
Primer on Finite Fields – Brice Minaud, MPRI 2.12.1

This is a quick summary/cheat sheet on the basics of finite fields, aimed at crypto students.
P is the set of prime numbers. Elements of Zn = Z/nZ are identified with {0, . . . , n − 1}.

Statements about equality and unicity are up to isomorphism.

Theorem 1. Zp for p ∈ P is a field.

Proof. It suffices to show that non-zero elements are invertible. By Bézout’s identity, given
x ∈ {1, . . . , p− 1}, there exist y, z ∈ Z such that xy+ pz = gcd(x, p) = 1. Hence xy = 1 mod p.
Concretely, y can be computed using Euclid’s algorithm.

Theorem 2. Let F be a finite field. There exist p ∈ P (called the characteristic of F) and
n ∈ N such that |F| = pn.

Proof. Consider the additive subgroup generated by 1. Since F is finite, this subgroup is cyclic,
so it is isomorphic to Zk for some k ∈ N∗. If k 6∈ P, there exist a, b ∈ Z∗k such that ab = 0, which
implies they are not invertible, a contradiction. So k = p ∈ P and F contains Zp as a subfield.
Since any field is a vector space over any subfield, it follows that |F| = pn for some n.

Theorem 3. Let F be a finite field of characteristic p. The map F : x 7→ xp is an automorphism
of F over Zp (i.e. it leaves Zp fixed). It is called the Frobenius map.

Proof. The map F is clearly a morphism for multiplication. It suffices to show that (a+ b)p =
ap + bp for a, b ∈ F. This can be done by writing out the expansion of (a+ b)p with the binomial
coefficients, and noticing that all those coefficients vanish in Zp, except the first and last.

Theorem 4. For all p ∈ P and n ∈ N, there exists a unique field F with |F| = pn.

Proof. Let F be the splitting field over Zp of the polynomial P (X) = Xpn−X. Let R denote the
roots of P in F. The key point is that R is the set of fixed points of an automorphism (namely
Fn), hence it is a field. It follows that F = R. On the other hand, P has a derivative of −1,
so it has distinct roots, and degree pn, so |R| = pn. This shows existence. Unicity essentially
follows from the unicity of the splitting field.

Notation. The (unique) field of cardinality q = pn is usually denoted by Fq, sometimes also
GF(q) (for Galois Field). If p ∈ P, Fp = Zp.

Reminder. Let us recall two basic properties of polynomials over any field F.

– Euclidian Division. For all polynomials A,B ∈ F[X] with B 6= 0, there exist unique
polynomials Q,R ∈ F[X] such that A = PQ + R and deg(R) < deg(Q) or R = 0. In
particular, computing in F[X] modulo some polynomial P amounts to considering the
remainders in the division by P .

– Number of roots. A corollary of Euclidian division is that α ∈ F is a root of P ∈ F[X] iff
(X−α) divides P . A corollary of the corollary is that the number of roots of a polynomial
is upper-bounded by its degree.

1



Theorem 5. Let F be a finite field. The multiplicative group (F∗, ·) is cyclic.

Proof. Let p ∈ P, n ∈ N such that |F∗| = pn − 1. Let d be a divisor of k = pn − 1. Elements
whose order divides d are roots of Xd−1, so there can be at most d of them. This implies there
can be at most one cyclic subgroup of order d, hence at most φ(d) elements of order exactly d
(where φ : d 7→ |{k : gcd(k, d) = 1}| is Euler’s totient function). But each one of the k elements
of F∗ must have some order d|k, and by a standard equality

∑
d|k φ(d) = k, so in fact there are

exactly φ(d) elements of order d. Hence there are φ(k) elements of order k = |F∗|.

Corollary 1. Let F be a finite field of characteristic p. Let α ∈ F be a generator of the
multiplicative group (called a primitive element). Let P be the minimal polynomial of α over
Zp (monic polynomial of smallest degree in Zp[X] such that P (α) = 0). Then F ∼ Zp[X]/P .

Proof. Clearly, Zp(α) (the smallest field generated by the elements of Zp and α) is equal to F.
This implies that F is the splitting field of the minimal polynomial P of α. Because a minimal
polynomial must be irreducible, this implies F ∼ Zp[X]/P .

Thus, every finite field Fpn can be constructed as Zp[X]/P , for some irreducible P ∈ Zp[X]
of degree n. This yields a concrete way to represent elements of Fpn : they are in bijection with
the polynomials of Zp[X] of degree strictly less than n. Field operations can be computed like
in Zp[X], followed by reduction mod P . Inverses can be computed using Euclid’s algorithm.

A few more random facts.

– In practice, F2n and Fp for p ∈ P are the most common finite fields in computer science.
In F2n , field operations are especially fast; addition is just a XOR.

– The polynomial P used to represent Fpn as Zp[X]/P is not uniquely determined. Any
minimal polynomial of a primitive element will do—and you can expect many, since the
polynomial will have degree n, and there are φ(pn − 1) primitive elements. Polynomials
of this form are called primitive. There also exist irreducible polynomials that are not of
this form.

– Fpn is Galois over Zp. The Galois group is cyclic, generated by the Frobenius map F .

– Fpn contains Fpd for each d|n as a subfield, and no other subfield. Indeed, Fpd can be
obtained as the fixed points of F d. Conversely, if a subfield has cardinality pd for some d,
since Fpn is a vector space over it, (pd)k = pn for some k, so d|n. (This can also be seen
as a consequence of the fundamental theorem of Galois theory.)

– For any q = pn, Fqm ∼ Fq[X]/P for some irreducible P ∈ Fq[X] of degree m (as was the
case for n = 1). In particular, Fq admits irreducible polynomials of every degree.
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