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Outsourcing Data

Data upload
Ay,
Ay Data access
Client Server

Sensitive data — encryption needed.

An encrypted database is of little use if it cannot be searched.
— Searchable Encryption.

Examples: Private message server. Company/hospital outsourcing
client/patient info.



Searchable Encryption

Data upload
Ay,
Ay Data access
Client Adversarial

Server
Adversary: honest-but-curious host server.

Security goal: confidentiality of data and queries.

Very active topic in research and industry.

[AKSX04], [BCLOO09], [PKV+14], [BLR+15], [INKW15], [KKNO16],
ILW16], [FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]...



Security Model

Data upload
m Server
Ry, Data access learns
= (query, DB
Client Adversarial

Server

Generic solutions (FHE) are infeasible at scale — for efficiency
reasons, some leakage is allowed.

Security model: parametrized by a leakage function L.

Server learns nothing except for the output of the leakage function.



Security Model
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Keyword Search

Symmetric Searchable Encryption (SSE) = keyword search:
* Data = collection of documents. e.g. messages.

* Serch query = find documents containing given keyword(s).

Efficient solutions for leakage = search pattern + access pattern.

Some active topics:

- Forward and backward privacy [B16][BMO17][CPPJ18][SYL+18]...
- Locality [CT14][ANSS16][DPP18]...



Beyond Keyword Search

Data upload
Ay,
S Search query
m’ Matching records
Client Server

For an encrypted database management system:
* Data = collection of records. e.g. health records.

* Basic query examples:
- find records with given value. e.qg. patients aged 57.
- find records within a given range. e.q. patients aged 55-65.



In this talk: range queries.
» Fundamental for any encrypted DB system.
» Many constructions out there.
» Simplest type of query that can't “just” be handled by an index.

Initial solutions: Order-Preserving, Order-Revealing Encryption.

Leakage-abuse attacks: order information can be used to infer
(approximate) values. Leaking order is too revealing.

— “Second-generation” schemes enable range queries without
relying on OPE/ORE.

Still leak access pattern.
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What can the server learn from the above leakage?



Database Reconstruction

Let N = number of possible values for the target attribute.

Strongest goal: full database reconstruction = recovering the
exact value of every record.

More general: approximate database reconstruction =
recovering all values within eN.

e = 0.05 is recovery within 5%. € = 1/N is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)

[KKNO16]: full reconstruction in O(N4 log N) queries, assuming
I.1.d. uniform queries!
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Database Reconstruction

[KKNO16]: full reconstruction in O(N4 log N) queries!

recovers
This talk ((GLMP19], [LMP18])): Full. Rec. Lower Bound

O(N4 log N) Q(e4)
og €1) with very mild hypothesis. | O(N2 log N) ()(e2?)

> O(e 1 log €-1) for approx. order rec. O(N log N) | Q(e1 log €1)
Implies

» O(e4 log €-1) for approx. reconstruction.

Full reconstruction in O(N log N) for dense DBs.

Scale-free: does not depend on size of DB or number of possible
values.

— Recovering all values in DB within 5% costs O(1) queries!



Database Reconstruction

[KKNO16]: full reconstruction in O(N4 log N) queries!

This talk ((GLMP19], subsuming [LMP18]): Full. Rec. Lower Bound

O(e4 log €-1) for approx. reconstruction.| O(N4 log N) Q)(e4)

» O(e2 log €1) with very mild hypothesis. O(N2 log N) ()(e2)
O(Nlog N) Q(e 1 log €1)

og €1) for approx. order rec.

This talk.
Main tool:
- connection with statistical learning theory;

- especially, VC theory.
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VC Theory




VC Theory

Foundational paper: Vapnik and Chervonenkis, 1971.

Uniform convergence result.

Now a foundation of learning theory, especially PAC (probably
approximately correct) learning.

Wide applicability.

Fairly easy to state/use.

(You don't have to read the original article in Russian.)

|4



Set X with probability distribution D.
Let C C X. Call it a concepit.

_ #points in C

Pr(C) ~
r(C) #points total

Sample complexity:
to measure Pr(C) within €,
you need O(1/€2) samples.

|5



Approximating a Concept Set

Now: set € of concepts.
Goal: approximate their probabilities simultaneously.

The set of samples drawn
from X is an e-sample iff

forall C in 6:
Pr(C) #po.lnts in C <
#points total
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e-sample Theorem

How many samples do we need to get an e-sample whp?

Union bound: yields a
sample complexity that

depends on |€)|.

V & C 1971:
If € has VC dimension d,

then the number of points
to get an e-sample whp is

d d
O(— log —).

€ €

Does not depend on |€)|!
17



Remaining Q: what is the VC dimension?

A set of points is shattered by € iff:
every subset of S is equal to CnS for some C in 6.

Example. Take 2 points in X=[0,1]. Concepts € = all ranges.

b
I—II I—II —d
C B A
Subsets: OK. Range A.
2 points = O OK. Range B.
SHATTERED O OK. Range C.
O O OK. Range D.

|8



Example. Take 3 points in X=[0,1]. Concepts € = all ranges.

Subset: O O Problem.
3 points = NOT SHATTERED

E.g. VC dimension of ranges is 2.

What typically matters is just that VC dim is finite.
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Database Reconstruction




KKNO16-like Attack

f
1 N
values | |
Less probable More probable

Assume a uniform distribution on range queries.
Induces a distribution f on the prob. that a given value is hit.

Idea: for each record...
1. Count frequency at which the record is hit.
— gives estimate of probabillity it’s hit by uniform query.
2. deduce estimate of its value by “inverting” f.
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KKNO16-like Attack

f

1 N
values --+--+-1-4+-+-++++4++-+-4--tl

Step 1: for all records, estimate prob of the record being hit.
This Is an e-sample!
X = ranges € ={{ranges > x}: x € [1,N]}

so we need O(e2 log £ 1) queries.

Step 2: because f is quadratic, “inverting” f adds a square.

After O(e-4 log £1) queries, the value of all records is
recovered within eN.
22



On the i.i.d. Assumption

We are assuming uniformly distributed queries.

In reality we are assuming:
» The advesary knows the query distribution.
> Queries are uniform.
> More fundamentally, queries are independent and

identically distributed (i.i.d.).

This is not realistic.

What can we learn without that hypothesis?

23



Order Reconstruction




Problem Statement

Range = | ]
1 3

What can the server learn from the above leakage?

This time we don't assume i.i.d. queries, or knowledge of their
distribution.
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Range Query Leakage

Query A matches records a, b, c.
Query B matches records b, c, d.

a b C d
I - I
[
A —
B

Then this is the only configuration (up to symmetry)!

— we learn that records b, ¢ are between a and d.

We learn something about the order of records.
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Range Query Leakage

Query A matches records a, b, c.
Query B matches records b, c, d.

Query C matches records c, d.

a b C d
I - I
[
Aﬁ
B
— ]
C

Then the only possible order is a, b, ¢, d (or d, c, b, a)!

Challenges:
» How do we extract order information? (What algorithm?)

» How do we quantify and analyze how fast order is

learned as more queries are observed?
27



Challenge 1: the Algorithm

Short answer: there is already an algorithm!

Long answer: PQ-trees.

X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A PQ tree is a compact (linear in |X|) representation of the
set of all permutations of X that are compatible with S.

Can be updated in linear time.

Note: was used in [DR13], didn’t target reconstruction. )8



Order is completely unknown.
>~ any permutation of abc.

Order is completely known (up to reflection).

»abc’or ‘cbha’.

Combines in the natural way.

e > ‘fabcede’, ‘abced’, ‘dabce’, ‘eabcd’,
‘deabc’, ‘edabc’, ‘cbade’ etc.

29



Full Order Reconstruction
A observe enough queries A
—>

No information Full reconstruction

We want to quantify order learning...
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Challenge 2a: Quantify Order Learning

No information Full reconstruction

e-Approximate order reconstruction.

Roughly: we learn the order between two records as soon as
their values are = eN apart. (€ = 1/N is full reconstruction)
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Approximate Order Reconstruction

A — A
—>

No information Full reconstruction

#queﬁ;;;\\‘\\* ,/”/’/)'

NN N\

X 1 7

Diameter < eN

e-Approximate

reconstruction "



Challenge 2b: Analyze Query Complexity

Intuition: if no query has an endpoint between a and b, then a
and b can't be separated.

— g-approximate reconstruction is impossible.

You want a query endpoint to hit every interval = eN.
Conversely with some other conditions it's enough.

Heavy sweeping of details under rug. 33



VC Theory Saves the Day (again)

g-samples: the ratio of
points hitting each concept
IS close to its probability.

What we want now: if a
concept has high enough
probability, it is hit by at
least one point.

The set of samples drawn from X is an e-net iff for all C in €

Pr(C) > € = C contains a sample

d d
— Number of points to get an e-net whp: O (— log —)
€ €
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Approximate Order Reconstruction

A O(N log N) queries A
—>

No information Full reconstruction

O(e-' log &-1) qm /

e-Approximate
reconstruction

Note: some (weak) assumptions are swept under the rug. 35



Experiments

Max. bucket diameter
(as a fraction of V)

APPROXORDER experimental results
R = 1000, compared to theoretical e-net bound
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Closing Remarks




On Range Queries

Severe attacks under minimal assumptions.

Analysis clarifies setting.
> Size of DB, or number of possible values, don't matter.
» What is really leaked is order of records.
> Various auxiliary info can get you from order to values.

Please don't use OPE/ORE.

Also avoid current encrypted DBs if you don't trust the server
and care about privacy.

New solutions needed. E.g. efficient specialized ORAMSs.
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Connection to Machine Learning

> |In this talk: VC theory.
> In the article: known query setting = PAC learning.
~ Some results for general query classes.

Machine learning in crypto: also used for side channel
attacks. Same general setting!

Natural connection between reconstructing secret

information from leakage and machine learning.

Seems to be a powerful tool to understand the security
implications of leakage. In side channels - use learning
algorithms; here - use learning theory.
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