
Match Box Meet-in-the-Middle Attack against
KATAN

Thomas Fuhr and Brice Minaud

ANSSI, 51, boulevard de la Tour-Maubourg, 75700 Paris 07 SP, France
thomas.fuhr@ssi.gouv.fr,brice.minaud@gmail.com

Abstract. Recent years have seen considerable interest in lightweight
cryptography. One particular consequence is a renewed study of meet-in-
the-middle attacks, which aim to exploit the relatively simple key sched-
ules often encountered in lightweight ciphers. In this paper we propose
a new technique to extend the number of rounds covered by a meet-in-
the-middle attack, called a match box. Furthermore, we demonstrate the
use of this technique on the lightweight cipher KATAN, and obtain the
best attack to date on all versions of KATAN. Specifically, we are able to
attack 153 of the 254 rounds of KATAN32 with low data requirements,
improving on the previous best attack on 115 rounds which requires the
entire codebook.

Key words: Cryptanalysis, Meet-in-the-Middle, Biclique, Match Box,
KATAN

1 Introduction

Over the past few years, ultra-lightweight embedded systems such as RFID tags
and sensor nodes have become increasingly common. Many such devices re-
quire cryptography, typically for authentication purposes. However, traditional
ciphers such as AES were not primarily designed for use in this context. Highly
constrained devices impose a very small hardware footprint; on the other hand,
they typically do not require a security level as high as that offered by AES.

To cater for this need, a number of lightweight ciphers have been developed,
such as PRESENT [5], KATAN [7], LED [9], or Simon [2]. These ciphers aim
to offer a trade-off between security and the constraints of embedded systems.
This is often achieved by innovative designs that look to push the boundaries
of traditional ciphers. The security of these new designs needs to be carefully
assessed; in this process, new cryptanalytic techniques have emerged.

In particular, there has been a resurgence in the study of meet-in-the-middle
attacks in the context of block ciphers [10, 6]. This type of attack requires a fairly
simple key schedule, and is rarely applicable to traditional ciphers. However,
many lightweight ciphers rely on simple round functions and key schedules, which
are compensated by a high number of rounds. This makes them good targets for
meet-in-the-middle attacks.

Our contribution.
In this paper, we propose a new way to extend meet-in-the-middle attacks,

which we call a match box. This technique may be seen as a form of sieve-in-
the-middle [8] or three-subset meet-int-the-middle attack [6], in that it extends
the rounds covered in the middle section of the attack. It does so by relying on
a large precomputed lookup table with a special structure. As such, it is also a
form of time/memory trade-off.

We demonstrate this technique on the lightweight block cipher KATAN. As
a result, we improve on previous results on all three versions of KATAN, both in
terms of number of rounds as well as data requirements. Of independent interest
is our construction of bicliques on KATAN, which takes full advantage of the
linearity of the key schedule, and improves on previous attacks with negligible
memory requirements

Related work.
Previous results on KATAN include a conditional differential analysis by

Knellwolf, Meier and Naya-Plasencia [11] and a differential cryptanalysis of 115
rounds of KATAN32 by Albrecht and Leander [1]. In [10], Isobe and Shibutani
describe meet-in-the-middle attacks on reduced versions of all three variants of
KATAN. The attack that reaches the highest number of rounds on all three
versions is a multidimensional meet-in-the-middle attack by Zhu and Gong [15].
However, this attack may be regarded as an optimized exhaustive search, as it
involves performing a partial encryption under every possible value of the key.

Table 1 gives a summary of these results, including our own.

2 Meet-in-the-Middle attacks

2.1 Meet-in-the-Middle Framework

A meet-in-the-middle attack assumes that a few bits v of internal state may be
computed from a plaintext by using a portion K1 of the key; and that these same
bits v may also be computed from the corresponding ciphertext with a portion
K2 of the key. The attack uses one plaintext/ciphertext pair as follows:

PT CTr1 r2

v

K1 K2

Fig. 1. Meet-in-the-middle attack.

– For each partial key k∩ ∈ K∩ = K1 ∩K2
1:

1 This notation assumes, for the sake of simplicity, that the key schedule is linear
(cf. §4.2). In general, the requirement is that once K∩ is guessed, the remaining
information in K1, and the remaining information in K2 should be independent.

Table 1. Summary of results.

Model Data Memory Time Rounds Reference

KATAN32

CP 222 - 222 78 [11]

KP 138 275 277 110 [10]

CP 232 - 279 115 [1]

KP 3 279.58 279.30 175 [15]

KP 4 25 277.5 121 §4.3

CP 27 25 277.5 131 §4.5

CP 25 276 278.5 153 §4.7

KATAN48

CP 234 - 234 70 [11]

KP 128 278 278 100 [10]

KP 2 279.00 279.45 130 [15]

KP 4 25 277.5 110 §4.3

CP 26 25 277.5 114 §4.5

CP 25 276 278.5 129 §4.7

KATAN64

CP 235 - 235 68 [11]

KP 116 277.5 277.5 94 [10]

KP 2 279.00 279.45 112 [15]

KP 4 25 277.5 102 §4.3

CP 27 25 277.5 107 §4.5

CP 25 274 278.5 119 §4.7

• For each partial key k1 ∈ K1 extending k∩, v is computed. For each
possible value of v, the k1’s leading to that value are stored in a table.

• For each partial key k2 ∈ K2, v is computed. The k1’s leading to this
same v are retrieved from the previous table. Each k2 merged with each
k1 leading to the same v provides a candidate master key.

The actual encryption key is necessarily among candidate keys. Indeed, for
the actual key, encryption from the plaintext and decryption from the ciphertext
are mirrors of each other, and agree on the intermediate value v. If we denote by
|v| the size of v, candidate keys form a proportion 2−|v| of the total key space.

In order to compute the actual encryption key, it remains to test candidate
keys against enough plaintext/ciphertext pairs to ensure only one key remains.
Each plaintext/ciphertext pair divides the number of candidates keys by 2|B|,
where |B| denotes the block size. Thus, in order to have only one key left,
d|K|/|B|e pairs are necessary on average, where |K| denotes the key size.

In the end, the attack complexity in number of encryptions is:

2|K∩| ·
(

2|K1−K∩| · r1
r

+ 2|K2−K∩| · r2
r

)
+

d|K|/|B|e−1∑
i=0

2|K|−|v|−i|B| (1)

where r1 is the number of rounds in the encryption direction, r2 is the number
of rounds in the decryption direction, and r = r1 + r2.

Simultaneous matching. As we have seen, overall, meet-in-the-middle at-
tacks proceed in two stages: a key filtering stage that produces key candidates,
followed by a verification stage that tests the key candidates against a few plain-
text/ciphertext pairs. This division in two stages is reflected in the complexity
of the attack. The complexity of the first stage is determined mostly by the sizes
of K1 and K2; the complexity of the second stage depends only on the size of v
(for a fixed cipher).

Directly tweaking the size of v is one way to try and evenly spread the
load between the two stages. However, increasing v will often disproportionately
impact the sizes of K1 and K2. Simultaneous matching provides a very efficient
alternate way of increasing the size of v. The idea is to use n plaintext/ciphertext
pairs instead of just one. For each guess of K1 and K2, we concatenate the v’s
produced by each pair in order to have a larger global v, and use that for
matching, as before.

In other words, what we are doing is perform a standard meet-in-the-middle
attack, but on a cipher formed by n parallel applications of the basic cipher.
This increases only linearly the complexity of the first stage, while exponentially
decreasing the complexity of the second stage.

Indirect matching. With the newfound interest in meet-in-the-middle at-
tack occasioned by lightweight ciphers, a number of techniques originally devel-
oped for the cryptanalysis of hash functions have been adapted to meet-in-the-
middle attacks on block ciphers. A short survey of these techniques has already
been presented in, for example, [14], and is out of the scope of this article. Still,
we briefly mention one of these techniques, namely indirect matching, as we will
use it later on KATAN. We also generalize this technique slightly.

In a regular meet-in-the-middle attack, some value v of the internal state is
computed from the left as e(k1) and from the right as d(k2), where e and d are
essentially a partial encryption and decryption. Keys are filtered by checking
e(k1) = d(k2). Now assume some key bit k in k1 only has a linear impact on the
value of e(k1), i.e. e(k1) = e′(k′1)⊕ k, where k′1 is k1 minus the knowledge of k.
Then if knowledge of k is included in K2, the equality in the middle e(k1) = d(k2)
may be rewritten as e′(k′1) = d(k2) ⊕ k = d′(k2). In this way, guessing k is
no longer necessary in the encryption direction, and the associated complexity
decreases accordingly.

Here, we assumed that k is included in K2, i.e. k is in K∩ since it is already
in K1. But we can get the same benefit even if k is in K1 −K∩: the only real
requirement is that it linearly impacts e(k1). To show this, the proof is a little
more elaborate than in the previous case. Assume that k is in K1 − K∩, and
write e(k1) = e′(k′1)⊕ k as before.

Up to now, k1 together with k2 was assumed to contain knowledge of the
entire key. We guessed k1 from the left, then k2 from the right and matched
compatible guesses by checking e(k1) = d(k2). Instead, we are now going to
guess k′1 from the left and k2 from the right, so the combination of the two does
not encompass the entire key (k is missing). Furthermore, all guesses of k′1 and

k2 are compatible. However, for each pair of guesses, we set k = e(k′1) ⊕ d(k2),
and the combination of k′1, k2 and k gives us one candidate master key.

Thus, the number of candidate master keys is unchanged. However, we need
not guess k from the left, and the complexity of guessing k1 is reduced accord-
ingly. Thus the benefit is exactly the same as in the case where k belonged to K∩.
Note that we remain compatible with simultaneous matching: if we use several
plaintext/cipherext pairs, they all must agree on k, which yields the usual filter
on the candidate master keys.

3 Match Box

We now introduce the match box technique. This technique fits within the gen-
eral sieve-in-the-middle framework introduced in [8], which we recall here.

3.1 Sieve-in-the-middle

Let us still denote by K∩ the information on the key common to K1 and K2;
furthermore, let K ′1 (resp. K ′2) be the proper part of K1 (resp. K2), i.e. the
part not already in K∩. In a standard meet-in-the-middle attack, a few bits of
internal state l are computed from the left by guessing k1 ∈ K1, then the same
bits r are computed from the right by guessing k2 ∈ K2. Valid key candidates
are determined by checking l = r.

However it would often be desirable to compute a few bits of information l
from the left and r from the right, and discriminate keys by checking R(l, r)
for some general relation R expressing that l and r are compatible. It arises
naturally if, say, l and r contain partial information about the internal state on
either side of an S-box. In that case,R(l, r) holds iff there exists an input/output
pair of the S-box such that the input extends l, and the output extends r.

K1 K2 K1 K2match ?

l r

l r

l r

l r

l r

l = 1

l = 0

r = 1

r = 0

B. ExhaustiveA. Standard

Fig. 2. Comparison of standard and exhaustive matching.

When applying this idea, the following problem arises. Once having guessed
k∩ ∈ K∩, the natural way to proceed would be to compute l and r for each
k′1 ∈ K ′1 and k′2 ∈ K ′2 respectively, and exhaustively test R(l, r) for every pair

(k′1, k
′
2). However, this would amount to a brute force search since K∩×K ′1×K ′2

is in fact the entire key. It should be noted that there is no completely general
solution to this problem, since R does need to be tested for every pair (l, r)
yielded by every (k′1, k

′
2).

In the sieve-in-the-middle paper, this issue is solved by using merging algo-
rithms originally introduced in [13]. These algorithms tend to assume, roughly,
that the size of l is less than the size of K ′1 (divided by a sieving factor). We
refer the reader to [8] for a complete explanation of merging techniques. What
we propose is a different way of matching l and r while avoiding exhaustive
search, which we call a match box.

3.2 Match Box

As we have mentioned in the previous section, the aim of the match box technique
is to find compatible partial keys k1 and k2, such that the corresponding l and
r satisfy a relation R. The idea is to move the computation of R outside of
the loop on K∩. In order to do this, we anticipate and precompute all possible
matchings between l and r. We start with an example.

S

rl′

⊕

⊕K

K1 K2

Fig. 3. A typical situation where a match box can apply.

Consider the situation depicted on Fig. 3. Here, l contains some partial in-
formation l′ about the internal state entering an S-box. At the output of this
S-box, some round key is added, and r contains the entire state after the key
addition. Now assume that the round key may be decomposed as a sum of some
f1(k′1) depending on k′1 ∈ K ′1, and some f2(k2) depending on k2 ∈ K2. Note that
this is automatically true if the key schedule is linear. Since K2 is known when
computing from the right, the component f2(k2) may be directly added into r.

So in this situation, l = (l′, k′1) and r are compatible iff S−1(r ⊕ f1(k′1))
equals l′ (wherever l′ is defined). If r is larger than k′2, since k′1 is included in l,
l is also larger than k′1, and a merging technique in the style of [8] cannot apply.
However, a match box is possible.

In general, assume that l = (l′, k′1) contains the partial key k′1 ∈ K ′1 plus
some extra bits of information l′, and r is as before. In order to anticipate all
possible computations in the middle, we consider the function f : k′1 7→ l′ as a
whole. For each value of this function, and each value of r, we can precompute

a list of the k′1’s leading to l′’s such that l′, k′1, and r are compatible. Formally,
let us denote by L′ the set of values of l′, and by R the set of values of r. Then
we precompute the following table, which we call a “match box”:

M : L′K
′
1 → K ′R1
f 7→

(
r 7→ {k′1 : R(l, r)}

)
with l = (k′1, f(k′1))

This table takes as input a function f : K ′1 → L′, and produces as output
the function that to each r associates all compatible k′1’s. Once this table has
been precomputed, the attack proceeds as follows:

– For each k∩ ∈ K∩:
• For each k′1 ∈ K ′1, l′ is computed. This yields a function f : K ′1 → L′,

from which we obtain M(f).
• For each k′2 ∈ K ′2, r is computed. Candidate master keys are those

corresponding to the pairs (k′1, k
′
2) for each k′1 in M(f)(r).

The main limitation of this technique is the size of the table, which is ap-
proximated by:

2|l
′||K′

1|+|r|+|K′
1|

In particular, the size of K ′1 (in terms of number of bits) must be exponentially
small compared to the size of K. This is not surprising, since we are moving all
computations of R outside of the loop on K∩: this constraint expresses the fact
that there must be less possible situations in the middle than the size of the
loop, otherwise we gain nothing.

3.3 Compressing R

Looking more closely at the example in the previous section, the natural way to
write R is in the form: 

l′1 = f1(k′1, r)
l′2 = f2(k′1, r)
. . .
l′|l′| = f|l′|(k

′
1, r)

(2)

where the fi’s are boolean functions.
In this situation, each fi is a boolean function of k′1, so it may be written as a

polynomial in the bits of k′1. As such, each fi can be fully expressed by no more
than 2|k

′
1| coefficients (fni)

n<2|k
′
1| . This is beneficial as long as |l′| · 2|k′

1| < |r|,
i.e. there are less fni ’s than bits of r. In this manner, r is effectively shortened

to |l′| · 2|k′
1|.

The only limit is the size and complexity necessary to build the table con-
verting r into the fni ’s. Note that in general, r is more or less a set of internal
state bits, with potentially some partial keys added in; so computing r and the
fi’s is akin to a partial encryption. In that case, for a given r, the fni ’s can
be indirectly computed by evaluating the fi’s for all values of k′1. In this way,
for each r and each i, the value of the fni ’s can be computed in at most 2|k

′
1|

encryption equivalents.

4 Application to KATAN

KATAN is an ultra-lightweight block cipher presented by Christophe de Cannière,
Orr Dunkelman and Miroslav Knežević at CHES 2009 [7]. Its design is inspired
by the stream cipher Trivium, and relies on two nonlinear feedback registers.
This is rather unique for a block cipher, and makes the cryptanalysis of KATAN
especially interesting, since it indirectly evaluates the strength of this type of
design.

In [7] the authors describe two families of block ciphers, KATAN and KTAN-
TAN, which only differ in their key schedule. In KATAN, the key is stored in a
register, while in KTANTAN, it is hardcoded into the circuit. The trade-off is
that while the key cannot be modified, the circuit area is significantly reduced
by avoiding the need for a register dedicated to the storage of the key. However,
KTANTAN been broken [6, 14], mostly due to weaknesses in its key schedule.
Hereafter we focus solely on KATAN.

4.1 Description of KATAN

KATAN is a family of three block ciphers with block sizes 32, 48, and 64 bits,
denoted by KATAN32, KATAN48, and KATAN64 respectively. In all cases the
key size is 80 bits, and the total number of rounds is 254. We begin by giving a
brief description of KATAN32. KATAN48 and KATAN64 are very similar, as we
shall see. We refer the reader to [7] for more details about the design of KATAN.

Key schedule. The master key is loaded into a 80-bit linear feedback register
(rk0, . . . , rk79), and new round keys are generated by the linear feedback relation:

rki+80 = rki ⊕ rki+19 ⊕ rki+30 ⊕ rki+67, 0 ≤ i ≤ 428 (3)

Round function. The 32-bit plaintext is loaded into two registers A and B
of sizes 13 and 19 bits. The round function depicted on Fig. 4 is then applied
254 times, where cn is a round constant defined by (c0, . . . , c7) = (1, . . . , 1, 0)
and ci+8 = ci ⊕ ci+1 ⊕ ci+3 ⊕ ci+5.

Formally, KATAN32 encryption may be defined as follows. By an (resp. bn),
we denote the bit entering register A (resp. B) at round n. Hence, after round
n, the content of register A is (an−12, . . . , an), and the content of register B
is (bn−18, . . . , bn). By convention, the plaintext is (a−13, . . . , a−1, b−19, . . . , b−1).
Then encryption is recursively defined by:{

an = bn−19 ⊕ bn−8 ⊕ bn−11 · bn−13 ⊕ bn−4 · bn−9 ⊕ rk2n+1

bn = an−13 ⊕ an−8 ⊕ cn · an−4 ⊕ an−6 · an−9 ⊕ rk2n (4)

and the ciphertext is (a241, . . . , a253, b235, . . . , b253).
KATAN48. KATAN48 uses two registers of sizes 19 and 29 bits. The reg-

isters are updated twice per round by the following feedback relation, using the
same round keys:{

an = bn−29 ⊕ bn−20 ⊕ bn−14 · bn−22 ⊕ bn−7 · bn−16 ⊕ rk2·bn2 c+1

bn = an−19 ⊕ an−13 ⊕ cn · an−7 ⊕ an−8 · an−16 ⊕ rk2·bn2 c

+rk2n

+ + + +

× × cn

+

rk2n+1

+ + + +

× ×

A

B 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19

Fig. 4. Round function of KATAN32.

After 254 rounds, the ciphertext is (a489, . . . , a507, b479, . . . , b507).
KATAN64. KATAN64 uses two registers of sizes 25 and 39 bits. The regis-

ters are updated three times per round by the following feedback relation, using
the same round keys:{

an = bn−39 ⊕ bn−26 ⊕ bn−22 · bn−34 ⊕ bn−10 · bn−15 ⊕ rk2·bn3 c+1

bn = an−25 ⊕ an−16 ⊕ cn · an−10 ⊕ an−12 · an−21 ⊕ rk2·bn3 c

After 254 rounds, the ciphertext is (a737, . . . , a761, b723, . . . , b761).

4.2 Linear Key Partition

We now introduce a few notions that will prove useful to mount a meet-in-the-
middle attack against KATAN. Let RK1 (resp. RK2) denote the set of round
keys necessary to compute some fixed bits of internal state at an intermediate
round from the left (resp. from the right). The first step of a meet-in-the-middle
attack is to guess the bits of information on the master key common to RK1

and RK2 (see §2.1). Hence it is necessary to define an intersection of RK1 and
RK2 in terms of bits of information on the master key.

In general, this intersection may be impossible to define. In [10], a generic
solution is proposed: all round keys are regarded as independent, i.e. the master
key is redefined as the union of all round keys. This yields good results on various
lightweight ciphers, including KATAN. However, it has a significant impact on
the attack complexity. This can be avoided when the key schedule is linear:
indeed, in that case, the intersection of RK1 and RK2 can be cleanly defined,
as we now show for KATAN.

Let us regard a master key of KATAN as a vector in E = (Z/2Z)80. The
value of the master key corresponds to the coordinates of this vector along the
canonical basis. Each round key is a linear combination of bits of the master key;

that is, it is the image of the master key through some map (xi) 7→
∑
λixi, i.e.

a linear functional on E. Let us denote by L(E) the space of linear functionals
on E.

From this standpoint, the information carried by RK1 (resp. RK2) is the
value of the master key on the subspace EK1

(resp. EK2
) of L(E) generated by

the round keys of RK1 (resp. RK2). Let EK∩ = EK1
∩ EK2

. Then the bits of
information on the master key common to RK1 and RK2 are exactly the value
of the key on the functionals of EK∩ .

Let us choose an arbitrary basis B∩ of EK∩ , and extend it to a basis B1 of
EK1

, and B2 of EK2
. Then in concrete terms a partial key in K∩ is a mapping

B∩ → {0, 1}; likewise, K1 and K2 are regarded as the set of mappings B1 →
{0, 1} and B2 → {0, 1} respectively. We are now able to apply the meet-in-the-
middle attack framework exactly as it was presented in section 2.1.

In the remainder, it will always be assumed that B = B1 ∪ B2 is a basis
for the whole space L(E). In particular, knowledge of the value of a key on B
amounts to knowing the entire key; it will be convenient at times to identify the
key space with {0, 1}B , which we will denote by K, by analogy with K1 and K2.

4.3 Key dependencies

A first step towards building a meet-in-the-middle attack is to choose a value v
extracted from an internal state at an intermediate round to serve as a meeting
point. In order to make this choice, it is necessary to evaluate which key bits are
necessary to compute v from the plaintext, and from the ciphertext (presumably
for some reduced version of the cipher). We have carried out this computation
using an algorithm similar to Algorithm 1 in [10].

The principle of such an algorithm is that once some round key enters the
state, the impacted bit is marked as depending on that key. Then this depen-
dency is propagated along the cipher each time this internal state bit affects
other internal state bits. In our case, because we will use indirect matching, we
keep track separately of key bits whose impact is linear, and those whose impact
is nonlinear.

By nature, such an analysis follows a worst case scenario, i.e. it assumes any
key bit than could possibly affect an internal state bit, does. In reality, fortuitous
simplifications may occur. However, in the case of KATAN, our algorithm was
precise enough that experimental tests observed the same dependencies between
internal state bits and key bits. Table 2 shows our results for KATAN32.

Basic meet-in-the-middle attack against KATAN.
With what we have so far, we can mount a first meet-in-the-middle attack

against KATAN. While this is not the best attack we will propose, it is still worth
mentioning because it has a simple description, requires only known plaintexts
and minimal data requirements, and improves on previously published attacks.

For KATAN32, if we aim at a complexity around 277, we can attack 60+61 =
121 rounds (cf. Table 2). The meeting point is b50 (which is indeed at position
9 of register B after 60 rounds). The dimensions of K1, K2, K∩ are 75, 75, 70
respectively (after ignoring linear contributions thanks to indirect matching).

Table 2. Key dependency of the bit at position 9 (middle) of register B.

KATAN32 Encryption (starting from round 0):

Number of rounds 58 59 60 61 62 63 64 65 66

Dimension of nonlinear 70 71 75 77 78 80 78 79 80
key space linear 2 2 2 2 2 0 1 1 0

KATAN32 Decryption (starting from round 254):

Number of rounds 57 58 59 60 61 62 63 64 65

Dimension of nonlinear 68 70 72 73 75 76 78 79 80
key space linear 4 3 3 2 1 1 0 0 0

We use 4 plaintext/ciphertext pairs for simultaneous matching to ensure that
the key verification stage is in 276. Using (1), and taking into account that we
use 4 plaintext/ciphertext pairs, the overall complexity is:

4 ·
(

275 · 60

121
+ 275 · 61

121

)
+

2∑
i=0

276−32i ≈ 277.5

In a similar way, we can attack 56+54 = 110 rounds of KATAN48, and 51+51 =
102 rounds of KATAN64, both of them with 4 plaintext/ciphertext pairs and
complexity 277.5.

4.4 Bicliques

The number of rounds covered by a meet-in-the-middle attack may be extended
by a biclique. This technique was also originally developed for the cryptanalysis
of hash functions [4], and first applied to block ciphers in [3] to produce an
accelerated key search against AES. Such a search requires all possible keys to
be tried, but each try costs significantly less than a full encryption.

However, bicliques may also be used in the context of a traditional attack,
where not all keys are tried. This is the model known as “long bicliques” in
[3], and corresponds to [4] for hash functions. We will use this approach against
KATAN, and so we recall it here briefly.

Definition 1. A biclique is a triple ((Ai)i≤n, (Bi)i≤n, (Ki,j)i,j≤n), where the
Ai’s are internal states at some round a, the Bi’s are internal states at some
round b, and the (Ki,j)’s are keys satisfying the following property:

∀i, j ≤ n, Enca→b
Ki,j

(Ai) = Bj

where Enca→b
Ki,j

denotes encryption from round a to round b with key Ki,j.

For simplicity, assume a = 0, and we have a biclique covering rounds a
to b as in the above definition. In order to construct an attack up to round
r, the remaining rounds from b to r must be covered by a meet-in-the-middle

A0 C0

Ai Ci

B0 K∗,0 K0,∗

Bj K∗,j

Ki,∗
Ki,j v

match

Encryption DecryptionBiclique

Fig. 5. A meet-in-the-middle attack and compatible biclique.

attack. Furthermore, the biclique and the meet-in-the-middle segments must be
compatible in the following sense. Let Ci be the ciphertext corresponding to Ai

after r encryption rounds, et v be the internal value used as a meeting point for
the meet-in-the-middle attack. Let Ki,∗ denote the partial information on the
key expressing the fact that it is one of the Ki,j ’s, for fixed i and variable j. Let
K∗,j be defined in the same way.

Then the biclique and the meet-in-the-middle segments of the attack are
compatible iff the middle value v can be computed starting from Bj with only
knowledge of K∗,j , and from Ci with only knowledge of Ki,∗. The situation is
illustrated on Fig. 5. This requirement is quite restrictive. However, it becomes
easier to enforce if the key schedule is linear, as we shall see with KATAN.

Attack process.
– For each partial key k∩ ∈ K∩ =

⋃
Ki,∗ ∩K∗,j :

• For each j ≤ n, v is computed starting from Bj using K∗,j . For each
possible value of v, the j’s leading to that value are stored in a table.

• For each i ≤ n, v is computed starting from Ci using Ki,∗. The j’s
leading to this same v are retrieved from the previous table. For each
pair (i, j) leading to the same v, Ki,j is a candidate master key.

If the actual encryption key is among the Ki,j ’s, then it is necessarily a
candidate. Indeed, encryption by Ki,j will follow the path depicted on Fig. 5. As
with a standard meet-in-the-middle attack, it remains to test candidate keys on
a few additional plaintext/ciphertext pairs to single out the right key. This step
is unchanged. Finally, to ensure that the actual key is among the Ki,j ’s, the key
space must be covered by bicliques, and the previous attack is repeated for each
biclique.

Construction of a biclique varies depending on the cipher, but in general the
construction cost is negligible with respect to the global complexity. Note that
it is implicitly assumed that the construction of a biclique on a set of keys Ki,j

does not imply that each key be computed, i.e. there is a structure. The overall
complexity is then the same as that of the meet-in-the middle segment if it were
simply applied to a fixed plaintext/ciphertext pair.

4.5 Bicliques on KATAN

We have presented bicliques in the previous section. It remains to show how to
construct bicliques on KATAN. Once again, it all comes down to the linearity
of the key schedule, and the weak non-linearity of the cipher reduced to a few
rounds. In fact, these two properties make it possible to adjoin a biclique to
any pre-existing, arbitrary meet-in-the-middle attack, in a compatible manner.
Furthermore, a single biclique will suffice to cover the entire key space.

Assume we have a pre-existing meet-in-the-middle attack, with the notation
of the previous sections. Recall that K∩ (resp. K1, K2) are regarded as maps
B∩ → {0, 1} (resp. B1 → {0, 1}, B2 → {0, 1}). Let us denote by K ′1 (resp.
K ′2) the proper part of K1 (resp. K2) with respect to K∩, i.e. its restriction to
B1 −B∩ (resp. B1 −B∩).

Let us denote by Encka→bM and Deckb→aM the encryption and decryption of
a message M between rounds a and b with key k. We extend this notation to
the case where k is a partial key (i.e. an element of K1, K ′1, K2, K ′2, or K∩) by
completing the key by 0 on the rest of B. In addition, for k ∈ K, let us write
k1 ∈ K1 for its restriction to B1, and define in a similar way k′1, k2, and k′2.
Finally, let k(i) denote the value of the i-th round key generated by k ; again, if
k is only partially defined, it is completed by 0 on the rest of the basis B.

Definition 2. Let :

Bicn(K1,K2) = ((Ak2 : k2 ∈ K2), (Bk1 : k1 ∈ K1),K ′2 ⊕K1)

With : Ak2 = Dec
k′
2

n→0(0)

Bk1
= Enck1

0→n(0)

where 0 is the null block. Observe that Ak2
is decrypted by the projection k′2.

Proposition 1. For each version of KATAN, there exists n > 0 such that for
any K1, K2, Bicn(K1,K2) is a biclique. That is, for k ∈ K, with k1 and k2 its
projections on K1 and K2:

Enck0→n(Ak2
) = Bk1

(5)

Proof. The proof is essentially the same for all three versions of KATAN. For
the sake of simplicity, we only present the proof for KATAN32. It will be con-
venient to designate bits in each register by their position, in the order depicted
on Fig. 4.

We claim that the proposition holds for n = 10. The core of the proof lies in
the following property:

∀i ≤ 10, Enck0→i(Ak2
) = Enck1

0→i(0)⊕Dec
k′
2

10→i(0) (6)

For i = 10, this equation becomes:

Enck0→10(Ak2) = Enck1
0→10(0) = Bk1

which is precisely what we want to prove. So (6) implies the proposition. We are
going to prove (6) by recursion on 0 ≤ i ≤ 10.

For i = 0, (6) yields the definition of Ak2
, so it holds. Assume that it holds

for some round i < 10. When we step forward one encryption round, since we are
dealing with shift registers, the equality remains true everywhere, except possibly
on the two new bits entering the registers (at positions 0 and 19 on Fig. 4). Let
us show for instance that the equality remains true for the bit entering register
B (position 0). Let us denote by f the feedback function from register A into
register B.

Then for the bit entering register B, (6) at round i+ 1 means:

f
(
Enck0→i(Ak2

)
)
⊕ k(i) = f

(
Enck1

0→i(0)
)
⊕ k1(i)⊕ f

(
Dec

k′
2

10→i(0)
)
⊕ k′2(i) (7)

where k(i) denotes the value of the i-th round key generated by key k. Since
k = k1 ⊕ k′2, using the recursion hypothesis, we get :

f
(
Enck1

0→i(0)⊕Dec
k′
2

10→i(0)
)

= f
(
Enck1

0→i(0)
)
⊕ f

(
Dec

k′
2

10→i(0)
)

(8)

Since f is nonlinear, this is not automatically true. However, the only non-
linear interaction in f is a multiplication of bits 24 and 27. Now observe that

Enck1
0→i(0) is 0 on bits 19 + i, . . . , 31, and Dec

k′
2

10→i(0) is 0 on bits 19, . . . , 21 + i.

Hence for n ≤ 5, Enck1
0→i(0) is 0 on bits 24 and 27, and for n ≥ 6, Dec

k′
2

10→i(0) is
0 on bits 24 et 27.

Assume for instance we are in the first case. Then in (8), bits 24 and 27 are

equal for Enck1
0→i(0) ⊕ Dec

k′
2

10→i(0) and Dec
k′
2

10→i(0), and null for the last term,
thus the only nonlinear component of f has the same contribution on each side
of the equation. On the rest f is linear, so we are done.�

In essence, there is only one multiplication on register A of KATAN32, be-
tween bits 24 and 27. By restricting ourselves to 13 − (27 − 24) = 10 rounds,
where 13 is the length of register A, we ensure that there is no nonlinear interac-
tion between the bits of Bk1 dependent on k1, and the bits of Ak′

2
dependent on

k′2. With register B the same computation yields 19−max(12− 10, 8− 3) = 14
rounds. That is why we can build a biclique of length 10 on KATAN32. The
same reasoning shows that we can build bicliques of length 5 on KATAN48, and
5 again on KATAN64.

Building several bicliques.
Later on, we will want to use simultaneous matching (cf. §2.1). For this

purpose, we need several distinct bicliques, and the previous proposition only
gives us one. Fortunately, it is possible to build new distinct bicliques on the same
model as that of Proposition 1, by adding parameters to Definition 2. There are
several ways to proceed. In particular, it is possible to either modify the bits of
Ak2 that do not actually depend on k2, or those that do. We only describe the
second option, as it is enough for our purpose.

Pick any arbitrary key kP as parameter. In fact, only the first ten pairs
of round keys derived from kP will have an impact, so we have 20 degrees of

freedom. Then define Ak2
and Bk1

by:

Ak2 = Dec
k′
2⊕kP

n→0 (0)

Bk1 = Enck1⊕kP
0→n (0)

and replace the recursion equation (6) in the proof by:

∀i ≤ 10, Enck0→i(Ak2) = Enck1⊕kP
0→i (0)⊕Dec

k′
2⊕kP

10→i (0)

The proof is exactly the same, except in (7), the contribution of kP on the
right-hand side cancels itself out.

Biclique attack against KATAN.
In §4.3, we attacked 121 rounds of KATAN32. If we use four bicliques instead

of four plaintext/ciphertext pairs, we gain an additional 10 rounds, as explained
in the previous section. Meanwhile, the core of the attack remains the same,
except we meet on b60 starting from round 10, instead of b50 starting from
round 0. In particular, the complexity is unchanged. However we now require
chosen plaintexts. Because the dimension of K ′2 is 5, each biclique requires 25

chosen plaintexts, so the data requirements increase to 4 · 25 = 27. The attack
covers 131 rounds with complexity 277.5. In the same way, we can extend the
previous attacks on KATAN48 and KATAN64 respectively to 114 rounds with
26 CP, and 107 rounds with 27 CP, both with complexity 277.5.

4.6 Match Box

We now explain how the match box technique applies to KATAN32. Variants for
KATAN48 and KATAN64 will be very similar. Assume we are meeting in the
middle on b62 (this will be the case in the final attack). The idea is that we are
going to isolate round keys whose impact on the value of b62 when computing
from the right can be evaluated with knowledge of only a few bits of information.
We do not consider round keys whose impact is only linear however, since those
can be ignored thanks to indirect matching.

When decrypting from the right, the value of b62 is (cf. (4)):

b62 = a81 ⊕ b73 ⊕ b68 · b70 ⊕ b72 · b77 ⊕ rk163 (9)

= x0 ⊕ b68 · b70 with x0 = a81 ⊕ b73 ⊕ b72 · b77 ⊕ rk163
Let us further decompose b68 and b70 in the above formula as:

b68 = x1 ⊕ rk175, (x1 = a87 ⊕ b89 ⊕ b76 · b74 ⊕ b83 · b78)

b70 = x2 ⊕ rk179, (x2 = a89 ⊕ b91 ⊕ b78 · b76 ⊕ b85 · b80)

Since K2⊕K ′1 = K, each round key rkn may be written as rkn = rk2n⊕rk1
′

n ,
with rk2n ∈ K2 and rk1

′

n ∈ K ′1. We define r as:

r0 = x0

r1 = x1 ⊕ rk2175
r2 = x2 ⊕ rk2179

Putting everything together, l contains a0 = b62 computed from the left, as
well as k′1 ∈ K ′1; and r is (r0, r1, r2). The matching relation R(l, r) witnessing
the fact that computations from either side agree on b62 is:

R(l, r) : l0 = r0 ⊕ (r1 ⊕ k′1(rk1
′

175)) · (r2 ⊕ k′1(rk1
′

179))

Note that this is merely a rewriting of (9), where the contribution of round
keys 175 and 179 has been isolated, and then split in order to extract their K ′1
component.

What we have gained in this example is that round keys 175 and 179 no
longer need to be known when computing from the right. This decreases the
dimension of K2 by two, and thus spares a factor 22 when guessing its value.
Moreover this gain can be spent in order to extend the attack to one more round.
Indeed, we can now append one extra round at the end of the (reduced) cipher,
and simply add the two bits of round key for that round into K2. This increases
the dimension of K2 by two, back to its original value. Then the attack proceeds
as before. In short, every time we are able to decrease the dimension of K2 by
two by needing less round keys in order to compute r62, we can re-increase it in
order to extend the attack to one more round.

Thus, to extend the attack further, we need only isolate the contribution of
more round keys in (9), as we have done we round keys 175 and 179. The limit
is the size of r, which impacts the size of the match box table. For example,
the next step would be to expand b72 · b77 in x0, in the same manner we have
previously expanded b68 · b70 in b62. That is, we develop the expression of these
two bits according to (4), making round keys rk183 and rk193 appear:

b72 = x3 ⊕ rk183, (x3 = a91 ⊕ b93 ⊕ b78 · b80 ⊕ b82 · b87)

b77 = x4 ⊕ rk193, (x4 = a96 ⊕ b98 ⊕ b83 · b85 ⊕ b87 · b92)

We now define a new 5-bit r by:

r′0 = x0 ⊕ b72 · b77 = a81 ⊕ b73 ⊕ rk163
r1 = x1 ⊕ rk2175
r2 = x2 ⊕ rk2179
r3 = x3 ⊕ rk2183
r4 = x4 ⊕ rk2193

And the relation R(l, r) becomes :

l0 = r′0 ⊕
(
r1 ⊕ k′1(rk1

′

175)
)
·
(
r2 ⊕ k′1(rk1

′

179)
)
⊕
(
r3 ⊕ k′1(rk1

′

183)
)
·
(
r4 ⊕ k′1(rk1

′

193)
)

It so happens that rk175 and rk179 (as well as rk183 and rk193) only appear
in one place in the development of b62. Due to the diffusion of the cipher, later
round keys will appear in several places in the expansion of b62. As a result the
“cost” for each new round key in terms of the increase in the size of r will grow.
In order to choose which round keys to isolate, we have implemented a greedy

Table 3. Sizes of r sufficient to spare a certain number of round keys.

KATAN32 (starting from r62):

|r| 3 5 7 9 11 15 17 23 27 31 39 43 53 61 65 71 73

Round keys 2 5 7 9 10 12 13 16 18 20 23 24 28 30 32 34 35

KATAN48 (starting from r109):

|r| 5 9 17 21 25 27 35 43 55 63 73

Round keys 3 5 7 8 10 12 14 16 18 20 22

KATAN64 (starting from r153):

|r| 7 11 15 17 25 33 45 65 71

Round keys 3 5 7 8 10 12 14 17 18

algorithm that essentially adds the cheapest round key (in terms of the growth
of r) at each step. Results are shown on Table 3.

Note that this table only indicates the number of round keys spared. One can
expect that every two round keys spared gains one round, but this is dependent
on the two round keys being linearly independent of the rest of K2. This in turn
depends on which round keys are in K2, i.e. which rounds are covered by K2.

4.7 Final attack

In this section, we describe the final version of the attack we propose against
KATAN32, combining all components from the previous sections. We aim at hav-
ing K1 and K2 both of dimension 77. Starting from round 10 after the biclique,
this allows us to cover 62 rounds in the forward direction. This corresponds to
meeting on b62 (i.e. position 9 of register B after 72 rounds). The number of
rounds covered in the backwards direction will depend on the match box. We
will ensure that in the end, the dimension of K ′1 is 3.

Compression table (cf. §3.3). We have |k′1| = 3, so 2|k
′
1| = 8, which makes

it worthwhile to use the compression technique. We want to build a compression
table C converting a r of size greater than 8 into 8 fn’s. Note that we meet on
a single bit, so there is only one line in (2), which is why we talk about fn’s
and not fni ’s. On the other hand, we will use simultaneous matching on three
bicliques, but always on the same bit, so the conversion from r into the fn’s is
the same for each pair: we only need one compression table.

As observed in §3.3, for each r, the fn’s can be computed with 2|k
′
1| partial

encryptions. Hence for KATAN32 we can choose r = 73 (see Table 3), yielding a
table of size 276 in complexity 276. This spares 35 round keys in the decryption
direction. In the end, we can begin the backwards computation from round 153.

Match box (cf. §4.6). We perform simultaneous matching on b62 for 3 dis-
tinct bicliques; l′ contains the value of b62 computed from the left for each
biclique, so |l| = 3. Meanwhile r contains the 8 bits fn computed from the right,
again for each biclique, hence |r| = 8× 3 = 24. This yields a match box table of

size 23
3+24+3 = 254 in less than 254 encryptions. Note that both the compression

table and the match box table are absolute precomputations, in the sense that
they do not depend on the actual plaintext/ciphertext pairs and need only be
built once.

In the end, we attack 153 rounds: the first 10 are covered by the bicliques;
the next 71 are the forward part of the meet-in-the-middle attack; the next 19
are covered by the match box; and the final 53 are the backwards part of the
meet-in-the-middle attack. See the Appendix for the list of round keys involved
in K1 and K2 and the list of round keys spared by using the match box.

Attack process.
– Precompute the compression table C.
– Precompute the match box M .
– For each partial key k∩ ∈ K∩:
• For each partial key k′1, knowing k1 = k∩⊕k′1, compute b62 from the left

for each biclique, and denote their concatenation by l′.
This yields a function F : k′1 → l′. Retrieve M(F).

• For each partial key k′2:
∗ For each biclique, knowing k2 = k∩ ⊕ k′2, compute the 31-bit r from

the right for that biclique. Convert it into 8 bits fn through C.
∗ Having done this for all 3 bicliques, the concatenation of the fn’s

makes up the 24-bit r entry of the match box. Match k′2 with the
k′1’s in M(F)(r) to form candidate master keys.

– Test candidates master keys on 3 plaintext/ciphertext pairs as in a standard
meet-in-the-middle attack. This should be done on the fly.

The overall attack complexity is:

274 + 254 + 3 ·
(

277 · 62

153
+ 277 · 81

153

)
+

2∑
i=0

277−32i ≈ 278.5

For KATAN48, aiming at the same complexity, we can cover 57 + 56 = 113
rounds with the meet-in-the-middle section, 5 rounds with the bicliques, and
an additional 11 rounds with the match box, for a total of 129 rounds. For
KATAN64, the bicliques cover 5 rounds as well, the match box 9, and the meet-
in-the-middle portion of the attack reaches 52 + 53 = 105 rounds, for a total of
119 rounds. The complexity and data requirements are shown on Table 1.

5 Conclusion

In this paper, we presented a new technique to extend meet-in-the-middle at-
tacks. This technique makes it possible to extend the middle portion of the
attack with no increase in the overall complexity, but at the cost of significant
precomputation. As such, it is a form of time/memory trade-off. We have applied
this technique to the lightweight cipher KATAN, and significantly improve on
previous results on this cipher.

Acknowledgments

The authors would like to thank Henri Gilbert for many helpful discussions, as
well as Anne Canteaut and Maŕıa Naya-Plasencia for their insightful remarks,
including the idea of compression (§3.3).

References

1. Martin R. Albrecht and Gregor Leander. An all-in-one approach to differential
cryptanalysis for small block ciphers. In Lars R. Knudsen and Huapeng Wu,
editors, Selected Areas in Cryptography, volume 7707 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2012.

2. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The Simon and Speck families of lightweight block ci-
phers. Cryptology ePrint Archive, Report 2013/404, http://eprint.iacr.org/
2013/404, 2013.

3. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 344–371. Springer, 2011.

4. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Biclique for
preimages: attacks on Skein-512 and the SHA-2 family. In Anne Canteaut, editor,
Fast Software Encryption, volume 7549 of Lecture Notes in Computer Science,
pages 244–263. Springer, 2012.

5. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, Charlotte H. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier, Ingrid Ver-
bauwhede, editors, Cryptographic Hardware and Embedded Systems – CHES 2007,
volume 4727 of Lecture Notes in Computer Science, pages 450-466. Springer, 2007.

6. Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle at-
tack: Cryptanalysis of the lightweight block cipher KTANTAN. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography, vol-
ume 6544 of Lecture Notes in Computer Science, pages 229–240. Springer, 2011.

7. Christophe de Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN and
KTANTAN - a family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded
Systems – CHES 2009, volume 5747 of Lecture Notes in Computer Science, pages
272–288. Springer, 2009.

8. Anne Canteaut, Maŕıa Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-middle:
Improved MITM attacks. Cryptology ePrint Archive, Report 2013/324, http:

//eprint.iacr.org/2013/324, to appear, 2013.
9. Jian Guo, Thomas Peyrin, Axel Poschmann, Matt Robshaw. The LED Block

Cipher. In Bart Preneel, Tsuyoshi Takagi, editors, Cryptographic Hardware and
Embedded Systems – CHES 2011, volume 6917 of Lecture Notes in Computer Sci-
ence, pages 326-341. Springer, 2011.

10. Takanori Isobe and Kyoji Shibutani. All subkeys recovery attack on block ciphers:
Extending meet-in-the-middle approach. In Lars R. Knudsen and Huapeng Wu,
editors, Selected Areas in Cryptography, volume 7707 of Lecture Notes in Computer
Science, pages 202–221. Springer, 2013.

11. Simon Knellwolf, Willi Meier, and Maŕıa Naya-Plasencia. Conditional differential
cryptanalysis of NLFSR-based cryptosystems. In Masayuki Abe, editor, Advances
in Cryptology - ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer
Science, pages 130–145. Springer, 2010.

12. Simon Knellwolf, Willi Meier, and Maŕıa Naya-Plasencia. Conditional differential
cryptanalysis of Trivium and KATAN. In Ali Miri and Serge Vaudenay, editors,
Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science,
pages 200–212. Springer, 2012.

13. Maŕıa Naya-Plasencia. How to improve rebound attacks. In Phillip Rogaway,
editor, Advances in Cryptology–CRYPTO 2011, volume 6841 of Lecture Notes in
Computer Science, pages 188–205. Springer, 2011.

14. Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and San
Ling. Improved meet-in-the-middle cryptanalysis of KTANTAN. In Udaya Param-
palli and Philip Hawkes, editors, Information Security and Privacy, volume 6812
of Lecture Notes in Computer Science, pages 433–438. Springer, 2011.

15. Bo Zhu and Guang Gong. Multidimensional Meet-in-the-Middle Attack and Its
Applications to KATAN32/48/64. Cryptology ePrint Archive, Report 2011/619,
http://eprint.iacr.org/2011/619, 2011.

Appendix: additional details for the attack on KATAN32

• K1 contains the following 80 round keys (dimension 77):
{20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 93, 94, 96, 97, 98, 100, 104, 107, 113}.
The following keys have a linear contribution: {92, 99, 109, 124}.
• K2 contains the following 81 round keys (dimension 77):

{213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 238, 239, 240,
241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274,
275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291,
292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305}.
The following keys have a linear contribution: {163, 185, 188, 198}.
• The following 35 round keys are spared by the match box:

{175, 179, 183, 187, 191, 193, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205,
206, 207, 208, 209, 210, 211, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232,
234, 236}.

