

Learning to Reconstruct

Statistical Learning Theory and Encrypted **Database Attacks**

Paul Grubbs, Marie-Sarah Lacharité, <u>Brice Minaud</u>, Kenny Paterson eprint 2019/011 and IEEE S&P 2019.

C2 seminar, Rennes, 2019

Outsourcing Data

Sensitive data → **encryption** needed.

An encrypted database is of little use if it cannot be searched.

→ Searchable Encryption.

Examples: Private message server. Company/hospital outsourcing client/patient info.

Searchable Encryption

Adversary: honest-but-curious host server.

Security goal: confidentiality of data and queries.

Very active topic in research and industry.

[AKSX04], [BCLO09], [PKV+14], [BLR+15], [NKW15], [KKNO16], [LW16], [FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]...

Security Model

Generic solutions (FHE) are infeasible at scale → for efficiency reasons, some **leakage** is allowed.

Security model: parametrized by a leakage function L.

Server learns nothing except for the output of the leakage function.

Security Model

Keyword Search

Symmetric Searchable Encryption (SSE) = keyword search:

- Data = collection of documents. e.g. messages.
- Serch query = find documents containing given keyword(s).

Efficient solutions for leakage = search pattern + access pattern.

Some active topics:

- Forward and backward privacy [B16][BMO17][CPPJ18][SYL+18]...
- Locality [CT14][ANSS16][DPP18]...

Beyond Keyword Search

For an encrypted database management system:

Data = collection of records.

e.g. health records.

- Basic query examples:
 - find records with given value.
 - find records within a given range.
- e.g. patients aged 57.
- e.g. patients aged 55-65.

Range queries

In this talk: range queries.

- ▶ Fundamental for any encrypted DB system.
- Many constructions out there.
- Simplest type of query that can't "just" be handled by an index.

Initial solutions: Order-Preserving, Order-Revealing Encryption.

Leakage-abuse attacks: order information can be used to infer (approximate) values. Leaking order is too revealing.

→ "Second-generation" schemes enable range queries without relying on OPE/ORE.

Still leak access pattern.

Range Queries

What can the server learn from the above leakage?

Let N =number of possible values for the target attribute.

Strongest goal: **full** database reconstruction = recovering the exact value of every record.

More general: approximate database reconstruction = recovering all values within εN .

 $\varepsilon = 0.05$ is recovery within 5%. $\varepsilon = 1/N$ is full recovery.

("Sacrificial" recovery: values very close to 1 and N are excluded.)

[KKNO16]: full reconstruction in $O(N^4 \log N)$ queries, assuming i.i.d. uniform queries!

[KKNO16]: full reconstruction in O(N⁴ log N) queries!

This talk ([GLMP19], [LMP18]):

Full. Rec. Lower Bound

O($\epsilon^{-4} \log \epsilon^{-1}$) for approx. reconstruction.

O($\epsilon^{-2} \log \epsilon^{-1}$) with very mild hypothesis.

O($\epsilon^{-2} \log \epsilon^{-1}$) for approx. order rec.

O($\epsilon^{-1} \log \epsilon^{-1}$) for approx. order rec.

O($\epsilon^{-1} \log \epsilon^{-1}$) for approx. order rec.

Full reconstruction in O($\epsilon^{-1} \log \epsilon^{-1}$) implies

Full reconstruction in O($\epsilon^{-1} \log \epsilon^{-1}$) for dense DBs.

Scale-free: does not depend on size of DB or number of possible values.

→ Recovering all values in DB within 5% costs O(1) queries!

[KKNO16]: full reconstruction in O(N⁴ log N) queries!

This talk ([GLMP19], subsuming [LMP18]): Full. Rec. Lower Bound

- \sim O(ϵ^{-4} log ϵ^{-1}) for approx. reconstruction. O(N^4 log N) $\Omega(\epsilon^{-4})$
- $O(\epsilon^{-2} \log \epsilon^{-1})$ with very mild hypothesis. $O(N^2 \log N)$ $\Omega(\epsilon^{-2})$
- $O(\epsilon^{-1} \log \epsilon^{-1})$ for approx. *order* rec. $O(N \log N) \Omega(\epsilon^{-1} \log \epsilon^{-1})$

This talk.

Main tool:

- connection with statistical learning theory;
- especially, VC theory.

VC Theory

VC Theory

Foundational paper: Vapnik and Chervonenkis, 1971.

Uniform convergence result.

Now a foundation of learning theory, especially PAC (probably approximately correct) learning.

Wide applicability.

Fairly easy to state/use.

(You don't have to read the original article in Russian.)

Warm-up

Set X with probability distribution D.

Let $C \subseteq X$. Call it a concept.

$$Pr(C) \approx \frac{\#points in C}{\#points total}$$

Sample complexity: to measure Pr(C) within ε , you need $O(1/\varepsilon^2)$ samples.

Approximating a Concept Set

Now: set & of concepts.

Goal: approximate their probabilities simultaneously.

The set of samples drawn from X is an ϵ -sample iff for all C in \mathscr{C} :

$$\left| \Pr(C) - \frac{\# \text{points in } C}{\# \text{points total}} \right| \leq \epsilon$$

ε-sample Theorem

How many samples do we need to get an ε -sample whp?

Union bound: yields a sample complexity that depends on $|\mathscr{C}|$.

V & C 1971:

If \mathscr{C} has **VC** dimension d, then the number of points to get an ε -sample whp is

$$O(\frac{d}{\epsilon^2}\log\frac{d}{\epsilon}).$$

Does not depend on |& |!

VC Dimension

Remaining Q: what is the VC dimension?

A set of points is **shattered** by \mathscr{C} iff: every subset of S is equal to $C \cap S$ for some C in \mathscr{C} .

Example. Take 2 points in X=[0,1]. Concepts $\mathscr{C} = \text{all ranges}$.

VC Dimension

Example. Take 3 points in X=[0,1]. Concepts $\mathscr{C}=$ all ranges.

VC dimension of \mathscr{C} = largest cardinality of a set of points in X that is shattered by \mathscr{C} .

E.g. VC dimension of ranges is 2.

What typically matters is just that VC dim is finite.

KKNO16-like Attack

Assume a uniform distribution on range queries.

Induces a distribution f on the prob. that a given value is hit.

Idea: for each record...

- 1. Count frequency at which the record is hit.
 - → gives estimate of probability it's hit by uniform query.
- 2. deduce estimate of its value by "inverting" f.

KKNO16-like Attack

Step 1: for all records, estimate prob of the record being hit.

This is an ε-sample!

$$X = \text{ranges}$$
 $\mathscr{C} = \{\{\text{ranges} \ni x\}: x \in [1,N]\}$

so we need $O(\epsilon^{-2} \log \epsilon^{-1})$ queries.

Step 2: because f is quadratic, "inverting" f adds a square.

After $O(\epsilon^{-4} \log \epsilon^{-1})$ queries, the value of all records is recovered within ϵN .

On the i.i.d. Assumption

We are assuming uniformly distributed queries.

In reality we are assuming:

- The advesary knows the query distribution.
- Queries are uniform.
- More fundamentally, queries are independent and identically distributed (i.i.d.).

This is not realistic.

What can we learn without that hypothesis?

Order Reconstruction

Problem Statement

What can the server learn from the above leakage?

This time we **don't assume** i.i.d. queries, or knowledge of their distribution.

Range Query Leakage

Query A matches records a, b, c.

Query B matches records b, c, d.

Then this is the only configuration (up to symmetry)!

→ we learn that records b, c are between a and d.

We learn something about the **order** of records.

Range Query Leakage

Query A matches records a, b, c.

Query B matches records b, c, d.

Query C matches records c, d.

Then the only possible order is a, b, c, d (or d, c, b, a)!

Challenges:

- ▶ How do we extract order information? (What algorithm?)
- ▶ How do we **quantify** and **analyze** how fast order is learned as more queries are observed?

Challenge 1: the Algorithm

Short answer: there is already an algorithm!

Long answer: PQ-trees.

X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A **PQ tree** is a compact (linear in |X|) representation of the set of all permutations of X that are compatible with S.

Can be updated in linear time.

Note: was used in [DR13], didn't target reconstruction.

PQ Trees

Order is completely unknown.

any permutation of abc.

Order is completely **known** (up to reflection).

abc'or 'cba'.

Combines in the natural way.

'abcde', 'abced', 'dabce', 'eabcd','deabc', 'edabc', 'cbade' etc.

Full Order Reconstruction

We want to **quantify** order learning...

Challenge 2a: Quantify Order Learning

No information

Full reconstruction

ε-Approximate order reconstruction.

Roughly: we learn the order between two records as soon as their values are $\geq \varepsilon N$ apart. ($\varepsilon = 1/N$ is full reconstruction)

Approximate Order Reconstruction

Challenge 2b: Analyze Query Complexity

Intuition: if no query has an endpoint between a and b, then a and b can't be separated.

 \rightarrow ϵ -approximate reconstruction is impossible.

You want a query endpoint to hit every interval ≥ εN. Conversely with some other conditions it's enough.

VC Theory Saves the Day (again)

ε-samples: the ratio of points hitting each concept is close to its probability.

What we want now: if a concept has high enough probability, it is hit by at least one point.

The set of samples drawn from X is an ϵ -net iff for all C in \mathscr{C} :

$$Pr(C) \ge \epsilon \Rightarrow C$$
 contains a sample

 \rightarrow Number of points to get an ε -net whp: $O\left(\frac{d}{\epsilon}\log\frac{d}{\epsilon}\right)$

Approximate Order Reconstruction

Note: some (weak) assumptions are swept under the rug.

Experiments

APPROXORDER experimental results R=1000, compared to theoretical ϵ -net bound

Closing Remarks

On Range Queries

Severe attacks under minimal assumptions.

Analysis clarifies setting.

- Size of DB, or number of possible values, don't matter.
- What is really leaked is order of records.
- Various auxiliary info can get you from order to values.

Please don't use OPE/ORE.

Also avoid current encrypted DBs if you don't trust the server and care about privacy.

New solutions needed. E.g. efficient specialized ORAMs.

Connection to Machine Learning

- In this talk: VC theory.
- In the article: known query setting = PAC learning.
- Some results for general query classes.

Machine learning in crypto: also used for side channel attacks. Same general setting!

Natural connection between reconstructing secret information from leakage and machine learning.

Seems to be a powerful tool to understand the security implications of leakage. **In side channels** - use learning algorithms; **here** - use learning theory.