# Approximate reconstruction of encrypted databases

Paul Grubbs, Marie-Sarah Lacharité, <u>Brice Minaud</u>, Kenny Paterson

Information Security Group



#### Situation overview

#### General message from previous talk:

Don't use range queries with access pattern leakage!

#### Closer look:

- KKNO16: full reconstruction...
  - Assuming i.i.d. uniform queries.
  - O(N<sup>4</sup> log N) queries.
- Kenny's talk: full reconstruction...
  - Assuming density.
  - O(N log N) queries.

## Approximate reconstruction

#### **New goal:** δ-approximate reconstruction.

Recover the values of records within  $\delta N$ .

LMP18 approximate attack but: only improvement in log factor, complicated analysis, requires density...

→ We would like to get best possible reconstruction with given queries. And handle large N's. And get rid of the density assumption, and i.i.d. queries.

#### Two new tools:

- VC theory (machine learning).
- PQ-trees.

## Plan

- 1. VC theory.
- 2. PQ trees.



# VC theory

## Warm-up

Set X with probability distribution D.

Let  $C \subseteq X$ . Call it a concept.



$$Pr(C) \approx \frac{\#points in C}{\#points total}$$

Sample complexity: to measure Pr(C) within  $\delta$ , you need  $O(1/\delta^2)$  samples.

## VC theory

Vapnik and Chervonenkis, 1971. Now you have a set  $\mathscr{C}$  of concepts.



The set of samples drawn from X is an  $\epsilon$ -sample iff for all C in  $\mathscr{C}$ :

$$\left| \Pr(C) - \frac{\# \text{points in } C}{\# \text{points total}} \right| \le \epsilon$$

#### V & C 1971:

If  $\mathscr{C}$  has **VC** dimension d, then the number of points to get an  $\varepsilon$ -sample whp is  $O(d/\varepsilon^2 \log d/\varepsilon)$ .

#### VC dimension



A set S of points in X is **shattered** by  $\mathscr{C}$  iff every subset of S can be written in the form  $C \cap S$  for some C in  $\mathscr{C}$ .



The **VC** dimension of  $\mathscr{C}$  is the largest cardinality d such that every subset of X of size d is shattered.

e.g. for ranges the VC dimension is 2.

## Two main results: ε-samples and ε-nets

The set of samples drawn from X is an  $\epsilon$ -sample iff for all C in  $\mathscr{C}$ :

$$\left| \Pr(C) - \frac{\# \text{points in } C}{\# \text{points total}} \right| \leq \epsilon$$

 $\rightarrow$  If d is the VC dim, number of points to get an  $\varepsilon$ -sample whp is:

$$O\left(\frac{d}{\epsilon^2}\log\frac{d}{\epsilon}\right)$$

The set of samples drawn from X is an  $\epsilon$ -net iff for all C in  $\mathscr{C}$ :

$$Pr(C) \ge \epsilon \Rightarrow C$$
 contains a sample

 $\rightarrow$  If d is the VC dim, number of points to get an  $\varepsilon$ -net whp is:

$$O\left(\frac{d}{\epsilon}\log\frac{d}{\epsilon}\right)$$

## Example: learning range queries

Suppose we know the value of some records in the database (with uniformly random values).

+ we have access pattern leakage.



We want to **approximately learn** queries in the sense: for every query we want to know its endpoints within εN.

Q: How many known records do we need?

A: This is an  $\varepsilon$ -net.

$$X = \text{values } [1,N]$$
  $\mathscr{C} = \text{ranges}$ 

so we need  $O(1/\epsilon \log 1/\epsilon)$  known samples.

## Example continued



So this was an  $\varepsilon$ -net  $\rightarrow$  we need  $O(1/\varepsilon \log 1/\varepsilon)$  known samples.

Q: How about if we add complements? Multi-dimensional ranges? etc.

A: Actually we don't care. All these things have finite VC dim.

In fact this is actually PAC learning.

PAC = Probably Approximately Correct.



## Database reconstuction

#### Basic KKNO16 attack variant



Assume uniformly distributed range queries.

Idea: count #times record is hit

- → estimate probability it's hit
- → deduce its value

Fact: to correctly deduce all values within  $\delta N$  you need to correctly estimate all probabilities within  $\epsilon = \delta^2$ .

#### Basic KKNO16 attack variant



...so we need to estimate the probability of each value being hit, all within  $\varepsilon = \delta^2$ ...

This is an  $\varepsilon$ -sample.

$$X = \text{ranges}$$
  $\mathscr{C} = \{\{\text{ranges} \ni x\}: x \in [1,N]\}$ 

so we need  $O(1/\epsilon^2 \log 1/\epsilon)$  known samples.

## Approximate KKNO attack

#### With uniformly distributed queries:

All values are in the database are recovered within  $\delta N$  after observing the access pattern of O(1/ $\delta^4$  log 1/ $\delta$ ) queries.

#### Remarks:

- KKNO16:  $N^4 \log N \rightarrow$  Kenny's talk:  $N \log N$  with density
- → this: O(1) for approximate reconstruction within 5%...
  - -Setting  $\delta = 1/N$  recovers KKNO's attack.
  - Lower bound of  $\Omega(1/\delta^4)$ .
  - Direct application of VC theory.

## Extensions of this approach

In fact  $O(1/\delta^2 \log 1/\delta)$  queries suffice under very reasonable assumptions.

e.g. there exists record in DB with value within [N/8,3N/8].

#### Other query types:

- Prefix queries on strings, wildcard queries, etc.
- "Meta-theorem": all these have finite VC dim...
- -This is WIP.

#### One limitation:

- VC theory gives bad constants.

It says something of general behavior. Need experiments.

## Limitation of previous result

So far we are assuming uniformly distributed queries.

This is not just an assumption about adversarial knowledge. This is an assumption that queries are **independent identically distributed** (i.i.d.).

This is quite unrealistic.

What can you learn without that hypothesis?



## PQ trees



#### PQ trees

X: linearly ordered set. Order is unknown.

You are given a set S containing some some intervals in X.

A PQ tree is a compact (linear in |X|) representation of the set of all permutations of X that are compatible with S.

As new sets are added to S, the PQ tree can be updated in linear time.

Was used in DR13, didn't target reconstruction.

### PQ trees

$$X = \{a, b, c, d, e\}$$



= any permutation of {a, b, c}.



= 'abc' or 'cba'.



= 'abc' or 'cba', with 'd' and 'e' permuted in any way on either side.

i.e. 'abcde', 'abced', 'dabce', 'eabcd', 'deabc', 'edabc', 'cbade' etc.

#### Database order reconstruction



LMP18 (aka Kenny's talk) reinterpreted: you fully recover **order** information with O(N log N) queries.

Density not required.

Density was only to convert from order to values.

## Approximate order reconstruction



No information



Approximate reconstruction



**Full reconstruction** 

Approximate (order) reconstruction = full order reconstruction, except for values that are very close (less than  $\delta N$  apart).

## Approximate order reconstruction



## Converting from order to values

Known (approximation of) database value distribution → frequency matching.

Known (approximation of) query distribution, see previous attack.

Some known records → order allows to compare records to known values.

. . .

## Some history

OPE/ORE were developed to allow range queries. Leak order by design. Led to devastating **leakage-abuse attacks** GSB+17, DDC16.

Second-generation schemes eschew ORE to enable range queries without leaking order.

We just saw access pattern leaks order... So if you leak access pattern it's back to square one!

(Difference: OPE/ORE attacks only required a snapshot adversary, now we need access pattern leakage.)

## Features of the approximate order attack

#### It is **fully** general:

- Does not rely on i.i.d. queries.
- No density assumption.
- No dependency on N (for approximate order).

#### Also...

- -Only O(1/ $\delta$  log 1/ $\delta$ ) queries!
- Setting  $\delta$ =1/N recovers LMP18. Without requiring density.
- Not "all or nothing": precision improves with #queries.

#### Conclusion

Introduced approximate reconstruction.

Leads to very powerful attacks. Approximate order attack is very efficient with truly minimal assumption. Clarifies the setting.

Two techniques prove very potent in this setting:

- VC theory.
- -PQ trees.

VC theory extends to other query classes (under investigation).