/N is full reconstruction)

Note: compatible with “ORE-style” CDF matching.

……

Approximate Order Reconstruction

 30

P Q

No information
r1 r2 r3 …… r1 r2 r3

Full reconstruction

……

Q

Diameter ≤ εN

… … …

ε-Approximate
reconstruction

#queries?

#queries?

……

Approximate Order Reconstruction

 31

P Q

No information
r1 r2 r3 …… r1 r2 r3

Full reconstruction

……

Q

… … …
ε-Approximate
reconstruction

O(N log N) queries

O(ε-1 log ε-1) queries

Note: some (weak) assumptions are swept under the rug.

Conclusion: learn order very quickly.

Experiments

 32

0 100 200 300 400 500
Number of queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

S
ym

m
et

ri
c

va
lu

e/
bu

ck
et

di
am

et
er

(a
s

a
fr
ac

ti
on

of
N

)

Max. sacrificed symmetric value

N = 100

N = 1000

N = 10000

N = 100000

Max. bucket diameter

N = 100

N = 1000

N = 10000

N = 100000

✏�1 log ✏�1✏�1 log ✏�1

ApproxOrder experimental results
R = 1000, compared to theoretical ✏-net bound

0 100 200 300 400 500
Number of queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

S
ym

m
et

ri
c

va
lu

e/
bu

ck
et

di
am

et
er

(a
s

a
fr
ac

ti
on

of
N

)

Max. sacrificed symmetric value

N = 100

N = 1000

N = 10000

N = 100000

Max. bucket diameter

N = 100

N = 1000

N = 10000

N = 100000

✏�1 log ✏�1✏�1 log ✏�1

ApproxOrder experimental results
R = 1000, compared to theoretical ✏-net bound

0 100 200 300 400 500
Number of queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

S
ym

m
et

ri
c

va
lu

e/
bu

ck
et

di
am

et
er

(a
s

a
fr
ac

ti
on

of
N

)

Max. sacrificed symmetric value

N = 100

N = 1000

N = 10000

N = 100000

Max. bucket diameter

N = 100

N = 1000

N = 10000

N = 100000

✏�1 log ✏�1✏�1 log ✏�1

ApproxOrder experimental results
R = 1000, compared to theoretical ✏-net bound

0
10

0
20

0
30

0
40

0
50

0
N

um
b
er

of
qu

er
ie

s

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Symmetricvalue/bucketdiameter
(asafractionofN)

M
ax

.
sa

cr
ifi

ce
d

sy
m

m
et

ri
c

va
lu

e

N
=

10
0

N
=

10
00

N
=

10
00

0

N
=

10
00

00

M
ax

.
bu

ck
et

di
am

et
er

N
=

10
0

N
=

10
00

N
=

10
00

0

N
=

10
00

00

✏�
1

lo
g

✏�
1

✏�
1

lo
g

✏�
1

A
p
p
r
o
x
O

r
d
e
r

ex
pe

ri
m

en
ta

l
re

su
lt
s

R
=

10
00

,
co

m
pa

re
d

to
th

eo
re

ti
ca

l
✏-

ne
t

bo
un

d

Big Picture

 33

Access Pattern

leaks order

+ query dist. (KKNO)

leaks values+ data dist. (GLMP19)

+ search p. (MT19, KPT19)

+ density

- Resilient, scale-free attacks.

- Effective in practice in some realistic scenarios.

- Watch out for additional leakage. E.g.:

‣ Search pattern.

‣ Rank information (e.g. L/R ORE). Damaging for low #queries.

Volume Leakage

7

1

13

3

11

8

10

20

Problem Statement

 35

Range = [40,100]

Client Server

45
1

83
3

45
1

6
2

83
3

28
4

What can the server learn from the above leakage?

Attacker only sees volumes = number of records matching
each query.

2 matches

Volumes

 36

3 7 1 12

1 2 3 4Value

Counts

A volume = number of records matching some range.

8

13

Some volumes

The attacker wants to learn exact counts.

KKNO16 Volume Attack

 37

Step 1: recover exact probability of every volume ➔ number of
queries that have each volume.

Step 2: express and solve equation system linking above data
back to DB counts. (Ends up as polynomial factorization.)

Assume uniform queries.

After O(N4 log N) uniform queries, previous alg. recovers
all DB counts.

Remarks:

- Requires uniform distribution.

- Expensive. In fact, uses up all possible leakage information!

- Lower bound of Ω(N4).

Elementary Volumes [GLMP18]

 38

3 7 1 12

1 2 3 4Value

Counts

3

10

11

23

“Elementary”
ranges

Elementary volumes = volumes of ranges [1,1], [1,2], [1,3]...

Elementary Volumes

 39

3 7 1 12

1 2 3 4Value

Counts

‣Knowing set of elementary volumes ⇔ knowing counts.

vol([a,b]) = vol([1,b]) - vol([1,a])

‣Every volume is = difference of two elementary volumes.
so...

Fact:

Our goal: finding elementary volumes.

The Attack

 40

Assumption: the volumes of all queries are observed.

7

12

23

1

13

311

8

10

20

Draw an edge between volumes a and b iff |b-a| is a volume.

7

12

23

1

13

311

8

10

20

7

12

23

1

13

311

8

10

20

7

12

23

1

13

311

8

10

20

7

12

23

1

13

311

8

10

20

Summary

 41

Attack: elementary volumes form a clique in the volume
graph → clique-finding algorithm reveals them.

For structured queries, even just volume leakage can be
quite damaging. Attack requires strong assumption.

In the article:

‣Pre-processing to avoid clique finding.

‣Analysis of parameters + experiments.

‣Other attacks.

Conclusion

Conclusion

 43

Access pattern:

- Resilient, scale-free attacks.

- Effective in practice in some realistic scenarios.

➔ non-trivial countermeasures are required.

Volume attacks:

- Fragile attacks. Currently.

- Expensive query complexity O(N2 log N).

- Unsatisfactory: limits of attacks not clear.

➔ “simple” countermeasures might be enough in most scenarios.

Some open problems: mixed queries, scale-free volumes.

