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Situation overview

General message from previous talk:

Don’t use range queries with access pattern leakage!

Closer look:

> KKNO16: full reconstruction...
- Assuming I.i.d. uniform queries.
- O(N4log N) queries.

> Kenny'’s talk: full reconstruction...
- Assuming density.

- O(Nlog N) queries.



Approximate reconstruction

New goal: d6-approximate reconstruction.

Recover the values of records within ON.

LMP18 approximate attack but: only improvement in log
factor, complicated analysis, requires density...

— We would like to get best possible reconstruction with

given queries. And handle large N’s. And get rid of the
density assumption, and i.i.d. queries.

Two new tools:

> VC theory (machine learning).

> PQ-trees.



1. VC theory.

2. PQ trees.
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Set X with probability distribution D.
Let C c X. Call it a concept.

_ #points in C

Pr(C) ~
r(C) #points total

Sample complexity:
to measure Pr(C) within 6,
you need O(1/62) samples.




VC theory

Vapnik and Chervonenkis, 1971.
Now you have a set € of concepts.

The set of samples drawn
from X is an e-sample Iff

forall C in 6:
Pr(C) #po.mts in C <
#points total

V &C 1971:
If € has VC dimension d,

then the number of points
to get an e-sample whp is
O(d/e? log d/e).




1 N
X I | | I I
—

% = ranges I :
A set S of points in X is shattered by € iff every subset of
S can be written in the form CnS for some C in 6.

shattered
X I I

not shattered
X I | I

The VC dimension of € is the largest cardinality d such
that every subset of X of size d is shattered.

e.g. for ranges the VC dimension is 2.



Two main results: e-samples and e-nets

The set of samples drawn from X is an e-sample iff for all C in €

#points in C
#points total

Pr(C)

— |f d is the VC dim, number of points to get an e-sample whp is:

O(i2 log g)

€ €

The set of samples drawn from X is an g-net iff for all C in €
Pr(C) > ¢ = C contains a sample
— If d is the VC dim, number of points to get an e-net whp is:

o(g log ﬂ)

€ €



Example: learning range queries

Suppose we know the value of some records in the database
(with uniformly random values).

+ we have access pattern leakage.

1 N
I I I I I
—

We want to approximately learn queries in the sense: for every
query we want to know its endpoints within eN.

Q: How many known records do we need?
A: This Is an g-net.

X = values [1,N] € = ranges

so we need O(1/g log 1/€) known samples.



Example continued

1 N
I I I I I
—

So this was an e-net = we need O(1/g log 1/€) known samples.

Q: How about if we add complements? Multi-dimensional
ranges? etc.

A: Actually we don’t care. All these things have finite VC dim.

In fact this is actually PAC learning.
PAC = Probably Approximately Correct.






Basic KKNO16 attack variant

| |
f t

Less probable More probable
Assume uniformly distributed range queries.

ldea: count #times record Is hit
— estimate probability it’s hit
— deduce its value

Fact: to correctly deduce all values within 6N you need to
correctly estimate all probabilities within € = &2,



Basic KKNO16 attack variant

1 N
| |

...SO we need to estimate the probability of each value being
hit, all within € = 62...

This Is an e-sample.
X = ranges € ={{ranges > x}: x € [1,N]}

so we need O(1/¢2 log 1/€) known samples.



Approximate KKNO attack

With uniformly distributed queries:

All values are in the database are recovered within 6N after
observing the access pattern of O(1/64 log 1/0) queries.

Remarks:

-KKNO16: N4 log N = Kenny'’s talk: N log N with density
— this: O(1) for approximate reconstruction within 5%...

- Setting 6 = 1/N recovers KKNQO'’s attack.

- Lower bound of Q)(1/64).
- Direct application of VC theory.



Extensions of this approach

In fact O(1/62 log 1/0) queries suffice under very reasonable
assumptions.

e.g. there exists record in DB with value within [N/8,3N/8].

Other query types:
- Prefix queries on strings, wildcard queries, etc.
- “Meta-theorem?”: all these have finite VC dim...
- This is WIP.

One limitation:
-VC theory gives bad constants.

It says something of general behavior. Need experiments.



Limitation of previous result

So far we are assuming uniformly distributed queries.

This is not just an assumption about adversarial knowledge.
This i1s an assumption that queries are independent
identically distributed (i.i.d.).

This Is quite unrealistic.

What can you learn without that hypothesis?
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PQ trees

X: linearly ordered set. Order is unknown.

You are given a set S containing some some intervals in X.

A PQ tree is a compact (linear in [X|) representation of the set
of all permutations of X that are compatible with S.

As new sets are added to S, the PQ tree can be updated in
linear time.

Was used in DR13, didn’t target reconstruction.



X={a, b, c,d, e}

/q:’k = any permutation of {a, b, c}.

a b c

)Ek = ‘abc’ or ‘cba’.

a b c

Q = ‘abc’ or ‘cba’, with ‘d’ and ‘e’
3 permuted in any way on either side.
e
n l.e. ‘abcde’, ‘abced’, ‘dabce’, ‘eabcd’,
a b o ‘deabc’, ‘edabc’, ‘cbade’ etc.



Database order reconstruction

No information Full reconstruction

LMP18 (aka Kenny’s talk) reinterpreted: you fully recover
order information with O(N log N) queries.

Density not required.

Density was only to convert from order to values.



Approximate order reconstruction

No information Full reconstruction

NN N\

X 1 7

Interval < 6N
Approximate
reconstruction

Approximate (order) reconstruction = full order
reconstruction, except for values that are very close (less
than 6N apart).



Approximate order reconstruction

A N log N queries A
—_—n

No information Full reconstruction

1/6 log 1/6 qum /

The proof uses an
e-net...

NN N\

X 1 7

Interval < 6N

Approximate
reconstruction



Converting from order to values

Known (approximation of) database value distribution —
frequency matching.

Known (approximation of) query distribution, see previous
attack.

Some known records — order allows to compare records to
known values.



Some history

OPE/ORE were developed to allow range queries. Leak order
by design. Led to devastating leakage-abuse attacks
GSB+17, DDC16.

Second-generation schemes eschew ORE to enable range
queries without leaking order.

We just saw access pattern leaks order... So if you leak
access pattern it's back to square one!

(Difference: OPE/ORE attacks only required a snapshot
adversary, now we need access pattern leakage.)



Features of the approximate order attack

It is fully general:
- Does not rely on I.i.d. queries.
- No density assumption.
- No dependency on N (for approximate order).
Also...
-Only O(1/6 log 1/8) queries!
- Setting 6=1/N recovers LMP18. Without requiring density.

- Not “all or nothing”: precision improves with #queries.



Conclusion

Introduced approximate reconstruction.

Leads to very powerful attacks. Approximate order attack is
very efficient with truly minimal assumption. Clarifies the

setting.

Two techniques prove very potent in this setting:

-VC theory.
- PQ trees.

VC theory extends to other query classes (under
investigation).



